We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, $\mathcal{F}_{S}(G)$ denotes the fusion category of G on a Sylow p-subgroup S of G where p denotes a prime. A subgroup K of G has normal complement in G if there is a normal subgroup T of G satisfying that G = KT and $T \cap K = 1$. We investigate the supersolvability of $\mathcal{F}_{S}(G)$ under the assumption that some subgroups of S are normal in G or have normal complement in G.
An element of a group is called reversible if it is conjugate to its own inverse. Reversible elements are closely related to strongly reversible elements, which can be expressed as a product of two involutions. In this paper, we classify the reversible and strongly reversible elements in the quaternionic special linear group $ \mathrm {SL}(n,\mathbb {H})$ and quaternionic projective linear group $ \mathrm {PSL}(n,\mathbb {H})$. We prove that an element of $ \mathrm {SL}(n,\mathbb {H})$ (resp. $ \mathrm {PSL}(n,\mathbb {H})$) is reversible if and only if it is a product of two skew-involutions (resp. involutions).
We find an upper bound for the number of groups of order n up to isomorphism in the variety ${\mathfrak {S}}={\mathfrak {A}_p}{\mathfrak {A}_q}{\mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak {A}_q\mathfrak {A}_r$.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
An element g in a group G is called reversible if g is conjugate to g−1 in G. An element g in G is strongly reversible if g is conjugate to g−1 by an involution in G. The group of affine transformations of $\mathbb D^n$ may be identified with the semi-direct product $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $, where $\mathbb D:=\mathbb R, \mathbb C$ or $ \mathbb H $. This paper classifies reversible and strongly reversible elements in the affine group $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
For a finite abelian group A, the Reidemeister number of an endomorphism φ is the same as the number of fixed points of φ, and the Reidemeister spectrum of A is completely determined by the Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian p-group P, we introduce a new number associated to an automorphism ψ of P that captures the number of fixed points of ψ and its (additive) multiples, we provide upper and lower bounds for that number, and we prove that every power of p between those bounds occurs as such a number.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
Let G be a simple algebraic group of adjoint type over an algebraically closed field k of bad characteristic. We show that its sheets of conjugacy classes are parametrized by G-conjugacy classes of pairs $(M,{\mathcal O})$ where M is the identity component of the centralizer of a semisimple element in G and ${\mathcal O}$ is a rigid unipotent conjugacy class in M, in analogy with the good characteristic case.
We calculate asymptotic estimates for the conjugacy growth function of finitely generated class 2 nilpotent groups whose derived subgroups are infinite cyclic, including the so-called higher Heisenberg groups. We prove that these asymptotics are stable when passing to commensurable groups, by understanding their twisted conjugacy growth. We also use these estimates to prove that, in certain cases, the conjugacy growth series cannot be a holonomic function.
We demonstrate that two supersoluble complements of an abelian base in a finite split extension are conjugate if and only if, for each prime $p$, a Sylow $p$-subgroup of one complement is conjugate to a Sylow $p$-subgroup of the other. As a corollary, we find that any two supersoluble complements of an abelian subgroup $N$ in a finite split extension $G$ are conjugate if and only if, for each prime $p$, there exists a Sylow $p$-subgroup $S$ of $G$ such that any two complements of $S\cap N$ in $S$ are conjugate in $G$. In particular, restricting to supersoluble groups allows us to ease D. G. Higman's stipulation that the complements of $S\cap N$ in $S$ be conjugate within $S$. We then consider group actions and obtain a fixed point result for non-coprime actions analogous to Glauberman's lemma.
In this note, we investigate some products of subgroups and vanishing conjugacy class sizes of finite groups. We prove some supersolubility criteria for groups with restrictions on the vanishing conjugacy class sizes of their subgroups.
We study the
$E_2$
-algebra
$\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$
consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion
$\Omega B\Lambda \mathfrak {M}_{*,1}$
: it is the product of
$\Omega ^{\infty }\mathbf {MTSO}(2)$
with a certain free
$\Omega ^{\infty }$
-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups
$\Gamma _{g,n}$
with
$g\geqslant 0$
and
$n\geqslant 1$
.
We study reductive subgroups H of a reductive linear algebraic group G – possibly nonconnected – such that H contains a regular unipotent element of G. We show that under suitable hypotheses, such subgroups are G-irreducible in the sense of Serre. This generalises results of Malle, Testerman and Zalesski. We obtain analogous results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.
Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size.
Let $K$ be a subgroup of a finite group $G$. The probability that an element of $G$ commutes with an element of $K$ is denoted by $Pr(K,G)$. Assume that $Pr(K,G)\geq \epsilon$ for some fixed $\epsilon >0$. We show that there is a normal subgroup $T\leq G$ and a subgroup $B\leq K$ such that the indices $[G:T]$ and $[K:B]$ and the order of the commutator subgroup $[T,B]$ are $\epsilon$-bounded. This extends the well-known theorem, due to P. M. Neumann, that covers the case where $K=G$. We deduce a number of corollaries of this result. A typical application is that if $K$ is the generalized Fitting subgroup $F^{*}(G)$ then $G$ has a class-2-nilpotent normal subgroup $R$ such that both the index $[G:R]$ and the order of the commutator subgroup $[R,R]$ are $\epsilon$-bounded. In the same spirit we consider the cases where $K$ is a term of the lower central series of $G$, or a Sylow subgroup, etc.
To each automorphism of a spherical building, there is a naturally associated opposition diagram, which encodes the types of the simplices of the building that are mapped onto opposite simplices. If no chamber (that is, no maximal simplex) of the building is mapped onto an opposite chamber, then the automorphism is called domestic. In this paper, we give the complete classification of domestic automorphisms of split spherical buildings of types
$\mathsf {E}_6$
,
$\mathsf {F}_4$
, and
$\mathsf {G}_2$
. Moreover, for all split spherical buildings of exceptional type, we classify (i) the domestic homologies, (ii) the opposition diagrams arising from elements of the standard unipotent subgroup of the Chevalley group, and (iii) the automorphisms with opposition diagrams with at most two distinguished orbits encircled. Our results provide unexpected characterizations of long root elations and products of perpendicular long root elations in long root geometries, and analogues of the density theorem for connected linear algebraic groups in the setting of Chevalley groups over arbitrary fields.
Given a finite group G with a normal subgroup N, the simple graph
$\Gamma _{\textit {G}}( \textit {N} )$
is a graph whose vertices are of the form
$|x^G|$
, where
$x\in {N\setminus {Z(G)}}$
and
$x^G$
is the G-conjugacy class of N containing the element x. Two vertices
$|x^G|$
and
$|y^G|$
are adjacent if they are not coprime. We prove that, if
$\Gamma _G(N)$
is a connected incomplete regular graph, then
$N= P \times {A}$
where P is a p-group, for some prime p,
$A\leq {Z(G)}$
and
$\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$
.
We prove that the invariably generating graph of a finite group can have an arbitrarily large number of connected components with at least two vertices.