Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
Using engaging prose, Mary E. Harrington introduces neuroscience students to the principles of scientific research including selecting a topic, designing an experiment, analyzing data, and presenting research. This new third edition updates and clarifies the book's wealth of examples while maintaining the clear and effective practical advice of the previous editions. New and expanded topics in this edition include techniques such as optogenetics and conditional transgenes as well as a discussion of rigor and reproducibility in neuroscience research. Extended coverage of descriptive and inferential statistics arms readers with the analytical tools needed to interpret data. Throughout, practical guidelines are provided on avoiding experimental design problems, presenting research including creating posters and giving talks, and using a '12-step guide' to reading scientific journal articles.
Using engaging prose, Mary E. Harrington introduces neuroscience students to the principles of scientific research including selecting a topic, designing an experiment, analyzing data, and presenting research. This new third edition updates and clarifies the book's wealth of examples while maintaining the clear and effective practical advice of the previous editions. New and expanded topics in this edition include techniques such as optogenetics and conditional transgenes as well as a discussion of rigor and reproducibility in neuroscience research. Extended coverage of descriptive and inferential statistics arms readers with the analytical tools needed to interpret data. Throughout, practical guidelines are provided on avoiding experimental design problems, presenting research including creating posters and giving talks, and using a '12-step guide' to reading scientific journal articles.
Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include an instructor's manual with solutions and additional exercises, PowerPoint lecture slides, and datasets. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.
Focusing on methods for data that are ordered in time, this textbook provides a comprehensive guide to analyzing time series data using modern techniques from data science. It is specifically tailored to economics and finance applications, aiming to provide students with rigorous training. Chapters cover Bayesian approaches, nonparametric smoothing methods, machine learning, and continuous time econometrics. Theoretical and empirical exercises, concise summaries, bolded key terms, and illustrative examples are included throughout to reinforce key concepts and bolster understanding. Ancillary materials include an instructor's manual with solutions and additional exercises, PowerPoint lecture slides, and datasets. With its clear and accessible style, this textbook is an essential tool for advanced undergraduate and graduate students in economics, finance, and statistics.