Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
This popular undergraduate quantum mechanics textbook is now available in a more affordable printing from Cambridge University Press. Unlike many other books on quantum mechanics, this text begins by examining experimental quantum phenomena such as the Stern-Gerlach experiment and spin measurements, using them as the basis for developing the theoretical principles of quantum mechanics. Dirac notation is developed from the outset, offering an intuitive and powerful mathematical toolset for calculation, and familiarizing students with this important notational system. This non-traditional approach is designed to deepen students' conceptual understanding of the subject, and has been extensively class tested. Suitable for undergraduate physics students, worked examples are included throughout and end of chapter problems act to reinforce and extend important concepts. Additional activities for students are provided online, including interactive simulations of Stern-Gerlach experiments, and a fully worked solutions manual is available for instructors.
This popular undergraduate quantum mechanics textbook is now available in a more affordable printing from Cambridge University Press. Unlike many other books on quantum mechanics, this text begins by examining experimental quantum phenomena such as the Stern-Gerlach experiment and spin measurements, using them as the basis for developing the theoretical principles of quantum mechanics. Dirac notation is developed from the outset, offering an intuitive and powerful mathematical toolset for calculation, and familiarizing students with this important notational system. This non-traditional approach is designed to deepen students' conceptual understanding of the subject, and has been extensively class tested. Suitable for undergraduate physics students, worked examples are included throughout and end of chapter problems act to reinforce and extend important concepts. Additional activities for students are provided online, including interactive simulations of Stern-Gerlach experiments, and a fully worked solutions manual is available for instructors.
The global race to build the world's first quantum computer has attracted enormous investment from government and industry, and it attracts a growing pool of talent. As with many cutting-edge technologies, the optimal implementation is not yet settled. This important textbook describes four of the most advanced platforms for quantum computing: nuclear magnetic resonance, quantum optics, trapped ions, and superconducting systems. The fundamental physical concepts underpinning the practical implementation of quantum computing are reviewed, followed by a balanced analysis of the strengths and weaknesses inherent to each type of hardware. The text includes more than 80 carefully designed exercises with worked solutions available to instructors, applied problems from key scenarios, and suggestions for further reading, facilitating a practical and expansive learning experience. Suitable for senior undergraduate and graduate students in physics, engineering, and computer science, Building Quantum Computers is an invaluable resource for this emerging field.
The global race to build the world's first quantum computer has attracted enormous investment from government and industry, and it attracts a growing pool of talent. As with many cutting-edge technologies, the optimal implementation is not yet settled. This important textbook describes four of the most advanced platforms for quantum computing: nuclear magnetic resonance, quantum optics, trapped ions, and superconducting systems. The fundamental physical concepts underpinning the practical implementation of quantum computing are reviewed, followed by a balanced analysis of the strengths and weaknesses inherent to each type of hardware. The text includes more than 80 carefully designed exercises with worked solutions available to instructors, applied problems from key scenarios, and suggestions for further reading, facilitating a practical and expansive learning experience. Suitable for senior undergraduate and graduate students in physics, engineering, and computer science, Building Quantum Computers is an invaluable resource for this emerging field.