We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We demonstrate the existence of K-multimagic squares of order N consisting of $N^2$ distinct integers whenever $N> 2K(K+1)$. This improves our earlier result [D. Flores, ‘A circle method approach to K-multimagic squares’, preprint (2024), arXiv:2406.08161] in which we only required $N+1$ distinct integers. Additionally, we present a direct method by which our analysis of the magic square system may be used to show the existence of $N \times N$ magic squares consisting of distinct kth powers when
$$ \begin{align*}N> \begin{cases} 2^{k+1} & \text{if}\ 2 \leqslant k \leqslant 4, \\ 2 \lceil k(\log k + 4.20032) \rceil & \text{if}\ k \geqslant 5, \end{cases}\end{align*} $$
improving on a recent result by Rome and Yamagishi [‘On the existence of magic squares of powers’, preprint (2024), arxiv:2406.09364].
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
Weighing matrices with entries in the complex cubic and sextic roots of unity are employed to construct Hermitian self-dual codes and Hermitian linear complementary dual codes over the finite field $\mathrm {GF}(4).$ The parameters of these codes are explored for small matrix orders and weights.
Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an underdetermined system of linear equations $Ax = b$, where the coordinates of the vector x are restricted to take values in some small subset (e.g. $\{\pm 1\}$) of the underlying field. The classical ways of bounding this quantity are to use either a rank bound observation due to Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger conclusion except when the number of equations is significantly smaller than the number of variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify in practice. In this paper, using a novel approach to the anti-concentration problem for vector sums, we obtain new Halász-type inequalities that beat the Odlyzko bound even in settings where the number of equations is comparable to the number of variables. In addition to being stronger, our inequalities have hypotheses that are considerably easier to verify. We present two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the first non-trivial upper bound on the number of $n\times n$ Hadamard matrices and (ii) we improve a recent bound of Deneanu and Vu on the probability of normality of a random $\{\pm 1\}$ matrix.
We discuss 1-factorizations of complete graphs that “match” a given Hadamard matrix. We prove the existence of these factorizations for two families of Hadamard matrices: Walsh matrices and certain Paley matrices.
We show that if a Barker sequence of length $n>13$ exists, then either n $=$ 3 979 201 339 721 749 133 016 171 583 224 100, or $n > 4\cdot 10^{33}$. This improves the lower bound on the length of a long Barker sequence by a factor of nearly $2000$. We also obtain eighteen additional integers $n<10^{50}$ that cannot be ruled out as the length of a Barker sequence, and find more than 237 000 additional candidates $n<10^{100}$. These results are obtained by completing extensive searches for Wieferich prime pairs and using them, together with a number of arithmetic restrictions on $n$, to construct qualifying integers below a given bound. We also report on some updated computations regarding open cases of the circulant Hadamard matrix problem.
A partial Steiner (n,r,l)-system is an r-uniform hypergraph on n vertices in which every set of l vertices is contained in at most one edge. A partial Steiner (n,r,l)-system is complete if every set of l vertices is contained in exactly one edge. In a hypergraph , the independence number α() denotes the maximum size of a set of vertices in containing no edge. In this article we prove the following. Given integers r,l such that r ≥ 2l − 1 ≥ 3, we prove that there exists a partial Steiner (n,r,l)-system such that
This improves earlier results of Phelps and Rödl, and Rödl and Ŝinajová. We conjecture that it is best possible as it matches the independence number of a random r-uniform hypergraph of the same density. If l = 2 or l = 3, then for infinitely many r the partial Steiner systems constructed are complete for infinitely many n.
The structure is determined for the existence of some amicable weighing matrices. This is then used to prove the existence and non-existence of some amicable orthogonal designs in powers of two.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.