Let
$K/\mathbb{Q}$ be Galois and let
$\eta \,\in \,{{K}^{\times }}$ be such that
$\text{Re}{{\text{g}}_{\infty }}\left( \eta \right)\,\ne \,0$. We define the local
$\theta $-regulator
$\Delta _{p}^{\theta }\left( \eta \right)\,\in \,{{\mathbb{F}}_{p}}$ for the
${{\mathbb{Q}}_{p}}$-irreducible characters
$\theta $ of
$G=\,\text{Gal}\left( K/\mathbb{Q} \right)$. Let
${{V}_{\theta }}$ be the
$\theta $-irreducible representation. A linear representation
${{\mathfrak{L}}^{\theta }}\,\simeq \,\delta \,{{V}_{\theta }}$ is associated with
$\Delta _{p}^{\theta }\left( \eta \right)$ whose nullity is equivalent to
$\delta \,\ge \,1$. Each
$\Delta _{p}^{\theta }\left( \eta \right)$ yields
$\text{R}eg_{p}^{\theta }\left( \eta \right)$ modulo
$p$ in the factorization
${{\Pi }_{\theta }}{{\left( \text{Reg}_{p}^{\theta }\left( \eta \right) \right)}^{\phi \left( 1 \right)}}$ of
$\text{Reg}_{p}^{G}\,\left( \eta \right)\,:=\frac{\text{Re}{{\text{g}}_{p}}\left( \eta \right)}{_{p}[K\,:\,\mathbb{Q}]}$ (normalized
$p$-adic regulator). From Prob
$\left( \Delta _{p}^{\theta }\left( \eta \right)=0\,\text{and}\,{{\mathfrak{L}}^{\theta }}\simeq \delta {{V}_{\theta }} \right)\,\le {{p}^{-f{{\delta }^{2}}}}$ (
$f\,\ge \,1$ is a residue degree) and the Borel-Cantelli heuristic, we conjecture that for
$p$ large enough,
$\text{Reg}_{p}^{G}\left( \eta \right)$ is a
$p$-adic unit or
${{p}^{\phi \left( 1 \right)}}\,||\,\text{Reg}_{p}^{G}\left( \eta \right)$ (a single
$\theta $ with
$f\,=\,\delta \,=\,1$); this obstruction may be led assuming the existence of a binomial probability law confirmed through numerical studies (groups
${{C}_{3,}}\,{{C}_{5}},\,{{D}_{6}}$) is conjecture would imply that for all
$p$ large enough, Fermat quotients, normalized
$p$-adic regulators are
$p$-adic units and that number fields are
$p$-rational.We recall some deep cohomological results that may strengthen such conjectures.