We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper considers the large N limit of Wilson loops for the two-dimensional Euclidean Yang–Mills measure on all orientable compact surfaces of genus larger or equal to $1$, with a structure group given by a classical compact matrix Lie group. Our main theorem shows the convergence of all Wilson loops in probability, given that it holds true on a restricted class of loops, obtained as a modification of geodesic paths. Combined with the result of [20], a corollary is the convergence of all Wilson loops on the torus. Unlike the sphere case, we show that the limiting object is remarkably expressed thanks to the master field on the plane defined in [3, 39], and we conjecture that this phenomenon is also valid for all surfaces of higher genus. We prove that this conjecture holds true whenever it does for the restricted class of loops of the main theorem. Our result on the torus justifies the introduction of an interpolation between free and classical convolution of probability measures, defined with the free unitary Brownian motion but differing from t-freeness of [5] that was defined in terms of the liberation process of Voiculescu [67]. In contrast to [20], our main tool is a fine use of Makeenko–Migdal equations, proving uniqueness of their solution under suitable assumptions, and generalising the arguments of [21, 33].
Let
$(M,g)$
be a closed Riemannian
$4$
-manifold and let E be a vector bundle over M with structure group G, where G is a compact Lie group. We consider a new higher order Yang–Mills–Higgs functional, in which the Higgs field is a section of
$\Omega ^0(\text {ad}E)$
. We show that, under suitable conditions, solutions to the gradient flow do not hit any finite time singularities. In the case that E is a line bundle, we are able to use a different blow-up procedure and obtain an improvement of the long-time result of Zhang [‘Gradient flows of higher order Yang–Mills–Higgs functionals’, J. Aust. Math. Soc.113 (2022), 257–287]. The proof relies on properties of the Green function, which is very different from the previous techniques.
Let $G$ be a compact connected simple Lie group of type $(n_{1},\,\ldots,\,n_{l})$, where $n_{1}<\cdots < n_{l}$. Let $\mathcal {G}_k$ be the gauge group of the principal $G$-bundle over $S^{4}$ corresponding to $k\in \pi _3(G)\cong \mathbb {Z}$. We calculate the mod-$p$ homology of the classifying space $B\mathcal {G}_k$ provided that $n_{l}< p-1$.
We compute the large N limit of the partition function of the Euclidean Yang–Mills measure on orientable compact surfaces with genus
$g\geqslant 1$
and non-orientable compact surfaces with genus
$g\geqslant 2$
, with structure group the unitary group
${\mathrm U}(N)$
or special unitary group
${\mathrm{SU}}(N)$
. Our proofs are based on asymptotic representation theory: more specifically, we control the dimension and Casimir number of irreducible representations of
${\mathrm U}(N)$
and
${\mathrm{SU}}(N)$
when N tends to infinity. Our main technical tool, involving ‘almost flat’ Young diagram, makes rigorous the arguments used by Gross and Taylor (1993, Nuclear Phys. B400(1–3) 181–208) in the setting of QCD, and in some cases, we recover formulae given by Douglas (1995, Quantum Field Theory and String Theory (Cargèse, 1993), Vol. 328 of NATO Advanced Science Institutes Series B: Physics, Plenum, New York, pp. 119–135) and Rusakov (1993, Phys. Lett. B303(1) 95–98).
In this paper, we define a family of functionals generalizing the Yang–Mills–Higgs functionals on a closed Riemannian manifold. Then we prove the short-time existence of the corresponding gradient flow by a gauge-fixing technique. The lack of a maximum principle for the higher order operator brings us a lot of inconvenience during the estimates for the Higgs field. We observe that the
$L^2$
-bound of the Higgs field is enough for energy estimates in four dimensions and we show that, provided the order of derivatives appearing in the higher order Yang–Mills–Higgs functionals is strictly greater than one, solutions to the gradient flow do not hit any finite-time singularities. As for the Yang–Mills–Higgs k-functional with Higgs self-interaction, we show that, provided
$\dim (M)<2(k+1)$
, for every smooth initial data the associated gradient flow admits long-time existence. The proof depends on local
$L^2$
-derivative estimates, energy estimates and blow-up analysis.
Fundamental group of a manifold gives a deep effect on its underlying smooth structure. In this paper we introduce a new variant of the Donaldson invariant in Yang–Mills gauge theory from twisting by the Picard group of a 4-manifold in the case when the fundamental group is free abelian. We then generalise it to the general case of fundamental groups by use of the framework of non commutative geometry. We also verify that our invariant distinguishes smooth structures between some homeomorphic 4-manifolds.
Let P be a principal bundle with semisimple compact simply connected structure group G over a compact simply connected four-manifold M. In this paper we give explicit formulas for the rational homotopy groups and cohomology algebra of the gauge group and of the space of (irreducible) connections modulo gauge transformations for any such bundle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.