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Abstract

Fundamental group of a manifold gives a deep effect on its underlying smooth structure. In
this paper we introduce a new variant of the Donaldson invariant in Yang–Mills gauge theory
from twisting by the Picard group of a 4-manifold in the case when the fundamental group
is free abelian. We then generalise it to the general case of fundamental groups by use of
the framework of non commutative geometry. We also verify that our invariant distinguishes
smooth structures between some homeomorphic 4-manifolds.

2020 Mathematics Subject Classification: Primary: 57K41; Secondary: 58B34,
81T13, 19D55

1. Introduction

Gauge theory and non commutative geometry are both the central branches of the Atiyah–
Singer index theory from the view point of study on smooth structure of manifolds. Both
theories gave serious developments in differential topology. In Yang–Mills gauge theory,
the ASD moduli space is the core object which possesses deep topological information on
the underlying 4-manifolds. The Novikov conjecture on homotopy invariance of higher sig-
natures has been developed extensively by applying non commutative geometry. Lusztig’s
approach to the Novikov conjecture was quite influential, and is a basis of successive devel-
opments of the subject [28]. This arose from study of smooth structure in high dimension,
where fundamental group plays a central role in surgery theory.
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It would be quite natural to try to combine both theories by introducing a unified frame-
work to analyse smooth structure on 4-manifolds. In this paper we start constructing a
twisted Donaldson invariant when the fundamental group of the underlying 4-manifold is
free abelian, by combinig Lusztig’s method of use of families of flat line bundles. Following
Connes–Moscovici, we introduce non commutative geometric framework to generalise our
construction to produce the twisted Donaldson invariant for non commutative groups. See
[21] for a related work on Seiberg–Witten and Bauer–Furuta invariant.

Let E→ X be an SU (2) vector bundle and B∗(E) be the set of the gauge equivalent
classes of irreducible connections on E . We have the universal SU (2)-vector bundle

E→ X ×B∗(E)

which gives a family of bundles with connections E[A] =E|X×{[A]} on X and which consists
of a structural framework in Yang-Mills gauge theory. (The precise construction requires
more technical cares. See Section 3.)

Let � be a finitely generated group, and fix a homomorphism f : π1(X)→ � = π1(B�)

which is represented by a continuous map f : X→ B�. Typically �= π1(X) and f : X→
B� is the classifying map of the universal cover X̃→ X . Let ρ : π1(B�)→U (1) be a rep-
resentation. Suppose that � is isomorphic to a free abelian group of rank m. Then ρ presents
a trivial line bundle Lρ with a U (1) flat connection on B�(∼= T m). The set of U (1) repre-
sentations, denoted by Pic(B�), is the moduli space of flat U (1) connections. All the line
bundles Lρ together form a complex line bundle

L−→ B�× Pic(B�).

Combining these two objects, in this paper we introduce deformation of the universal
bundle from the view point of the fundamental group of an underlying four manifold.
Suppose again that � is isomorphic to a free abelian group of rank m. A connection
A on E extends to a connection Aρ on E ⊗ f ∗Lρ , passing through the homomorphism
f : π1(X)→ � = π1(B�) induced by f . If one considers all the irreducible connections in
the same way, there is a transform

Tρ :B∗(E)−→B∗(E ⊗ f ∗Lρ)

from the set of irreducible connections on E to the one on E ⊗ f ∗Lρ . We obtain the full
map if we consider all the representations

T :B∗(E)× Pic(B�)−→
⊔
ρ

B∗(E ⊗ f ∗Lρ).

Thus B∗(E)× Pic(B�) parametrizes connections on the bundles {E ⊗ f ∗Lρ}ρ . Consider
the following bundle

E�X ( f × id)∗L→ X ×B∗(E)× Pic(B�)

which consists of the family of bundles with connections (E|X×{[A]})⊗ f ∗Lρ on X
parametrised by B∗(E)× Pic(B�). Here �X denotes the fibered product over X . For our
construction of twisted Donaldson invariants, we need a family of bundles with connections
on X × B�.
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Definition 1·1. Let X be a compact and spin 4-manifold and suppose that c2(E) is odd.
The twisted universal bundle is defined by

Etw
f :=E�X ( f × id)∗L�Pic L−→ X × B� ×B∗(E)× Pic(B�),

where �Pic is the fibered product with respect to the Picard group.

The conditions that X is spin and c2(E) is odd are necessary for the existence of the
universal bundle E. See Lemma 3·1.

In Donaldson theory, a homomorphism

μ : H2(X;Z)−→ H 2(B∗(E);Q) (1·1)

is given by the first Chern class of the determinant bundle of the index of the family of
the twisted Cauchy–Riemann operators on an embedded surface � in X parametrised by
B∗(E).

Let D : �(E)→ �(F) be a differential operator over X , and ρ : π1(X)→U (1) be a rep-
resentation. Then one can twist D with ρ so that it gives another operator Dρ : �(E ⊗ Lρ)→
�(F ⊗ Lρ). This gives a family of operators

D := {Dρ}ρ∈Pic(B�)

parametrised by the Picard torus. Such family of elliptic operators play the important role in
Lusztig’s construction.

Now take a compact submanifold M ⊂ X × B�. Suppose the dimension of M is even and
M is spin with the complex spinor bundle S= S+ ⊕ S− and the Dirac operator D : �(S+)→
�(S−). A representation ρ : π1(B�)→U (1) gives the flat line bundles Lρ and f ∗Lρ on
B� and X respectively. For each element [A] ∈B∗(E), one can twist DA with the flat line
bundles Lρ, f ∗Lρ , and obtain the Dirac operator with coefficients

DA,ρ : �((S+ ⊗ E ⊗ f ∗Lρ)� Lρ)−→ �((S− ⊗ E ⊗ f ∗Lρ)� Lρ).

This gives the family of the full twist of the Dirac operators

Dtw
M = {DA,ρ}([A],ρ)∈B∗(E)×Pic(B�)

which is a basic object in our construction of the twisted Donaldson invariants.
Roughly we define the twisted μ map by

μtw
f ([M])= ch(Ind Dtw

M ) ∈ H ∗(B∗(E)× Pic(B�);Q),

where Ind Dtw
M is the index bundle over B∗(E)× Pic(B�). More precisely we have to take

care of non compactness of B∗(E). See Section 3 for the precise construction.
In order to see that our twisted Donaldson invariants are non trivial, we induce two proper-

ties on topology of four manifolds. These were suggested by Professor K.Fukaya, to whom
we are thankful.

Let Y, Y1, Y2 all be spin 4-manifolds with b+ > 1. We will give concrete examples which
satisfy the above conditions.

THEOREM 1·2. Let m ≥ 0 be a non negative integer.
(1) If moreover Y is simply connected, algebraic, then X = Y #m(S1 × S3) cannot admit

connected sum decompositions X = X1#X2 with b+(Xi ) > 0.
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(2) Suppose that the Donaldson invariant over Y1 vanishes but the one over Y2 does not.
Moreover assume that they are mutually homeomorphic so that the pair is exotic. Then the
corresponding pairs Y1#m(S1 × S3) and Y2#m(S1 × S3) are also exotic.

To verify these results, we use our computations of the twisted Donaldson invariant
defined as below. Let X be a compact and spin 4-manifold with b+(X) > 1. Put

A(X)= Sym(H0(X;Z)⊕ H2(X;Z)) ⊗ �(H1(X;Z)⊕ H3(X;Z)). (1·2)

In the rank 1 case � ∼=Z (B� ∼= S1), for each r ∈ {1, 2, 3, 4}, the twisted Donaldson
polynomial is formally given by the following

�
tw,(r)

X,f : A(X)⊗ Hodd(X;Z)−→ H ∗(Pic(B�);Q)∼= H∗(�;Q),

�
tw,(r)

X,f ([M1], . . . , [Md]; [M])=
∫
M(E)

μ([M1])∧ · · · ∧μ([Md])∧μtw
f ([M])

if there exists an SU (2)-vector bundle E on X with c2(E) odd and with dim M(E)=∑d
j=1(4− dim M j )+ r . We put �

tw,(r)

X,f ([M1], . . . , [Md]; [M])= 0, if there is no such

SU (2) vector bundle. Probably it is possible to define �
tw,(r)

X,f for r ≥ 5, but we do not discuss
in this paper.

Of course the integral above makes sense only if the cohomology class μ([M1])∪ · · · ∪
μ([Md])∪μtw

f ([M]) has compact support since M(E) is not compact. We will overcome
this issue by choosing a submanifold in B∗(E) dual to the cohomology class which behaves
nicely near the end of M(E) as in the usual Donaldson theory.

We will compute �
tw,(3)

X in the case of the connected sum X = Y #S1 × S3. Let � be a loop
in X which represents a generator of π1(S1 × S3)∼=Z. We will verify the equality

�
tw,(3)

X,f ([M1], . . . , [Md], [�])=−�Y ([M1], . . . , [Md])η.

Here �Y is the Donaldson invariant over Y , and η ∈ H 1(Pic(BZ);Z)∼= H1(B�;Z)∼=Z is a
generator. See Example 3·2.

The above construction naturally leads to an extension to higher rank case of free abelian
groups. We verify non triviality of such extension. In particular we reproduce Theorem
1·2 under the additional assumption of simple type, by use of the extension of the twisted
Donaldson invariant.

Based on the above constructions, we generalise the twisted Donaldson theory to the case
of non commutative fundamental groups. Immediately two difficulties arise, which prevent
from a straightforward extension. One is that B� is not a manifold in general. The other is
that Picard group becomes much harder to treat in general. We shall use the spin bordism
group 
spin

∗ (B�) instead of H∗(B�;Z), which solves the former difficulty.
The latter difficulty touches the central idea of non commutative geometry. Let us briefly

explain it. It is well known as the Swan’s theorem that topological K group of a compact
CW complex is naturally identified with the operator K group of continuous functions over
the space. Non commutative algebras are applied to the latter group, and this plays a role
of a basic bridge between non commutative algebras and algebraic topology. Associated
with the de-Rham cohomology over a space is Connes cyclic cohomology HC∗(A) for a
non commutative algebra A. The parallel notions have been established such as the Chern
character K∗(A)→ H P∗(A).
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Let us describe more details on the passage from commutative to non commutative anal-
ysis. An important aspect is Fourier transform on tori, which gives the correspondence of
functions between a torus and its dual torus. The dual torus parametrises flat U (1) con-
nections over the torus called the Picard torus. Such space duality comes from a strong
constraint that the group is free abelian. For a non commutative group �, there are no such
space duality, but corresponding to the space of functions over the dual torus is the (reduced)
group C∗ algebra C∗r (�) of the group, given as a completion of the complex group ring (see
subsection 5·3). An elliptic operator twisted by every flat U (1) connection over the torus
produces a family of the elliptic operators parametrised by the Picard torus, as we described
above. The family index gives an element of K 0(Pic(B�)). A non commutative interpreta-
tion is the elliptic operator with coefficient by the Mishchenko–Fomenko flat C∗r (�) bundle,
and its index takes a value in K0(C∗r (�)). In case of � ∼=Zn , where B� is the n-torus T n ,
the isomorphisms hold:

K0(C
∗
r (�))∼= K0(C(Pic(T n))∼= K 0(Pic(T n)).

Chern–Weil theory presents a construction of the Chern classes by smooth differen-
tial forms which take the values in the de-Rham cohomology. A key to describe its non
commutative counterpart is the existence of a dense subalgebra C∞(�)⊂C∗r (�) which is
closed under holomorphic calculus. The algebra plays a central role in non commutative de-
Rham theory by use of cyclic cohomology. Conceptually a canonical choice of this algebra
corresponds to the algebra of smooth functions on manifolds.

The Chern character is given by a map

Ch∗ : K∗(C∗r (�))−→ H P∗(C∞(�)).

There is a canonical map H P∗(C∞(�))→ H ∗(�;C), and it induces an isomorphism

H P∗(C∞(�))⊗C∼= H ∗(�;C)

under some cohomological conditions on �, to be more precise, when � satisfies the
Baum–Connes conjecture and the Chern character Ch∗ is rationally isomorphic. Typical
examples are free abelian groups. A weaker condition for �, called admissiblity, guarantees
surjectivity of the canonical map (Proposition 4·13).

Let B ⊂M(E) be a compact submanifold. As a canonical extension of the twisted μ

map to non commutative case, we introduce the following map. Let us fix a smooth algebra
C∞(�). Then we construct a twisted μ-map

μtw
f :
Spin

∗ (X)⊗
Spin
∗ (B�)−→ H P0(C

∞(�)⊗C∞(�)⊗C∞(B)).

If moreover the group is admissible, then we derive its cohomological formula which follows
essentially from Connes–Moscovici’s index theorem. Put

Aπ(X)= Sym(H0(X;Z)⊕ H2(X;Z)) ⊗ � H3(X;Z) × �m∈Z≥0 π1(X)×m, (1·3)

where we regard π1(X) as just a set, rather than group. The twisted Donaldson map is
given by

�
tw,(r)

X,f : Aπ(X)× (
Spin
∗ (X)⊗
Spin

∗ (B�))−→ H P∗(C∞(�)⊗C∞(�))
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for r = 1, 2. In particular we obtain the following map

�
tw,(r)

X,f : Aπ(X)× (
Spin
∗ (X)⊗
Spin

∗ (B�))−→ H∗(�;Q)⊗ H∗(�;Q)

when � is admissible and H P∗(C∞(�)) is finite dimensional. Note that when � is abelian
or more generally, � admits a cohomological formula in the sense of Theorem 5·6, π1(X)

can be reduced to H1(X;Z) and Aπ(X) can be simplified to A(X) defined in (1·2).
At present we do not know how to treat non compactness of the moduli spaces in the non

commutative case, which is the reason why we restrict r ≤ 2.
The condition of � being admissible touches with smooth structure on the underlying

manifold. Actually it is a crucial condition to verify the Novikov conjecture which is still
open in general and is a fundamental problem in the study of high dimensional smooth
structure:

PROPOSITION 1·3. [9] Let M be a compact oriented smooth manifold of arbitrary dimen-
sion. If π1(M)≡ � is admissible, then � satisfies the Novikov conjecture on homotopy
invariance of higher signatures.

In particular, the conclusion holds, if it admits a smooth algebra C∞(�) with polynomial
cohomology and rapid decay property. It has not yet been known whether each finitely
presented group could satisfy admissibility, nor any counter example has been known.

From the view point of study on smooth structure on four manifolds, it would be of par-
ticular interest for us to try to construct the twisted Donaldson map without the conditions
on fundamental groups. There are two aspects for this. One is that in order to compute
the twisted Donaldson invariant, we will have to use the Connes–Moscovici index formula
which cannot be applied to a general group, and we have to assume that the group is admissi-
ble. The other is that the rational cohomology group of the configuration space is generated
by the image of the standard μ map, in the case of simply connected 4-manifolds. So it
makes sense to speculate that the fundamental group � will appear in the generalisation of
the Donaldson invariant to the non-simply connected case.

It turns out that the pull backs of these maps recover the twisted Donaldson’s invariant for
commutative case described above. Suppose �∼=Zn is free abelian, and let � : Pic(B�)→
Pic(B�)× Pic(B�) be the diagonal map. Then it induces the homomorphisms

�∗ : H∗(�;Q)⊗ H∗(�;Q)−→ H∗(�;Q)

passing through the isomorphisms H∗(�× �;Q)∼= H ∗(Pic(B�)× Pic(B�);Q) and
H∗(�;Q)∼= H ∗(Pic(B�));Q). Then

�∗(�
tw,(r)

X ) : A(X)⊗ H∗(X;Z)⊗
Spin
∗ (B�)−→ H∗(�;Q)

coincides with our twisted Donaldson invariant for commutative case.

1·1. A conjecture

We would like propose:

CONJECTURE 1·4. If X splits into a connected sum X = X1
X2 with b+(Xi )≥ 1 for
i = 1, 2, then the twisted Donaldson invariant vanishes:

�
tw,(r)

X,f ≡ 0.
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Let us explain how to verify it for more restrictive case of groups, and how its argument
breaks for more general case of groups. Actually such a restrictive case admits a coho-
mological formula of the twisted Donaldson invariant, which is obtained by applying the
Connes–Moscovici’s index theory. They verified a fact that the Novikov conjecture is sat-
isfied for a group if it admits such a cohomology formula. The Novikov conjecture states
homotopy invariance of higher signatures and arose from study on smooth structure of high
dimensional manifolds. So our vanishing conjecture can measure complexity of smooth
structure from the both view points of gauge theory and surgery theory.

1·1·1. Splitting ASD moduli space
Let X = X1
X2 be a connected sum and put π1(X)= � and π1(Xi)= �i for i = 1, 2.

Then � = �1 ∗ �2. Let us recall Donaldson’s fundamental result ([14, theorem 9·3·4])

THEOREM 1·5. Let E→ X be an SU (2) bundle over an oriented closed smooth 4-
manifold. Suppose X = X1
X2 splits as a connected sum with b+(Xi )≥ 1. Then the
Donaldson invariant vanishes:

�X ≡ 0.

Proof. Let us describe the idea of the proof. Let M(E, g) be the ASD moduli space over
(X, g). Choose a family of Riemannian metrics ga so that the neck part length grow as
[−Ta, Ta] × S3 with Ta→∞. Take elements [Aa] ∈M(E, ga). Then a subsequence con-
verges to a pair of ASD solutions (A1, A2) over Ei→ (Xi , gi ) for i = 1, 2. This implies that
when one stretches the neck of the connected sum so that the connected sum part is isometric
to [−T, T ] × S3 for large T � 1, then E splits as E ∼= E1#E2 with SU (2) bundles Ei→ Xi .

Suppose dim M(E, ga)= 0. Then the additive formula

dim M(E)= dim M(E1)+ dim M(E2)+ 3

shows that dim M(Ei , gi ) < 0 is negative for i = 1 or i = 2, and hence it is generically
empty, which is a contradiction to the fact that [Ai ] ∈M(Ei). Here dim M(E j ) is the for-
mal dimension. See [14, Section 7·2·5] for the additive formula. When dim M(E, ga) > 0 is
positive, then the dual submanifold of the image of μ map satisfies the same phenomena.

This leads to vanishing of the invariant.

Let us try to follow a parallel argument for the twisted Donaldson invariants. However it
turns out that the free product of groups behaves rather differently from direct product. For
example it is well known that

K0(C
∗
r (Fn))= K0(C

∗
r (Fn−1 ∗Z))∼= · · · ∼=Z.

So the Mischenko bundle γ = X̃ ×� C∗r (�) will not split as the sum of γi = X̃ ×� C∗r (�i),
and the twisted μ map cannot split as the standard μ map, and hence the parallel argument
breaks.

1·1·2. Cohomological formula
However as we will see below, if we pass through more cohomological argument in non

commutative geometry, then we can verify vanishing of the twisted Donaldson invariants for
groups which posses some characteristics. It turn out that such characteristics touches with
validity of the Novikov conjecture on homotopy invariance of higher signatures.
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LEMMA 1·6. Let � be admissible and H P∗(C∞(�)) be finite dimensional. Then the
twisted Donaldson invariants vanish �

tw,(r)

X,f ≡ 0, if X = X1
X2 splits as a connected sum
with b+(Xi)≥ 1.

This is verified by using the cohomological formula on the twisted μ map, when the group
is admissible.

In Theorem 5·6, we have verified a cohomology formula

〈 [η] ⊗ [ξ ] ⊗ [C], μtw
f (α, β) 〉 = 〈 ch(Ê)∧ f ∗η , [M ×C] 〉 〈 Â(N )∧ j∗ξ , [N ] 〉 ∈C.

Hence our twisted Donaldson invariant is described by the classical Donaldson invariant,
when � is admissible and H P∗(C∞(�)) is finite dimensional. In particular it verifies our
conjecture in this case. On the other hand Connes–Moscovici has verified the Novikov con-
jecture for admissible groups (see Proposition 1·3). The Novikov conjecture is still open
in general and is a fundamental problem in the study of high dimensional smooth struc-
ture. Hence the admissibility condition consists of an important class of discrete groups, but
assumes a strong constrain on structure of groups.

Our main theme in this paper is to construct a bridge between Yang–Mills theory and
non commutative geometry. What we made non commutative was the cohomology classes
over the standard ASD moduli space. We did not use non commutative ASD moduli space
which consists of gauge equivalent classes of ASD connections over E ⊗ (X̃ ×� C∗r (�)).
Its analysis seems quite hard, since it is infinite dimensional. On the other hand, a non
commutative action functional in non commutative geometry was already introduced by
Connes [8]. As a next step in future work, we shall study non commutative ASD moduli
space based on our approach combined with Connes action functional. We hope very much
it will lead to a construction of ‘non commutative Donaldson invariant’.

We also include basics materials of Yang–Mills gauge theory in Section 2 and non
commutative geometry in Section 1, for the convenience of readers in different fields.

2. Review of Yang–Mills gauge theory

2·1. Donaldson invariant

Let (X, g) be an oriented, closed, smooth Riemannian four-manifold. Take an SU (2) vec-
tor bundle E→ X , and g= P ×SU (2) su(2) be the adjoint bundle, where P is the principal
SU (2)-bundle associated with E .

We denote by A(E) the space of connections on E , which is an affine space of sections
on the cotangent bundle twisted by the adjoint bundle. So if we choose a base connection
A0 on E , then we can write it as:

A(E)= A0 + �(X;�1 ⊗ g).

The gauge group G(E) acts on A(E) by conjugation g∗(A0 + a)≡ g−1 ◦ (A0 + a) ◦ g.
The action of the subgroup {±1} of G(E) is trivial. Hence we have the action of

G(E)/{±1} on A(E). It is a basic matter that G(E)/{±1} acts on the set of irreducible
connections A∗(E)⊂A(E) freely, and hence the quotient space:

B∗(E)=A∗(E)/G(E)=A∗(E)/(G(E)/{±})
becomes a regular Hilbert manifold under taking completion by a Sobolev norm.
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The Hodge ∗ operator acts on two forms into themselves as: ∗ : ∧2V →∧2V with ∗2 = 1,
if V is a 4-dimensional Euclidean space. So ∧2V splits into self-dual and anti self-dual
vectors ∧2V = (∧2V )+ ⊕ (∧2V )−. Let:

F+ :A(E)−→ �(X; g⊗∧+)
be the self-dual part of the curvature, which is given by the orthogonal projection of the
curvature F . Let us consider the space of anti self-dual connections:

M̃(E, g)= {A ∈A(E); F+(A)= 0} ⊂ A(E).

The gauge group G(E) acts on M̃(E, g).

Definition 2·1. The moduli space of anti self-dual (ASD) connections is given by the
quotient:

M(E, g)= M̃(E, g) / G(E).

It follows from the Atiyah–Singer index theorem that the formal dimension of the moduli
space is given by:

8c2(E)+ 3

2
(χ(X)− τ(X))= 8c2(E)− 3(1− b1(X)+ b+(X)),

where χ(X) is the Euler characteristic and τ(X) is the signature of X respectively.
It follows from transversality argument that for a generic metric g, the moduli space

M(E, g) is smooth if b+(X) > 1 and c2(E) > 0. Hence we have the inclusion:

M(E, g) ⊂ B∗(E).

In general this does not give a homology class in H∗(B∗(E);Z), since the moduli space is
non compact.

Let us describe roughly how to formulate the Donaldson invariant. Let G0(E) be the
framed gauge group:

G0(E) := {u ∈G(E); u(x0)= 1}
where x0 is a fixed point in X . Put:

B̃(E) :=A(E) / G0(E)

and consider a vector bundle Ẽ on X × B̃(E) defined by the following:

Ẽ := E ×G0(E) A(E).

It is well known that the adjoint bundle gẼ of Ẽ descends to a vector bundle gE over X ×
B∗(E), while the vector bundle Ẽ itself does not descend to a vector bundle over X ×B∗(E)

in general.
We define:

μ : H∗(X;Z)−→ H 4−∗(B∗(E);Q),

μ(α) :=−1

4
p1(gE)/α.
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A choice of an orientation O of the vector space H1(X)⊕H+(X) gives an orientation on
the moduli space, where H1(X) and H+(X) are the spaces of harmonic 1-forms and self-
dual harmonic two forms respectively. See [11]. Let A(X) be as in (1·2). Then the Donaldson
invariant is a linear map:

�X : A(X)−→Q

which depends on the orientation O up to sign, but usually we drop it from our notation.
Roughly speaking, the Donaldson invariant is given by the integral formula:

�X (α1, . . . , αd)=
∫
M(E,g)

μ(α1)∪ · · · ∪μ(αd)

if there is an SU (2) vector bundle E with:

dim M(E, g)= deg{μ(α1)∪ · · · ∪μ(αd)}.
Otherwise we put �X (α1, . . . , αd)= 0.

In order for the above formula to make sense, the cohomology classes μ(α1)∪ · · · ∪
μ(αd) should have compact support, since M(E) is not compact in general. To overcome
this difficulty, we pass through dual submanifolds of μ(α j ), which behave nicely near the
end of the moduli space. Later we will describe such construction.

Technically speaking, reducible SU (2)-flat connections affect to find such dual submani-
folds. To avoid such connections, we take the blow-up:

X̂ = X#CP
2

(2·1)

and choose the U (2)-vector bundle Ê on X̂ with:

c1(Ê)= e and c2(Ê)= c2(E). (2·2)

Here e is the standard generator of H 2(CP
2;Z)(⊂ H 2(X̂;Z)). See Remark 2·8 below. This

technique was introduced in [30]. See also [23] and [13, Section 6·3].
Fix a connection a0 on det Ê . We will always consider connections on Ê compatible

with a0 so that their determinants concide with a0. The moduli spaces should be denoted as
M(Ê, ĝ, a0) apriori. But the invariants defined here are actually all independent of a0. So
we omit to denote a0 and write it as M(Ê, ĝ).

Remark 2·2. Take two connections a0, a1 on det Ê . For t ∈ [0, 1], put at = (1− t)a0 + ta1.
Then it gives a family of the moduli spaces parametrised by t , and the family forms a cobor-
dism between M(Ê, ĝ, a0) and M(Ê, ĝ, a1). This cobordism is diffeomorphic to the trivial
cobordism, and the invariants are independent of choice of a0.

If c2(Ê) > 0, for a generic metric ĝ, the moduli space M(Ê, ĝ) of ASD connections on
Ê is smooth and included in B∗(Ê). Moreover we have the dimension formula:

dim M(Ê, ĝ)= dim M(E, g)+ 2. (2·3)

Let us explain how to construct a submanifold which is dual to μ(α) and which behaves
nicely near the end of the moduli space M(Ê, ĝ). Take an integral homology class α =
[M] ∈ H∗(X;Z) for ∗ ≤ 3, where M is a submanifold in X . Consider a suitable neighbor-
hood U of M in X in the sense of [23, p· 589]. We may think of U as a subset in X̂ . Let B∗U
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be the configuration space of irreducible connections on Ê |U (= E |U ). Since the restricton
of an irreducible ASD connection over X̂ to the open subset U is still irreducible, we have
the restriction map:

rU :M(Ê, ĝ)−→B∗U .

For any subset B ⊂B∗U , we put:

M(Ê, ĝ)∩ B := {[A] ∈M(Ê, ĝ); rU ([A]) ∈ B}.
We will construct a generic submanifold VM in B∗U of codimension 4−∗ such that:

M(Ê, ĝ)∩ VM

is transverse and is a submanifold in B∗(Ê) dual to μ([M]). This behaves nicely near the
end of the moduli space.

Let us present how to construct VM for α = [M] ∈ H∗(X;Z) for ∗ ≤ 3.

2·2. Dual submanifolds of μ(α)

2·2·1. The case deg α = 0
We consider the degree 0 case. Let x be a point in X . Take a suitable neighbourhood ν(x)

of x . Let gx,C be the complexification of the vector bundle

gx := B̃∗ν(x) ×ad su(2)

over B∗ν(x) with fiber su(2). Take generic section s1 and s2 of gx,C. Let Vx in B∗ν(x) be the
locus where s1 and s2 are not linear independent. Then Vx is a codimension-4 stratified subset
in B∗ν(x), which is dual to 4μ([x]).
Remark 2·3. The subspace Vx is dual to 4μ([x]) rather than μ([x]). Because of this fact, we
will have the factor 1/4 in the definition of the Donaldson invariant in definition 2·7.

2·2·2. The case deg α = 1
Take a homology class [�] ∈ H1(X;Z), where � is a loop in X . We may regard � as a loop

in X̂ . Fix a neighbourhood ν(�) of � in X̂ which is suitable in the sense of [23, p· 589].
For each connection A on E |ν(�)(= Ê |ν(�)) consider its holonomy h�(A) ∈ SU (2) along �.
The holonomy assignment gives a section h� :B∗ν(�)→ ad B̃∗ν(�) = B̃∗ν(�) ×ad SU (2). If we
perturb h� slightly, then we get a section h′� of ad B̃∗ν(�) such that h′� is transverse to the
trivial section s0 of ad B̃∗ν(�) defined by s0([A])= [A, 1]. Put:

V� := (h′�)
−1(1).

Here 1 stands for the image of s0. Then V� is a submanifold in B∗ν(�) of codimension 3.

2·2·3. The case deg α = 2
Take α ∈ H2(X;Z), and let � ⊂ X be an embedded, closed and oriented surface repre-

senting α. Consider the restriction E |�→�, and let B̃� =A�/G0
� be the configuration

space of framed connections on E |�(= Ê |�), with the framed gauge group G0
� = {g ∈

G�|g(x0)= 1} over � for a fixed point x0 ∈�. We have the universal SU (2)-vector bundle:

Ẽ� = (E |�)×G0
�
A� −→� × B̃�

which presents the universal family of bundles with connections on �.
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Fix a spin structure on �, and let D be the Dirac operator over � as the twisted ∂̄

operator. Each SU (2) connection A gives the associated Dirac operator DA, and hence
such assignment induces the universal family of the Dirac operators over the configuration
space B̃� .

Let L̃�→ B̃� be the determinant line bundle of the family of the Dirac operators. We
write B̃(Ê) and B∗(Ê) for the configuration spaces of framed connections and irreducible
connections over Ê compatible with the fixed connection a0. It is known that the pull-back
r̃∗�L̃� descends to a line bundle:

L� −→B∗(Ê),

where r̃� : B̃(Ê)→ B̃� is the restriction map. The Atiyah–Singer index theorem for family
computes the following:

PROPOSITION 2·4. μ([�])= c1(L�) ∈ H 2(B∗(Ê);Q).

Take a neighbourhood ν(�)⊂ X of � which is suitable in the sense of [23, p· 589]. As
above L̃� naturally induces a line bundle Lν(�)→B∗ν(�). Then the submanifold V� is given
by the zero set of s�:

V� := s−1
� (0)

for any generic section s� :B∗ν(�)→Lν(�).

Remark 2·5. Notice that the first Chern class of the determinant line bundle is the same
as the one of the family of the index bundle. A merit to use the determinant line bundle is
that its Poincaré dual class is expressed by the pull back of a generic section of L� . This is
technically important since the moduli space is non compact in general.

2·2·4. The case deg α = 3
Take α = [M] ∈ H3(X;Z) represented by a closed, oriented 3-manifold M embedded in

X . Take a suitable neighborhood ν(M). We have the Chern–Simons functional

C SM :B∗ν(M) −→ S1 =R/Z.

We may suppose that 0 ∈ S1 is a regular value of C SM after perturbing C SM slightly. The
submanifold is given by

VM :=C S−1
M (0).

2·3. Homology and bordism classes of the intersection of submanifolds VM

2·3·1. Main statement
Take homology classes [M1], . . . , [Md] ∈ H≤3(X;Z) and their neighbourhoods ν(Mi)⊂

X of Mi , which is suitable in the sense of [23, p· 589]. (If [M j ] ∈ H0(X;Z), then we assume
that [M j ] is the generator [pt] of H0(X;Z) which is represented by a single point pt of X .)
We may suppose that

ν(Mi1)∩ · · · ∩ ν(Mi p)=∅ (2·4)
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for {i1, . . . , i p} ⊂ {1, . . . , d} with

(4− dim Mi1)+ · · · + (4− dim Mi p) > 4.

PROPOSITION 2·6. Suppose b+(X) > 1, and the inequarity

dim M(Ê, ĝ)=
d∑

j=1

(4− dim M j )+ r

holds for some r ∈ {0, 1, 2, 3}. Then the intersection:

V (Ê, ĝ; M1, . . . , Md) := M(Ê, ĝ)∩ VM1 ∩ · · · ∩ VMd (2·5)

is a compact, smooth submanifold in M(Ê, ĝ) of dimension r.
The orientation O of H1(X)⊕H+(X) induces an orientation of the intersection. If r ≤ 2,

the homology class:

[V (Ê, ĝ; M1, . . . , Md)] ∈ Hr (B
∗(Ê);Z)

and the oriented bordism class:

[V (Ê, ĝ; M1, . . . , Md)] ∈
SO
r (B∗(Ê))

are both independent of choice of ĝ and VM j . It depends only on Ê, the homotopy classes
[M j : S1→ X ] ∈ π1(X) with dim M j = 1 and the homology classes [M j ] ∈ H∗(X;Z) with
dim M j = 0, 2 or 3.

2·3·2. Compactness of V (Ê, ĝ; M1, . . . , Md)

We will prove the compactness of the space V (Ê, ĝ; M1, . . . , Md) in Proposition 2·6.
It follows from a standard argument that V (Ê ′, ĝ; Mi1, . . . , Mi p) are smooth manifolds

of the expected dimension for a generic metric ĝ on X̂ , generic representatives VMi and
{i1, . . . , i p} ⊂ {1, . . . , d}. Here Ê ′ is any U (2) vector bundle with 0≤ c2(Ê ′)≤ c2(Ê) and
c1(Ê ′)= e ∈ H 2(X̂;Z). In particular, the negativity of the dimension:

dim V (Ê ′; Mi1, . . . , Mi p)= dim M(Ê ′)−
p∑

k=1

(4− dim Mik ) < 0

implies that

V (Ê ′; Mi1, · · · , Mi p)=∅.
To verify that V (Ê, ĝ; M1, . . . , Md) is compact, take a sequence [An] in

V (Ê, ĝ; M1, . . . , Md). After passing to a subsequence, it converges as

[An] −→ ([A], x1, . . . , xm) ∈M(Ê ′)× Symm X,

where Ê ′ is a U (2)-vector bundle with c2(Ê ′)= c2(Ê)−m and c1(Ê ′)= e for some
0≤m ≤ c2(Ê), and xi are the blowing up points.

We have to show m = 0. For each x j , let Mi( j,1), . . . , Mi( j,p( j)) be the submanifolds with
x j ∈ ν(Mi( j,k)) for k = 1, . . . , p( j). Then we have the bounds:

(4− dim Mi( j,1))+ · · · + (4− dim Mi( j,p( j)))≤ 4 (2·6)
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since (2·4) and

x j ∈ ν(Mi( j,1))∩ · · · ∩ ν(Mi( j,p( j))).

Let Mi1, · · · , Miq be the submanifolds which do not contain any of x j . Then we have:

[A] ∈ V (Ê ′; Mi1, . . . , Miq ).

On the other hand, the following estimates hold:

dim V (Ê ′; Mi1, · · · , Miq )≤ dim V (Ê; M1, . . . , Md)− 8m

+
m∑

j=1

{
(4− dim Mi( j,1))+ · · · + (4− dim Mi( j,p( j)))

}
≤ dim V (Ê; M1, . . . , Md)− 4m

= r − 4m.

(2·7)

So if m > 0 could be positive, then dim V (Ê ′; Mi1, . . . , Mi p) < 0 is negative, and

hence V (Ê ′; Mi1, . . . , Mi p) must be empty. This is a contradiction since [A] ∈ V

(Ê ′; Mi1, . . . , Mi p). Thus m = 0 and V (Ê; M1, . . . , Md) is compact.

2·3·3. Invariance under change of metric
We will check that the classes of V (Ê; M1, . . . , Md) in both Hr (B

∗(Ê);Z) and

SO

r (B∗(Ê)) are independent of choice of metrics ĝ as follows. Take another metric ĝ′

and a generic path G = {ĝt}0≤t≤1 from ĝ to ĝ′. This gives a parametrised moduli spaces
M(Ê, G). Then we obtain a cobordism V (Ê, G; M1, . . . , Md) between the boundary com-
ponents associated with the moduli spaces with respect to ĝ and ĝ′, if we verify that it is
compact.

We follow a parallel argument as above. Take [An] ∈ V (Ê, G; M1, . . . , Md). Then they
converge [An]→ ([A], x1, . . . , xm) after passing to a subsequence, and obtain an element
[A] ∈ V (Ê ′, G; Mi1, . . . , Mi p). Then the dimension estimate:

dim V (Ê ′, G; Mi1, . . . , Mi p)≤ r + 1− 4m

still implies that m cannot be positive for r = 0, 1, 2.
The classes [V (Ê, ĝ; M1, . . . , Md)] are also independent of the choice of the representa-

tives VM j . We are left to prove that the classes

[V (Ê; M1, . . . , Md)] ∈ Hr (B
∗(Ê);Z), [V (Ê; M1, . . . , Md)] ∈
SO

r (B∗(Ê))

depend only on the homotopy class [M j : S1→ X ] ∈ π1(X) with dim M j = 1 and homology
class [M j ] ∈ H∗(X;Z) with dim M j = 0, 2 or 3.

2·3·4. Invariance under change of representatives VM : The case dim M = 0
First we will consider the case dim M1 = 0. That is M1 is a point x of X . As in Section

2·2·1, choose pairs of generic sections (s1, s2), (s ′1, s ′2) of the bundle gx ⊗C, gx ′ ⊗C over
B∗ν(x), B∗ν(x ′). Then we get two representatives VM1, V ′M1

which are the loci where (s1, s2),
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(s ′1, s ′2) are not linear independent. Fix a path γ on X from x to x ′ and choose a neighborhood
ν(γ ) of γ with

ν(x), ν(x ′)⊂ ν(γ ).

We have the adjoint bundle gν(γ ) ⊗C over B∗ν(γ ). Put

B∗∗ν(γ ) := {[A] ∈Bν(γ )| Both rν(x)(A) and rν(x ′)(A) are irreducible}.
Here rν(x), rν(x ′) are the restrictions. Take pair of generic sections (t1, t2) of the bundle
(gν(γ ) ⊗C)× [0, 1] over B∗∗ν(x) × [0, 1] such that

ti |B∗ν(x)×{0} = r∗ν(x)si , ti |B∗ν(x)×{1} = r∗ν(x ′)s
′
i .

Let V (t1, t2) be the locus where t1, t2 are not linear independent. Then we can show that

{V (Ê, ĝ; M2, . . . , Md)× [0, 1]} ∩ V (t1, t2)

is a bordism between

V (Ê, ĝ; M2, . . . , Md)∩ VM1

and

V (Ê, ĝ; M2, . . . , Md)∩ V ′M1
.

2·3·5. Invariance under change of representatives VM : the case dim M = 1
Suppose that M1, N1 : S1→ X are embeddings in X with M1(0)= N1(0)= x0 and with

[M1] = [N1] in π1(X).

We can find a homotopy

H : S1 × [0, 1] −→ X

with H(0, t)= x0 and with H(·, 0)= M1, H(·, 1)= N1. Put

W := {H(s, t)|s ∈ S1, t ∈ [0, 1]} ⊂ X.

Choose a neighbourhood ν(W ) of W in X with

ν(M1), ν(N1)⊂ ν(W ).

After perturbing H , we may suppose that if

ν(W )∩ ν(Mi1)∩ · · · ∩ ν(Mi p) �= ∅
then

2+ (4− dim Mi1)+ · · · + (4− dim Mi p)≤ 4 (2·8)

for distinct i1, . . . , i p ≥ 2. Put

B∗∗ν(W ) := {[A] ∈B∗(E |ν(W )) | [A|ν(M1)] and [A|ν(N1)] are irreducible}.
We define a homotopy of sections

H ′ :B∗∗ν(W ) × [0, 1] −→ ad B̃∗∗ν(W )
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of the adjoint bundle by

H ′([A], t) := ht([A]),
where ht stands for the holonomy along the loop H |S1×{t}. We denote the preimage (H ′)−1(1)

by VW . We will prove that

{V (Ê; M2, . . . , Md)× [0, 1]} ∩ VW (2·9)

is compact and a bordism between V (Ê; M1, M2, . . . , Md) and V (Ê; N1, M2, . . . , Md).
Perturbing the homotopy H ′, we may suppose that the intersection (2·9) is transverse. To
prove it is compact, take a sequence ([An], tn) in the intersection (2·9). After passing to a
subsequence,

[An] −→ ([A∞], x1, . . . , xm) ∈M(Ê ′)× Symm X, tn −→ t.

Suppose that x1, . . . , xm are all not in ν(W ). Let Mi( j,1), . . . , Mi( j,p( j)) be the submanifolds
with x j ∈ ν(Mi( j,k)) for k = 1, . . . , p( j). Then we have the inequality (2·6) for each j and

([A], t) ∈ {V (Ê ′; Mi1, . . . , Miq )× [0, 1]} ∩ VW .

Here i1, . . . , iq ≥ 2 and Mi1, . . . , Miq are the submanfiolds with x j �∈ ν(Mik ) for all j . As
(2·7), we have

dim({V (Ê ′; Mi1, . . . , Miq )× [0, 1]} ∩ VW )≤ r + 1− 4m.

If m ≥ 1, dim({V (Ê ′; Mi1, . . . , Miq )× [0, 1]} ∩ VW ) < 0 and we obtain a contradiction.
Thus [An] must converge to a point in the intersection (2·9). Next suppose that x1 ∈ ν(W ).
Then we have

[A] ∈ V (Ê ′; Mi1, . . . , Miq ).

Here i1, . . . , iq ≥ 2 and Mi1, . . . , Miq are the submanifolds with x j �∈ ν(Mik ) for all j .
Let Mi( j,1), . . . , Mi( j,p( j)) be the submanifolds with i( j, k)≥ 2 and with x j ∈ ν(Mi( j,k)) for
k = 1, . . . , p( j). By (2·6) and (2·8), we have

dim V (Ê ′; Mi1, . . . , Miq )≤ V (Ê; M1, . . . , Md)− 8m

+ 3+ (4− dim Mi(1,1))+ · · · + (4− dim Mi(1,p(1)))

+
m∑

j=2

{(4− dim Mi( j,1))+ · · · + (4− dim Mi( j,p( j)))}

≤ r − 8m + 5+ 4(m − 1)

= r + 1− 4m.

Again, if m ≥ 1, dim V (Ê ′; Mi1, . . . , Miq ) < 0 and this is a contradiction. Therefore
the intersection (2·9) is compact and a bordism between V (M1, M2, . . . , Md) and
V (N1, M2, . . . , Md). So we have

[V (Ê; M1, M2, . . . , Md)] = [V (Ê; N1, M2, . . . , Md)]
in Hr (B

∗(Ê);Z) and 
SO
r (B∗(Ê)).
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2·3·6. Invariance under change of representatives VM : the case dim M = 2
Next we will consider the case dim M1 = 2. Suppose that

[M1] = [N1] ∈ H2(X;Z).

Recall that VM1 , VN1 are the zero sets of sections

sM1 :B∗ν(M1)
−→Lν(M1), sN1 :B∗ν(N1)

−→Lν(N1).

There is the complex line bundle L→ X with c1(L)= P D([M1]) and generic sections s0, s1

of L such that

s−1
0 (0)= M1, s−1

1 (0)= N1.

Take a generic section

H : X × [0, 1] −→ L

with

H(·, 0)= s0, H(·, 1)= s1.

Put

W := H−1(0)⊂ X × [0, 1].
Then W is a submanifold in X × [0, 1] with ∂W = M1 × {0}∐ N1 × {1}. Choose a neigh-
borhood ν(W ) of W in X × [0, 1] such that

ν(M1)× {0} ∪ ν(N1)× {1} ⊂ ν(W ).

First we will show that

π1(B
∗∗
ν(W ))= 1,

where B∗∗ν(W ) is the configuration space of connections A on ν(W ) such that A|ν(M1)×{0} and
A|ν(N1)×{1} are irreducible. To see this, we consider the fibration

Gν(W ) −→A∗∗ν(W ) −→B∗∗ν(W ).

Recall that ν(M1) is a neighborhood of the sum of M1 and loops in X . Similarly for ν(N1).
(See p. 589 of [23].) So we may suppose that ν(W ) is a neighbourhood of W ∪ l1 ∪ · · · ∪ lq ,
where l j is a loop. The homotopy exact sequence associated with the fibration shows that

π1(B
∗∗
ν(W ))
∼= π0(Gν(W ))

= [ν(W ), SU (2)]
∼= [W ∪ l1 ∪ · · · ∪ lq, SU (2)]
= H 3(W ∪ l1 ∪ · · · ∪ lk;Z)

= 0.

We have used corollary 16 of [34, chapter 8, section 1].
Let

Pad −→ ν(W )×B∗∗ν(W )
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be the SO(3)-bundle defined as in [14, p· 176]. A calculation similar to that in [14, Section
5·2] shows that

c1(r
∗
0Lν(M1))=−

1

4
p1(P

ad)/[M1] =−1

4
p1(P

ad)/[N1] = c1(r
∗
1Lν(N1))

in H 2(B∗∗ν(W );Q), where r0 :B∗∗ν(W )→B∗ν(M1)
, r1 :B∗∗ν(W )→B∗ν(N1)

are the restriction maps
r0([A])= [A|ν(M1)×{0}], r1([A])= [A|ν(N1)×{1}]. As we have seen, π1(B

∗∗
ν(W ))= 1 and hence

H 2(B∗∗ν(W );Z) is torsion free. Therefore

c1(r
∗
0Lν(M1))= c1(r

∗
1Lν(N1)) in H 2(B∗∗ν(W );Z),

and r∗0Lν(M1) and r∗1Lν(N1) are isomorphic to each other. Fix an isomorphism r∗0Lν(M1)
∼=

r∗1Lν(N1). Then we can take a generic section

H ′ :B∗∗ν(W ) × [0, 1] −→ r∗0Lν(M1)

with

H ′(·, 0)= r∗0 sM1, H ′(·, 1)= r∗1 sN1 .

Put VW := (H ′)−1(0). The usual dimension counting argument shows that

(V (Ê; M2, . . . , Md)× [0, 1])∩ VW

is compact and a bordsim between V (Ê; M1, M2, . . . , Md) and V (Ê; N1, M2, . . . , Md).

2·3·7. Invariance under change of representatives VM : the case dim M = 3
We will consider the case dim M1 = 3. Suppose [M1] = [N1] in H3(X;Z). We have

smooth maps f0, f1 : X→ S1 with P D([M1])= [ f0] = [ f1] in H 1(X;Z)∼= [X, S1] such
that 0 ∈ S1 is a regular value of f0, f1 and M1 = f −1(0), N1 = f −1

1 (0). Since [ f0] = [ f1]
in [X, S1] we have a smooth map

H : X × [0, 1] −→ S1

with H(·, 0)= f0, H(·, 1)= f1 such that 0 ∈ S1 is a regular value of H . Put

W = H−1(0)⊂ X × [0, 1].
Then W is a submanifold in X × [0, 1] with ∂W = M1 × {0}∐ N1 × {1}. We have the
Chern–Simons functionals

C SM1 :B∗ν(M1)
−→ S1, C̃ SM1 : B̃∗ν(M1)

−→ S1,

C SN1 :B∗ν(N1)
−→ S1, C̃ SN1 : B̃∗ν(N1)

−→ S1.

Let r̃0 : B̃∗∗ν(W )→ B̃∗ν(W ), r̃1 : B̃∗∗ν(W )→ B̃∗ν(N1)
be the restriction maps and P̃→ ν(W )×

B̃∗∗ν(W ) be the universal SU (2)-bundle. We have

[r̃∗0 C̃ SM1] = c2(̃P)/[M1] = c2(̃P)/[N1] = [r̃∗0 C̃ SN1]
in H 1(B̃∗∗ν(W );Z)= [B̃∗∗ν(W ), S1]. See [14, p· 178]. The homomorphism H 1(B∗∗ν(W );Q)→
H 1(B̃∗∗ν(W );Q) induced by the base point fibration is injective (see the proof of Proposition
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5·1·15) and H 1(B∗∗ν(W );Z) is torsion free by the universal coefficient theorem. These facts
imply that

[r∗0 C SM1] = [r∗1 C SN1] in H 1(B∗∗ν(W );Z)= [B∗∗ν(W ), S1].
Therefore we have a homotopy

H ′ :B∗∗ν(W ) × [0, 1] −→ S1

with

H ′(·, 0)= r∗0 C SM1, H ′(·, 1)= r∗1 C SN1 .

We may suppose that 0 ∈ S1 is a regular value of H ′. Put

VW := (H ′)−1(0).

Then we can show that

{V (Ê; M2, . . . , Md)× [0, 1]} ∩ VW

is compact and a bordism between V (Ê; M1, M2, . . . , Md) and V (Ê; N1, M2, . . . , Md).
Take integral homology classes [M1], . . . , [Md] ∈ H∗(X;Z) for ∗ ≤ 3. If [M j ] ∈

H0(X;Z), assume that [M j ] is the generator of H0(X;Z). If we have an SU (2)-bundle
E with:

r := dim V (Ê; M1, . . . , Md)≤ 2,

then V (Ê; M1, . . . , Md) defines the classes [V (Ê; M1, . . . , Md)] in Hr (B
∗(Ê);Z) and


SO
r (B∗(Ê)) by Proposition 2·6, which depends only on their homology classes [M j ].

2·4. Definition of �X

We extend the definition of the class [V (Ê; M1, . . . , Md)] to H0(X;Z) linearly. For
example, suppose that [M1] = n1[pt], . . . , [Md0] = nd0[pt] ∈ H0(X;Z) where [pt] is the
generator of H0(X;Z) and that [Md0+1], . . . , [Md] are degree 1 or larger. Then we put

[V (Ê; M1, . . . , Md)] := n1 . . . nd0[V (Ê; pt, . . . , pt, Md0+1, . . . , Md)]. (2·10)

Note that if E is an SU (2) vector bundle with

dim M(E)=
d∑

j=1

(4− dim M j ),

we have

[V (Ê;�0, M1, . . . , Md)] ∈ H0(B
∗(Ê);Z)∼=Z

because of the formula (2·3). Here [�0] is the Poincare dual of the standard generator e of

H 2(CP
2;Z).

Definition 2·7. We define the Donaldson invariant by:

�X ([M1], . . . , [Md])= 1

2 · 4d0
[V (Ê;�0, M1, . . . , Md)] ∈Q
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Here d0 is the number of homology classes [M j ] of degree 0. If there is no SU (2) vec-
tor bundle E with dim M(E)=�d

j=1(4− dim M j ), then we define �X ([M1], . . . , [Md])
to be 0.

Remark 2·8. The factor 1/4 in the definition of �X comes from the fact that VM j is dual to
4μ([M j ]) rather than μ([M j ]) if [M j ] ∈ H0(X;Z). See Remark 2·3.

The factor 1/2 comes from the blow-up formula. In general the Donaldson invariant
�X can not be defined by a straightforward way, since reducible flat connections affect its
construction. On the other hand when it is surely defined, we have the following formula:

�X ([M1], . . . , [Md])= 1

2
�X̂ ([�0], [M1], . . . , [Md]),

where X̂ is the blow up of X . Even though the left–hand side is not defined in gen-
eral, the right hand side is always defined as we have described. So, it is natural to put
�X ([M1], . . . , [Md]) to be the half of �X̂ ([�0], [M1], . . . , [Md]).

We will make one more remark on the Donaldson invariant.

Remark 2·9. The Donaldson invariant �X is a homomorphism. On H0(X;Z), it is easy to
see that �X is a homomorphism from (2·10). Suppose that 1≤ dim M1 ≤ 3 and that there is
an SU (2) vector bundle E with dim M(E)=∑d

j=1(4− dim M j ). Note that

1≤ dim V (Ê;�0, M2, . . . , Md)≤ 3.

By Proposition 2·6, V (Ê;�0, M2, . . . , Md) is compact. Therefore we can write

�X ([M1], . . . , [Md])= 1

2 · 4d0

〈
μ([M1]), [V (Ê;�0, M2, . . . , Md)]

〉
.

Since μ is a homomorphism, �X is a homomorphism on H∗(X;Z) with 1≤ ∗≤ 3.
Recall that if dim M j = 1, the class [V (Ê; M1, . . . , Md)] depends on the homotopy class
[M j ] in π1(X) rather than the homology class in H1(X;Z). (See proposition 2·6). Since the
values of �X are in Q which is commutative and �X is a homomorphism, �X descends to a
map on H1(X;Z).

We have a natural sum decomposition:

�X =
∑

k∈Z>0

�X,k,

where �X,k : A(X)→Q is defined by using the U (2)-vector bundle Ê with c2 = k and with
c1 = e:

�X,k([M1], . . . , [Md])=⎧⎪⎨⎪⎩
1

2·4d0
[V (Ê;�0, M1, . . . , Md)] if 8k − 3(1− b1(X)+ b+(X))=

d∑
j=1

(4− dim M j )

0 otherwise.
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Then we put:

�X,odd :=
∑

k∈Z>0, k≡1(2)

�X,k . (2·11)

3. Twisted Donaldson invariant for commutative case

A unitary representation of the fundamental group can be used to twist connections over a
4-manifold. In particular the characters of the Picard torus Pic(Bπ1(X)) give rise to a family
of moduli spaces fibered over the Picard torus when π1(X) is free abelian group � =Zm .
More generally, we can consider a group homomorphism f : π1(X)→ �, when π1(X) is not
necessarily free abelian. By use of such structure, we introduce twisted Donaldson invariants

�
tw,(r)

X,f : A(X)⊗ Hodd(X;Z)⊗ H1(B�;Z)−→ H ∗(Pic(B�);Q)

for r = 1, 2, 3, 4. Here A(X) is the domain of Donaldson invariants (1·2).
We verify that this version of the invariants are non trivial in the sense that they can be

used to produce quite interesting properties on smooth structure on four manifolds. So this is
a model case and motivates us to generalise our construction to the case of non commutative
fundamental groups, by introducing a framework of non commutative geometry in Section 5.

Throughout Section 3, we always assume that X is a closed, spin and smooth 4-manifold
with b+(X) > 1. The reason why we need spin condition will be explained in Subsection 3·1
below.

3·1. Rank 1 case

Put � :=Z and take a homomorphism f : π1(X)→ �. Below we introduce a twist of the
μ-map

μtw
f : Hodd(X;Z)−→ lim←−

B

H ∗(B × Pic(B�);Q)

using the family of flat connections, where B runs over compact subsets in B∗(Ê).
We denote the Picard torus of B� by Pic(B�)

Pic(B�)= H 1(B�;R)/H 1(B�;Z)∼= S1.

Let us consider the universal line bundle

L→ B� × Pic(B�)

which consists of the family {Lρ}ρ∈Pic(B�) of flat line bundles on B� = S1 where Lρ :=
L|B�×{ρ} is the restriction. Its first Chern class is given by

c1(L)=ω ∪ η ∈ H 1(B�;Z)⊗ H 1(Pic(B�);Z)

=H 2(B�× Pic(B�);Z),

where ω ∈ H 1(B�;Z) and η ∈ H 1(Pic(B�);Z) are the generators respectively.
Take an SU (2)-vector bundle E on X with c2(E) odd. To avoid difficulties caused by

reducible flat connections, we use the U (2)-vector bundle Ê on the blow-up X̂ = X#CP
2

as
in (2·1) with the conditions (2·2).
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Let us describe the construction of the universal bundle

Ê−→ X̂ ×B∗(Ê)

of Ê , following the discussion of [14, section 8·3·5]. Consider the bundle˜̂
E := Ê ×G0(Ê) A(Ê)−→ X × B̃(Ê),

where A(Ê) is the space of U (2)-connections A on Ê with a fixed determinant det A= a0.
G0(Ê) is the gauge group on Ê whose elements u satisfy det(u)= 1 and u(x0)= 1 for a
fixed point x0.

Let c be the spinc structure on X̂ with c1(c)=−e. Coupling the spinc Dirac operator over

X̂ with ˜̂E, we obtain the family DX̂ of the twisted spinc Dirac operators parametrised by
B̃(Ê). We can take the real part of the operators (DX̂ )R and obtain the real line bundle˜̂
�= det Ind(DX̂ )R on B̃(Ê). See [1, section 5].

LEMMA 3·1. Suppose X is spin and c2(Ê) is odd. Then ˜̂E⊗R

˜̂
� descends to a vector

bundle

Ê→ X̂ ×B∗(Ê)

Proof. Note that the numerical index of the Dirac operators is odd. (See [1, p· 75].) This

implies that ˜̂E⊗R

˜̂
� descends to a vector bundle on X̂ ×B∗(Ê) (see [14, proposition

8·3·15]).

This is the point where we have to assume that X is spin. (See also Remark 3·10 below.)
Later on we will always assume that all four manifolds are spin, otherwise stated.

The homomorphism f : π1(X)= π1(X̂)→ � =Z induces a continuous map

f̂ : X̂ −→ B� ∼= S1

which is unique up to homotopy. Let us introduce a twisted universal bundle

Êtw
f := Ê�X̂ ( f̂ × id)∗L�Pic L−→ X̂ × B� ×B∗(Ê)× Pic(B�)

as a family of vector bundles with connections on X̂ × B� parametrized by B∗(Ê)×
Pic(B�).

Firstly consider the fibered product

Ê�X̂ ( f̂ × id)∗L−→ X̂ ×B∗(Ê)× Pic(B�)

which is given by the family of twisted U (2) bundles (Ê ⊗ Lρ, [Aρ]) with twisted
connections at ([A], ρ) ∈B∗(Ê)× Pic(B�).

Next let ( f̂ × id)∗L�Pic L→ X̂ × B�× Pic(B�) be the fibered product, which is given
by the family of flat line bundles f̂ ∗Lρ � Lρ at ρ ∈ Pic(B�).

Then the twisted universal bundle is given by combination of these two constructions.
Take a homology class [M] ∈ Hodd(X;Z) and realize it by a submanifold M ⊂ X . We

may regard M as a submanifold in X̂ . The restriction

Êtw
f |M×B�×B∗(Ê)×Pic(B�)

https://doi.org/10.1017/S0305004121000013 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000013


Twisted Donaldson invariants 537

gives a family of vector bundles with connections on M × B� parametrized by B∗(Ê)×
Pic(B�).

M × B� admits a spin structure since dim M ≤ 3. So choose and fix it. Coupling the Dirac
operator on M × B� with Êtw

f |M×B�×B∗(Ê)×Pic(B�), we get a family of the Dirac operators

DM×B�,f parametrised by B∗(Ê)× Pic(B�).
Over a compact subset B ⊂B∗(Ê), consider the index bundle of the family of the Dirac

operators

IndB DM×B�,f ∈ K ∗(B × Pic(B�)).

It is compatible with the restriction in K theory

IndB DM×B�,f = IndB ′ DM×B�,f|B×Pic(B�)

for B ⊂ B ′.

Definition 3·2. The twisted μ-map μtw
f ([M]) is given by the collection

μtw
f ([M])≡ {ch(IndB DM×B�,f)}B ∈ lim←−

B

H ∗(B × Pic(B�);Q).

Here B runs over compact subsets in B∗(Ê).

We have the following.

LEMMA 3·3. Under the above situation, the formula

μtw
f ([M])= ch(Êtw

f )/[M × B�]
holds, where the right hand side is the image of ch(Êtw

f )/[M × B�] by the natural map

H ∗(B∗(Ê)× Pic(B�);Q)−→ lim←−
B

H ∗(B × Pic(B�);Q).

In particular μtw
f ([M]) is independent of choices of representative M of the homology

class [M] ∈ Hodd(X;Z) and spin structure on M × B�.

Proof. For each compact subset B ⊂B∗(Ê),

ch(IndB DM×B�,f)= ch(Êtw
f |M×B�×B×Pic(B�)) Â(M × B�)/[M × B�]

= ch(Êtw
f |M×B�×B×Pic(B�))/[M × B�]

by the Atiyah–Singer index theorem for family. Here we have used the fact that Â(M ×
B�)= Â(M) Â(B�)= 1 since dim M ≤ 3.

Remark 3·4. For [M] ∈ Heven(X;Z), we can define μtw([M]) as above. But μtw
f ([M])= 0

since the dimension of M × B� is odd in this case.

Let us introduce the twisted Donaldson invariant below. To do this, we compute the
following.

Recall that μ is the standard μ map in Section 2.
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LEMMA 3·5. For α ∈ Hodd(X;Z), we have

μtw
f (α)= (ch(Ê)/α)∪ η=−μ(α)∪ η+ (ch≥4(Ê)/α)∪ η,

where η is the generator of H 1(Pic(B�);Z).

In particular the following two cases happen:
(1)

μtw
f (α)/c= 0

if α ∈ Hodd(X;Z) and c ∈ H2(B
∗(Ê);Z), or if α ∈ H3(X;Z) and c ∈ H3(B

∗(Ê);Z).
(2)

μtw
f (α)/c=−(μ(α)/c)∪ η

if α ∈ H1(X;Z) and c ∈ H3(B
∗(Ê);Z).

Proof. Take a homology class α = [M] ∈ Hodd(X;Z), and realize it by a submanifold
M ⊂ X . Regard it as a submanifold in X̂ . By Lemma 3·3,

μtw
f (α)= ch(Êtw

f )/[M × B�]
= ch(Ê|M×B∗(Ê)) ch(( f̂ × id)∗L) ch(L)/[M × B�], (3·1)

where f̂ : X̂→ B� is the continuous map. Let us verify

c1(Ê|M×B∗(Ê))= 0. (3·2)

To see this, it is sufficient to check that Ê|M×B∗(Ê) has an SU (2)-vector bundle structure.

Recall that ˜̂E⊗R

˜̂
� descends to Ê and the structure group of ˜̂� is {±1}. Hence it is suffi-

cient to verify that ˜̂E|M×B̃(Ê) is an SU (2)-vector bundle. Let P→ X be the SU (2)-principal
bundle associated to E . Put a principal SU (2)-bundle

P̃M := (P|M)×G0(Ê) A(Ê) → M × B̃(Ê).

Note that Ê |M = E |M , and hence the vector bundle associated to P̃M is ˜̂E|M×B̃(Ê). So˜̂
E|M×B∗(Ê) has an SU (2)-vector bundle structure.

We also have

c1(L)=ω ∪ η, c1(L)2 = 0, c3(Ê)= 0, (3·3)

where ω ∈ H 1(B�;Z), η ∈ H 1(Pic(B�);Z) are the generators. Putting (3·2) and (3·3)
together into (3·1), we obtain

μtw
f (α)=−(c2(Ê)/α)∪ η+ (ch≥4(Ê)/α)∪ η

=−μ(α)∪ η+ (ch≥4(Ê)/α)∪ η.

Here we have used the equality c2(Ê)=−p1(gÊ)/4.

Remark 3·6. The formula in Lemma 3·5 verifies that μtw
f (α) is actually independent of f.

On the other hand μtw
f (α) does depend on f in the higher rank case. See Section 3·3 below.
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3·1·1. Construction of �
tw,(1)

X,f and �
tw,(2)

X,f

Take [M1], . . . , [Md] ∈ H≤3(X;Z), where M j are submanifolds in X . Suppose that
we have an SU (2)-vector bundle E with c2(E) odd and with dim M(E)=∑d

j=1(4−
dim M j )+ 1. Let Ê be the U (2)-vector bundle on X̂ = X#CP

2
with conditions (2·2) and

the relations on dimentions of moduli spaces (2·3).

Let �0 be an embedded surface in X̂ with [�0] = P D(e) where e ∈ H 2(CP
2;Z) is

the standard generator. Consider the situation in Proposition 2·6 with r = 1, and so
V (Ê;�0, M1, . . . , Md) defines a homology class in H1(B

∗(Ê);Z).
Recall that A(X) is the domain of the Donaldson invariant.

Definition 3·7. We define

�
tw,(1)

X,f : A(X)⊗ Hodd(X;Z)−→ H ∗(Pic(B�);Q),

�
tw,(1)

X,f ([M1], . . . , [Md]; α)= 1

2 · 4d0
μtw

f (α)/[V (Ê;�0, M1, . . . , Md)]

if there is an SU (2)-vector bundle E over X with c2(E) odd and with dim M(E)=∑d
j=1(4− dim M j )+ 1. Here d0 is the number of homology classes [M j ] of degree 0.

We put �
tw,(1)

X,f ([M1], . . . , [Md]; α)= 0 otherwise.

Remark 3·8. (1) �
tw,(1)

X,f is independent of f when π1(X)∼=Z, as in Remark 3·6.
(2) We can define the twisted Donaldson invariant

�
tw,(2)

X,f : A(X)⊗ Hodd(X;Z)→ H ∗(Pic(B�);Q)

in the same way, using an SU (2) vector bundle E on X with c2(E) odd and with
dim M(E)=∑d

j=1(4− dim M j )+ 2. But this invariant is always trivial by the formula for
μtw

f in Lemma 3·5.
(3) As stated in Proposition 2·6, [V (Ê;�0, M1, . . . , Md)] ∈ Hr (B

∗(Ê);Z) depends on the
homotopy class [M j : S1→ X ] ∈ π1(X) with dim M j = 1. So if π1(X) is not commutative,
H1(X;Z) in A(X) should be replaced with π1(X).

3·1·2. Construction of �
tw,(3)

X,f

Let us try to define a twisted Donaldson invariant

�
tw,(3)

X,f : A(X)⊗ Hodd(X;Z)−→ H ∗(Pic(B�);Q)

using an SU (2)-vector bundle E with dim M(E)=∑d
j=1(4− dim M j )+ 3. We cannot

apply Proposition 2·6 straightforwardly to the 3 dimensional manifold V (Ê;�0, M1, . . . ,

Md). Actually it may not define a homology class in H3(B
∗(Ê);Z) which is independent

of g (see the last argument in the proof of Proposition 2·6).
To avoid this issue, we use a submanifold in B∗(Ê) dual to (the relevant part of) μtw

f (α).
It follows from Lemma 3·5 that �

tw,(3)

X,f ([M1], . . . , [Md], α) should be of the form for α ∈
H1(X;Z)

− 1

2 · 4d0

〈
μ(α), [V (Ê;�0, M1, . . . , Md)]

〉
η ∈ H 1(Pic(B�);Q),
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where d0 is the number of homology classes [M j ] of degree 0. As explained in Section 2,
a dual submanifold V� of μ(α) in B∗(Ê) is obtained by the map defined by holonomies
around �, where � is a loop representing α. By Proposition 2·6, the intersection

V (Ê;�0, M1, . . . , Md, �) := V� ∩ V (Ê;�0, M1, . . . , Md)

defines a well-defined 0-dimensional homology class [V (Ê;�0, M1, . . . , Md, �)] ∈
H0(B

∗(Ê);Z)∼=Z. So it is natural to define

�
tw,(3)

X,f ([M1], . . . , [Md]; α)=− 1

2 · 4d0
[V (Ê;�0, M1, . . . , Md, �)]η.

On the other hand, for α ∈ H3(X;Z), we put �
tw,(3)

X ([M1], . . . , [Md], α)= 0 by
Lemma 3·5.

Definition 3·9. We define

�
tw,(3)

X,f : A(X)⊗ Hodd(X;Z)−→ H ∗(Pic(B�);Q),

�
tw,(3)

X,f ([M1], . . . , [Md]; α)=− 1

2 · 4d0
[V (Ê;�0, M1, . . . , Md, �)]η

if α = [�] ∈ H1(X;Z) and there is an SU (2)-vector bundle E with c2(E) odd and with
dim M(E)=∑d

j=1(4− dim M j )+ 3.

We put �
tw,(3)

X,f ([M1], . . . , [Md]; α)= 0 otherwise.

Remark 3·10.

(i) For r = 1, 3 we can write

�
tw,(r)

X,f ([M1], . . . , [Md]; α)=−�X,odd([M1], . . . , [Md], α)η

if α ∈ H4−r (X;Z) and �
tw,(r)

X,f ([M1], . . . , [Md]; α)= 0 if α ∈ Hr (X;Z). See (2·11)

for the definition of �X,odd . Therefore �
tw,(r)

X,f coincides with the known invariants of
X . But we emphasize that we have obtained μ(α)∪ η as (part of) the Chern character
of the index of a family of Dirac operators. To define the non-commutative version
of the twisted Donaldson invariants in Section 5, it is necessary that the twisted μ

map is defined as the Chern character of the index of a familiy of Dirac operators.
(ii) Since �

tw,(r)

X,f are written in terms of the classical Donaldson invariant �X , � tw,(r)

X,f are
also homomorphisms and descend to maps on H1(X;Z). See remark 2·9.

(iii) It seems possible to generalise our construction of the twisted Donaldson invariants
over non-spin 4-manifolds X , using U (2)-vector bundles E with c1(E)≡w2(X)

mod 2 and with c2(E) odd. We can still construct the universal bundle on X ×B∗(E)

of E and proceed in a similar way.
The construction of the twisted Donaldson invariants for a non-spin 4-manifold

will be a bit more complicated. We have to choose a U (2)-bundle E with c1(E)=
w2(X) mod 2, and hence we need to fix an integral lift of w2(X). In the case we
have to check that the twisted Donaldson invariants are independent of the choice
of the integral lift. Also the formula of Lemma 3·5 in the non-spin case is more
complicated than the spin case.
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3·2. Non triviality of the invariants

Let us verify that our twisted invariants are non trivial by presenting the following non
trivial results by use of them:

THEOREM 3·11. Let Y be a simply connected, spin, algebraic surface with b+ > 1 and
m be a non-negative integer. Then X = Y #(#m S1 × S3) cannot admit any connected sum
decomposition as X = X1#X2 with b+(Xi ) > 0.

Theorem 3·11 follows from Proposition 3·13 below with the Donaldson’s fundamental
result on non vanishing of the invariants for algebraic surfaces.

Let us say that Y1 and Y2 be an exotic pair, if they are homeomorphic but have different
smooth strurctures.

THEOREM 3·12. Let Y1 and Y2 be a pair of mutually homeomorphic, compact spin four
manifolds with b+(Yi) > 1. Moreover assume that �Y1,odd is trivial, but �Y2,odd is not trvial,
so that they consist of an exotic pair. Then the pair (Y1#(#m S1 × S3), Y2#(#m S1 × S3)) is
also exotic.

Theorem 3·12 is a consequence of Proposition 3·13 and Lemma 3·15 below. Notice that
the statement is quite unlikely to hold, if we replace S1 × S3 by S2 × S2.

In the case when Y1 and Y2 are simply connected and m = 1, Theorem 3·12 follows from
the proposition in [22, p· 494]. The authors would like to thank Kouichi Yasui for informing
the authors about this. Our result can be applied to the case when Y1, Y2 are not simply
connected and m > 1.

3·2·1. Computation of the invariants
Later on the rest of Section 3, we always assume that all 4-manifolds Y or X are compact

and spin with b+ > 1, without mention.

PROPOSITION 3·13. Let us put X := Y #(#m S1 × S3), where m is a positive integer. Then
the formula

�
tw,(3)

X,f ([M1], . . . , [Md], [�1], . . . , [�m−1]; [�m])=−�Y,odd([M1], . . . , [Md])η
holds, where [M1], . . . , [Md] ∈ A(Y ), �1, . . . , �m are loops in #m S1 × S3 which generate
H1(#m S1 × S3;Z), and η is the generator of H 1(Pic(B�);Z)∼=Z.

Proof. We will give a proof for the case m = 1. We can prove the statement for the general
case similarly.

Put X = Y #S1 × S3. Take an SU (2)-vector bundle E on X with c2(E) odd and homology
classes [M1], . . . , [Md] such that

dim M(E)=
d∑

j=1

(4− dim M j )+ 3.

Let � be a loop which represents a generator of H1(S1 × S3;Z). Let us verify the formula

1

2
#V (Ê;�0, M1, . . . , Md, �)=�Y ([M1], . . . , [Md]). (3·4)
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Here [�0] = P D(e) and Ê is the U (2)-vector bundle over X̂ = X#CP
2

with c1(Ê)= e and
with c2(Ê)= c2(E) as before. Recall that

V (Ê;�0, M1, . . . , Md, �)= V (Ê;�0, M1, . . . , Md)∩ V�

with V� = (h′�)
−1(1), where h′� is a perturbation of the section h� :B∗ν(�)→ ad B̃∗ν(�) defined

by holonomies around �. (See Section 2.)
To verify (3·4), take a Riemann metric ĝT on X̂ such that X̂ has a long neck S3 × [0, T ]

for T > 0

X̂ = (Ŷ \ D1)∪ (S3 × [0, T ])∪ ((S1 × S3) \ D2).

Here D1, D2 are small 4-balls in Ŷ , S1 × S3 with D2 ∩ �=∅. Take a sequence [An] ∈
Ṽ (Ê, ĝTn ;�0, M1, . . . , Md)∩ h̃−1

� (1) with Tn→∞. Here h̃� : B̃ν(�)→ SU (2) is the unper-
turbed map defined by holonomies, and Ṽ (Ê, ĝTn ;�0, M1, . . . , Md) is the pull-back of the
intersection to the configuration space B̃(Ê) of framed connections.

A standard process verifies that it converges after passing to a subsequence

[An] −→ ([A], [B]) ∈ Ṽ (F̂;�0, M1, . . . , Md)× (M̃(F0)∩ h̃−1
� (1)).

Here F̂ is the U (2)-bundle on Ŷ with c2(F̂)= c2(Ê) and with c1(F̂)= e and M̃(F0) is the
moduli space of framed flat connections on the trivial bundle F0 on S1 × S3. The map gives
an identification

h̃� : M̃(F0)
∼=−→ SU (2).

In particular, h̃� is transverse to 1 without perturbation, and hence the intersection
Ṽ (Ê, ĝT ;�0, M1, . . . , Md)∩ h̃−1

� (1) is transverse for large T > 0. Moreover [B] must be
the gauge equivalent class of the trivial flat connection. It follows from a well known
argument that gluing ASD on Y and the trivial flat connection on S1 × S3 gives an
SO(3)-equivariant identification

Ṽ (Ê, ĝT ;�0, M1, . . . , Md)∩ h̃−1
� (1)∼= Ṽ (F̂;�0, M1, . . . , Md).

Here we have used the fact that there is no obstruction to glueing instantons on Ŷ and the
trivial connection on S1 × S3 since b+(S1 × S3)= 0. The above identification implies (3·4).

PROPOSITION 3·14. Let us fix a homomorphism f : π1(X)→ � :=Z. Suppose that a con-
nected sum decomposition X = X1#X2 exists with b+(Xi) > 0. Then the twisted Donaldson
invariant �

tw,(3)

X,f is identically zero.

Proof. For α ∈ H3(X;Z), �
tw,(3)

X,f ([M1], . . . , [Md]; α)= 0 by definition. We have to show

that for α ∈ H1(X;Z), �
tw,(3)

X,f ([M1], . . . Md; α)= 0. We have

�
tw,(3)

X,f ([M1], . . . , [Md]; α)=−�X,odd([M1], . . . , [Md], α)η

as explained in Remark 3·10. The Donaldson invariant �X ([M1], . . . , [Md], α) is zero if
X = X1#X2 with b+(X j ) > 0 for j = 1, 2, hence the right-hand side in the above formula is
zero. See [30] and [13, theorem 6·4].
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We also have the following vanishing result which is needed for the proof of
Theorem 3·12.

LEMMA 3·15. Assume �Y,odd is trivial. Then �
tw,(3)

X,f is trivial, where X = Y #(#m S1 × S3)

and m is a positive integer.

Proof. The proof is an easy consequence of a standard dimension counting argument and
Proposition 3·13. We omit the detail.

3·2·2. Examples
Recall that we have assumed that all four manifolds Y or X are compact and spin with

b+ > 1, otherwise stated.
(1) Let X = Y #(#m S1 × S3) be as above. Moreover assume that Y is an algebraic surface.

For example, we can take the hyperplane surface Sd in CP3 of degree d ≥ 4 with d ≡ 0
mod 2. Then �

tw,(3)

X,f is non-trivial.
For d ≥ 6 with d even, Sd#(#m S1 × S3) is homeomorphic to (#k K 3)#(#l S2 ×

S2) # (#m S1 × S3) for some k, l > 0, but they are not diffeomorphic to each other.
The argument goes as follows. It is known that Sd is simply connected and spin for d

even. Let h ∈ H2(Y ;Z) be a hyperplane class in Y . Then we have

�
tw,(3)

X,f �= 0.

This follows from Proposition 3·13 with a fact �Sd (

n︷ ︸︸ ︷
h, . . . , h) > 0 for all large n, where

c2(E) varies with respect to n (See [12, theorem C]). In particular X does not admit a
connected sum decomposition X = X1#X2 with b+(X1), b+(X2) > 0 by Proposition 3·14.

If d is even and if d ≥ 6, the intersection form of Sd is isomorphic to that of the con-
nected sum (#k K 3)#(#l S2 × S2) of copies of K 3 with copies of S2 × S2 for some k, l ∈Z>0.
(See [14, p· 13].) Hence, by Freedman’s theory, X = Sd#(#m S1 × S3) is homeomorphic to
(#k K 3)#(#l S2 × S2) # (#m S1 × S3). On the other hand, it follows from the above that X can
not be diffeomorphic to (#k K 3)#(#l S2 × S2)#(#m S1 × S3) by Proposition 3·14.

(2) Let E(n)p,q be Elliptic surfaces over CP1 with the Euler number χ = 12n > 0 and
multiple torus fibers of multiplicities p and q respectively.

There are infinitely many (p, q) such that E(n)p,q#(#m S1 × S3) are all homeomorphic
but have different smooth structures from each other.

If n is even, if p, q are odd and gcd(p, q)= 1, then E(n)p,q is simply connected, spin with
b+ = 2n − 1 > 1, and hence satisfy the conditions above. Moreover, E(n)p,q and E(n)p′,q ′

are homeomorphic to each other. On the other hand, the Donaldson invariants of E(n)p,q are
calculated and it shows that if E(n)p,q and E(n)p′,q ′ are diffeomorphic to each other, then
p= p′ and q = q ′. See [16, 24, 31, 32].

Using the calculation of the Donaldson invariants and Proposition 3·13, if (p, q) �=
(p′, q ′), we can see that E(n)p,q#(#m S1 × S3) and E(n)p′,q ′#(#m S1 × S3) are homeomorphic
but have different smooth structures.

(3) Using Seiberg–Witten theory, we can prove the same result by a quite parallel
argument as below.

Let Y be a 4-manifold with b+(Y ) > 0 and take a spinc structure of Y . For simplicity,
suppose that the dimension of the moduli space of solutions to the SW equations on Y
associated with the spinc structure is 0. Then the SW invariant is the number of solutions with
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sign. On Y #(S1 × S3), consider the connected sum of the spinc structure on Y with the spinc

structure of S1 × S3. (Note that S1 × S3 has a unique spinc structure up to isomorphisms.)
Then the SW moduli space of Y #(S1 × S3) has dimension 1.

For each connection of the determinant line bundle of the spinor bundle on Y #(S1 × S3),
we get the holonomy around the circle S1 × {pt}. It induces a map from the SW moduli
space on Y #(S1 × S3) to U (1). The inverse image of a generic point in U (1) by this map
is a finite set. Counting the elements of the inverse image with sign, we get an invariant of
Y #(S1 × S3). As with Proposition 3·13, we can prove that the invariant of Y #(S1 × S3) is
equal to the SW invariant of Y .

Using this, we can show that for d ≥ 6 with d even, Sd#(S1 × S3) is not diffeomorphic
to a connected sum of copies of K 3, S2 × S2 and S1 × S3 as above. This discussion can be
extended to Y #(#m S1 × S3).

Remark 3·16. So far we have assumed that Y is spin in the previous examples, since the
twisted Donaldson invariant is defined for spin 4-manifolds. But, using the Donaldson
invariants, we can get the similar examples for non-spin 4-manifolds Y .

3·2·3. More examples of exotic smooth structures
We can generalise the results in the previous subsection as follows. In this subsection

4-manifolds are not necessarily spin.
(1) Let Y be a closed 4-manifold with b+(Y ) > 1, and Z be a closed 4-manifold with

π1(Z)∼=Zm and b+(Z)= 0.
Take loops �1, . . . , �m in Z which generate π1(Z). Then a paralell argument to

Proposition 3·13 gives the equality

�Y #Z ([M1], . . . , [Md], [�1], . . . , [�m])=�Y ([M1], . . . , [Md])
for [M1], . . . , [Md] ∈ H≤3(Y ;Z). This produces the following statement:

Let Y and Y ′ be closed and 4-manifolds with b+ > 1, which are mutually homeomorphic.
If the Donaldson invariant over Y vanishes but the one over Y ′ does not so that they are
exotic. Then (Y #Z , Y ′#Z) also consists of an exotic pair.

(2) We can remove the assumption on π1(Z) using the Seiberg–Witten theory. Let
Y, Y ′, Z be as above, but π1(Z) is not necessarily isomorphic to Zm .

If the SW invariant of Y vanishes but that of Y ′ does not, then we can show that Y #Z and
Y ′#Z also form an exotic pair.

If b1(Z)= k we take k loops in Z which are generators of H1(Z;Z)/ Tor and consider
holonomies around the loops. Then we get a map from the moduli space to U (1)× · · · ×
U (1). We cut down the moduli space by this map. (If k = 0, we do not need to cut down the
moduli space.) Then the proof goes in a parallel way to (3) of Section 3·2·2.

(3) Both the Donaldson and SW invariants vanish over Y1#Y2#Z with b+(Y1), b+(Y2) > 0
and b+(Z)= 0. The Bauer–Furuta invariant [3] is a refinement of the SW invariant, and it is
not always trivial over Y1#Y2#Z .

Let Y1, Y2 are simply connected, symplectic 4-manifolds with b+ ≡ 3 mod 4, and put

Z = (#lCP
2
)#(#m S1 × S3) with l ≥ 1, m ≥ 0. Freedman’s theory tells us that Y1#Y2#Z is

homeomorphic to

W := (#b+(Y1)+b+(Y2)CP2)#(#b−(Y1)+b−(Y2)+lCP
2
)#(#m S1 × S3).
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Then we can verify that

Y1#Y2#Z is not diffeomorphic to W .

Let us use the BF invariant to distinguish these exotic smooth structures. It is known that
the invariant is not trivial for Y1#Y2. Combining this with [18, corollary 8], the BF invariant
of Y1#Y2#Z turns out to be non-trivial. On the other hand, the BF invariant of W is trivial
because W has a positive scalar curvature metric. Therefore they are not diffeomorphic to
each other.

If we replace S1 × S3 with S2 × S2 or T 2 × S2, the above discussion does not work
since b+(S2 × S2), b+(T 2 × S2) > 0. It seems that there is no example of an exotic smooth
structure of a 4-manifold of the form Y #(S2 × S2) or Y #(T 2 × S2).

Instead of S2 × S2 and T 2 × S2, let us consider �g ×�h , where �g, �h are oriented,
closed surface of genus g, h. Let Y1, Y2 be simply connected symplectic 4-manifolds
with b+(Y )≡ 3 mod 4. In [33], it is proved that if g, h are odd the Bauer-Furuta invari-
ants of Y1#�g ×�h , Y1#Y2#�g ×�h are non-trivial. Using this fact, we can show that
there are exotic smooth structures of Y1#(�g ×�h)#Z , Y1#Y2#(�g ×�h)#Z , where Z =
(#lCP

2
)#(#m S1 × S3) with l ≥ 1, m ≥ 0. See also [19] similar results.

3·3. Higher rank case

Recall that we assume that all four manifolds Y and X are compact and spin with b+ > 1,
without mention.

3·3·1. Construction of the twisted Donaldson invariants
Let us fix a homomorphism

f : π1(X)→ � :=Zm .

Let L→ B� × Pic(B�) be the universal line bundle. The first Chern class of L is given
by the following formula

c1(L)=ω1 ∪ η1 + · · · +ωm ∪ ηm . (3·5)

Here {ω j } j is a basis of H 1(B�;Z) and {η j } j is the basis of H 1(Pic(B�);Z) which is
induced by {ω j } j .

Take an SU (2)-vector bundle E on X with c2(E) odd. As before we take the U (2)-
vector bundle Ê on X̂ = X#CP

2
with c1(Ê)= e and with c2(Ê)= c2(E). Then we have the

universal bundle

Ê−→ X̂ ×B∗(Ê).

Let us introduce a twisted μ map

μtw
f : Hodd(X;Z)⊗ H1(B�;Z)−→ lim←−

B

H ∗(B × Pic(B�);Q),

where B runs over compact subsets in B∗(Ê). Take a homology class α = [M] ∈ H≤3(X;Z)

realized by a submanifold M ⊂ X . We can regard M as a submanifold in X̂ . Take β =
[ j : S1→ B�] ∈ H1(B�;Z), where j is a continuous map. Let us consider a vector bundle

Êtw
j,f := Ê�X̂ ( f̂ × id)∗L�Pic ( j × id)∗L −→ X̂ × S1 ×B∗(Ê)× Pic(B�),
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where f̂ : X̂→ B� is the continuous map corresponding to the group homomorphism f :
π1(X)= π1(X̂)→ �.

Fix a spin structure on M × S1. Coupling the Dirac operator over M × S1 with
Êtw

j,f|M×S1×B∗(Ê)×Pic(B�), we obtain the family of twisted Dirac operators DM×S1,f over M × S1

parametrised by B∗(Ê)× Pic(B�). Then we define the index

IndB DM×S1,f ∈ K ∗(B × Pic(B�))

for each compact subset B ⊂B∗(Ê).

Definition 3·17.

μtw
f (α, β)≡ {ch(IndB(DM×N ,f))}B ∈ lim←−

B

H ∗(B × Pic(B�);Q),

where B runs over the compact subsets in B∗(Ê).

LEMMA 3·18. Under the above situation, the equality

μtw
f (α, β)= {ch(Ê�X̂ ( f̂ × id)∗L)/α} ∪ {c1(L)/β}

holds, where the right-hand side is the image of the cohomology class by the natural map
H ∗(B∗(E)× Pic(B�);Q)→ lim←−

B

H ∗(B × Pic(B�);Q).

Moreover μtw
f (α, β) depends only on α, β so that it is independent of choices of rep-

resentatives M and j : S1→ B� for α and β respectively, and of spin structure on
M × S1.

Proof. The Atiyah–Singer index theorem for the family gives a formula

μtw
f (α, β)= ch(Êtw

j,f) Â(M × S1)/[M × S1].
Since dim M ≤ 3, the equalities Â(M × S1)= Â(M) Â(S1)= 1 hold. So

μtw
f (α, β)= ch(Êtw

j,f)/[M × S1]
= ch(Ê�X̂ ( f̂ × id)∗L�Pic ( j × id)∗L)/[M × S1]
= {ch(Ê�X̂ ( f̂ × id)∗L)/[M]} ∪ {( j × id)∗ ch(L)/[S1]}
= {ch(Ê�X̂ ( f̂ × id)∗L)/[M]} ∪ {c1(L)/β}.

Here we have used the equalities

( j × id)∗c1(L)/[S1] = c1(L)/β, ( j × id)∗c1(L)n/[S1] = 0 (n ≥ 2).

The second equality follows from the formula (3·5). This formula implies that μtw
f (α, β) is

independent of choices of representatives M , j of the homology classes and spin structure
on M × S1.

Let �0 be a surface in X̂ with [�0] = P D(e), and V (Ê;�0, M1, . . . , Md) be the
intersection defined as (2·5).
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Definition 3·19. Let us fix a homomorphism f : π1(X)→ � :=Zm .
For r = 1, 2 we define

�
tw,(r)

X,f : A(X)⊗ Hodd(X;Z)⊗ H1(B�;Z)−→ H ∗(Pic(B�);Q),

�
tw,(r)

X,f ([M1], . . . [Md]; α, β) := 1

2 · 4d0
μtw

f (α, β)/[V (Ê;�0, M1, . . . , Md)]

if there is an SU (2)-vector bundle E with c2(E) odd and with dim M(E)=∑d
j=1

(4− dim M j )+ r . Here d0 is the number of homology classes [M j ] of degree 0.
We put �

tw,(r)

X,f ([M1], . . . , [Md]; α, β)= 0 otherwise.

Both �
tw,(1)

X,f and �
tw,(2)

X,f are well defined by Proposition 2·6.

Next let us formulate �
tw,(3)

X,f . In this case we take a dual submanifold of μtw
f (α, β) as in

Section 3·1·2, since the homology class of V (Ê;�0, M1, . . . , Md) may not be well-defined,
if dim V (Ê;�0, M1, . . . , Md)= 3. See Proposition 2·6.

LEMMA 3·20. Let β ∈ H1(B�;Z) and c ∈ H3(B
∗(Ê);Z). Then the equalities hold:

μtw
f (α, β)/c=

⎧⎨⎩− 〈μ(α), c〉 {c1(L)/β}, for α ∈ H1(X;Z),

0 for α ∈ H3(X;Z).

Proof. Take α = [�] ∈ H1(X;Z), β ∈ H1(B�;Z), c ∈ H3(B
∗(Ê);Z). One can check

c1(Ê|�×B∗(Ê))= 0 as in the proof of Lemma 3·5. From Lemma 3·18, we have the equalities

μtw
f (α, β)/c

= {ch(Ê)( f̂ × id)∗ ch(L)/α× c} ∪ {c1(L)/β}

=
{
(2− c2(Ê)+ ch≥4(Ê))

(
1+ ( f̂ × id)∗c1(L)+ 1

2! ( f̂ × id)∗c1(L)2 + · · ·
)/

α× c

}
∪ {c1(L)/β}

=−
〈
c2(Ê)/α, c

〉
{c1(L)/β} =− 〈μ(α), c〉 {c1(L)/β}.

One can check that μtw
f (α, β)/c= 0 vanishes by a similar computation, if α ∈ H3(X;Z).

This lemma leads us to the following definition.

Definition 3·21. We define

�
tw,(3)

X,f : A(X)⊗ Hodd(X;Z)⊗ H1(B�,Z)−→ H ∗(Pic(B�);Z)

by the following formulas. Let [M1], . . . , [Md] ∈ A(X) and β ∈ H1(B�;Z). Then:

�
tw,(3)

X,f ([M1], . . . , [Md]; α, β)

=
⎧⎨⎩−�X,odd([M1], . . . , [Md], α){c1(L)/β} for α ∈ H1(X;Z),

0 for α ∈ H3(X;Z).
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Remark 3·22. �
tw,(3)

X,f is again independent of f : π1(X)−→ �.

Next we define �
tw,(4)

X,f . It turns out that they do depend on f.

LEMMA 3·23. Let β ∈ H1(B�;Z) and c ∈ H4(B
∗(Ê);Z). Then we have the equalities

μtw
f (α, β)/c

=
⎧⎨⎩− 〈μ([pt]), c〉 {( f̂ × id)∗(c1(L))/α} ∪ {c1(L)/β} for α ∈ H1(X;Z),

− 〈μ([pt]), c〉 {( f̂ × id)∗(c1(L)3)/α} ∪ {c1(L)/β} for α ∈ H3(X;Z).

Proof. Let α = [M] ∈ H1(X;Z), β ∈ H1(B�;Z) and c ∈ H4(B
∗(Ê);Z).

From (3·5), we have

( f̂ × id)∗c1(L)n/α = 0

for n �= 1. Using this, c1(Ê|M×B∗(Ê))= 0 and Lemmas 3·18, we get

μtw
f (α, β)/c= {ch(Ê)( f̂ × id)∗ ch(L)/α× c} ∪ {c1(L)/β}

=
{
(2− c2(Ê)+ ch≥4(Ê))

(
1+ ( f̂ × id)∗c1(L)

+ 1

2! ( f̂ × id)∗c1(L)2 + · · · · · ·
)/

α× c

}
∪ {c1(L)/β}

=−
〈
c2(Ê)/{pt}, c

〉
{( f̂ × id)∗c1(L)/α} ∪ {c1(L)/β}

=− 〈μ([pt]), c〉 {( f̂ × id)∗c1(L)/α} ∪ {c1(L)/β}.
We have obtained the first formula in the statement. The proof of the second formula is
similar.

With this lemma in mind, let us introduce the following definition.

Definition 3·24. We define

�
tw,(4)

X,f : A(X)⊗ (Hodd(X;Z)⊗ H1(B�;Z))−→ H ∗(Pic(B�);Q)

by the following formulas. Let β ∈ H1(B�;Z). Then

�
tw,(4)

X,f ([M1], . . . , [Md]; α, β)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−�X,odd([pt], [M1], . . . , [Md]){( f̂ × id)∗(c1(L))/α} ∪ {c1(L)/β}

for α ∈ H1(X;Z),

−�X,odd([pt], [M1], . . . , [Md]){( f̂ × id)∗(c1(L)3)/α} ∪ (c1(L)/β)

for α ∈ H3(X;Z).

Remark 3·25. The invariants �
tw,(r)

X,f defined in this subsections are homomorphisms and
descend to maps on H1(X;Z). See Remarks 2·9 and 3·10.
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3·4. Applications

3·4·1. Statements
We will consider connected sums #m S1 × S3, and let π1(#m S1 × S3)→ � :=Zm be the

homomorphism obtained by commutating the fundamental group. By forgetting π1(Y )

factor, we obtain the group homomorphism

f : π1(Y #(#m S1 × S3))∼= π1(Y ) ∗ π1(#
m S1 × S3)−→ � :=Zm .

Let �i = S1 × {pt} ⊂ #m S1 × S3 be the i-th canonical loop for 1≤ i ≤m, which consists
of a canonical generating set of π1(#m S1 × S3).

Let us introduce the simple type condition for �X . We say that X has simple type, if the
following equality holds:

�X ([pt], [pt], [M1], . . . , [Md])= 4�X ([M1], . . . , [Md]).
See [23, definition 1·4]. Several classes of algebraic surfaces satisfy this property.

By use of the invariant �
tw,(4)

X,f , we can reproduce both the non decomposability (Theorem
3·11) and exotic pairs (Theorem 3·12) under the additional assumption of simple type:

COROLLARY 3·26. Let m be an integer with m ≥ 2. Using the invariant �
tw,(4)

X,f , we can
show the following statements:

(1) let Y be a simply connected, spin, algebraic surface of simple type, with b+ > 1. Then
X = Y #(#m S1 × S3) cannot admit any connected sum decomposition as X = X1#X2 with
b+(Xi ) > 0;

(2) suppose Y1 and Y2 is a pair of compact and spin 4-manifolds with b+ > 1, which are
mutually homeomorphic. Assume moreover Y2 has simple type.

If �Y1,odd is trivial, but �Y2,odd is not trivial, so that they consist of an exotic pair, then the
pair (Y1#(#m S1 × S3), Y2#(#m S1 × S3)) is also exotic.

This is obtained by a parallel argument as Section 3·2, by use of Proposition 3·27 and
Proposition 3·28 below.

3·4·2. Computation of the invariants
Assume that all four manifolds Y or X are compact and spin with b+ > 1.

PROPOSITION 3·27. Let X = Y #(#m S1 × S3). Then for f as above, we have the equality

�
tw,(4)

X,f ([M1], . . . ,[Md], [�1], . . . , [�m−1]; [�m], β)

=−�Y,odd([pt], [M1], . . . , [Md])ηm ∪ {c1(L)/β},
where [M1], . . . , [Md] ∈ H≤3(Y ;Z), and ηm is the canonical generator of the mth compo-
nent of H 1(Pic(BZm);Z)=⊕m H 1(Pic(BZ);Z).

Proof. Use the equality

( f̂ × id)∗c1(L)/[�m] = ηm,

and follow the discussion of the proof of Proposition 3·13.
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PROPOSITION 3·28. If X = X1#X2 with b+(X1), b+(X2) > 0, �
tw,(4)

X,f is trivial.

Proof. This follows from the vanishing result of the Donaldson invariant �X . See
Proposition 3·14.

3·4·3. Examples
Recall Sd in Section 3·2·2, and put Xd,m := Sd#(#m S1 × S3) with m ≥ 2. Let d be even

and greater than or equal to 4.
Lemma 3·29, below with Proposition 3·27, gives infinitely many exotic smooth structures

Xd,m for m ≥ 2 as in Section 3·2.

LEMMA 3·29. �
tw,(4)

Xd,m ,f is non-trivial for m ≥ 2.

Proof. It is known that Sd have simple type if d ≥ 4. See [23, lemma 8·9].
By Proposition 3·27, we have

�
tw,(4)

Xd,m ,f([pt],
n︷ ︸︸ ︷

h, . . . , h, [l1], . . . , [lm−1]; [lm], β1)

=−�Sd ,odd([pt], [pt],
n︷ ︸︸ ︷

h, . . . , h)ηm ∪ η1.

Here β1 is the generator of the first component of H1(BZm;Z)∼=⊕m H1(BZ;Z), h ∈
H2(Sd;Z) is the hyperplane class and n is a large integer of the form

n = 4n′ − 3

2
(1+ b+(Sd))

with some even integer n′. Note that for such n we have

�Sd ,odd([pt], [pt],
n︷ ︸︸ ︷

h, . . . , h)=�Sd ([pt], [pt],
n︷ ︸︸ ︷

h, . . . , h)= 4�Sd (

n︷ ︸︸ ︷
h, . . . , h) �= 0.

Therefore, �
tw,(4)

Xd,m ,f is non-trivial for m ≥ 2 (since ηm ∪ η1 �= 0).

4. Review of cyclic cohomology

Recall that in the commutative case in Section 3, the twisted Donaldson invariant was
introduced by using the cohomology of the classifying space H ∗(Pic �;R). In the case Pic �

is homotopy equivalent to the dual torus T̂ m , and hence one can use the de Rham theory over
the classifying space.

In the general case of a non commutative group �, it would be possible to define Pic �,
however its structure is quite messy. In fact, its topology can be quite difficult to treat.

There are four steps of non commutative geometry to overcome this difficulty. Let M be
a finite dimensional smooth manifold.

(i) Firstly the de Rham cohomology theory is reformulated by a new cohomology theory
called cyclic cohomology theory in terms of the algebra C∞(M) of smooth functions
on M .

(ii) Secondly the cyclic cohomology theory can be applied also to non-commutative
algebras.
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(iii) Thirdly the isomorphism C(Pic Zm)∼=C∗r (Zm) holds between two C∗-algebras,
where the right hand side is given by completion of the group ring CZm under
the operator norm. Here CZm is identified as a subalgebra of B(l2(Zm)) by the left
regular representation.

(iv) Fourthly the C∗-algebra C∗r (�) exists reasonably as the norm completion of the
group ring C� in B(l2(�)) for a general group �.

There is a ∗-subalgebra C∞(Pic Zm)⊂C(Pic Zm), and hence if one can find a ∗-subalgebra
A(�)⊂C∗� which plays the role of ‘cohomology of smooth algebras’, then one would be
able to generalize the construction of the previous section. It will be called a smooth algebra
later in this section.

Let A be a unital algebra over C and K0(A) be the Grothendieck group associated to the
stable isomorphism classes of finitely generated projective modules over A.

Consider a particular case A=C(X), where X is a (reasonable) compact topological
space. Let us state a basic correspondence by Swan.

LEMMA 4·1. There is a natural isomorphism:

K 0(X)∼= K0(C(X)),

where the left-hand side is the topological K -theory.
The isomorphism assigns to a complex vector bundle over X the set of continuous sections

which admits a structure of a finitely generated projective C(X) module.

The main goal of this section is to introduce theory of cyclic cohomology for a general
non-commutative algebra and explain how to pair it with K -theory of the algebra. We will
also present some basic examples. Throughout this section, we refer the comprehensive book
by Connes [6].

4·1. Cyclic cohomology

Cyclic cohomology was introduced by Connes. See [6, section III·1].

Definition 4·2. Cyclic cohomology HC•(A) is the cohomology of the complex
(Cn

λ(A), b), where:

Cn
λ(A)= { φ :A⊗ · · · ⊗A→C | (∗) }

is the space of (n + 1) multi-linear functionals satisfying the cyclic condition

φ(a1, . . . , an, a0)= (−1)nφ(a0, . . . , an) a j ∈A, (∗)
and

b :Cn
λ(A)−→Cn+1

λ (A)

is the Hochschild coboundary map given by

(bφ)(a0, . . . , an+1)=
n∑

j=0

φ(a0, . . . , a j a j+1, . . . , an+1)+ (−1)n+1φ(an+1a0, . . . , an).
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To recover the de Rham theory for commutative case, one has to pass through stabilization
of the cyclic theory.

For two unital algebras A1 and A2, there is a well-defined cup product

∪ : HCi (A1)× HC j (A2)−→ HCi+ j (A1 ⊗A2). (4·1)

Let A1 =A2 =C, then HC•(C)∼=C[σ ] is a polynomial ring through the cup product with
one generator σ of degree 2. For A1 =A, A2 =C, HC•(A) is a module over HC•(C).

The periodic cyclic cohomology is defined by

H P•(A) := lim
k→∞

HC•+2k(A), • = 0, 1 (4·2)

with respect to the inductive limit of the S-maps given below

S : HCn(A)−→ HCn+2(A) (4·3)

by multiplying the generator σ of HC2(C) to HCn(A) with respect to (4·1).

Example 4·3. (1) Let M be a compact smooth manifold. Then

HCk(C∞(M))� [ker dt ⊂
k(M)] ⊕ Hk−2(M,C)⊕ Hk−4(M,C)⊕ · · ·
where 
k(M) is the space of k-forms and dt is the de Rham differential. The periodic cyclic
cohomology group is isomorphic to the de Rham homologies of M (Section III.2.α [6])

H P0(C∞(M))� Heven(M), H P1(C∞(M))� Hodd(M).

(2) Let � be a discrete group and C� be its group ring. There is a canonical map

τ : H •(�;C)� H •(B�;C)−→ HC•(C�). (4·4)

See [9, page 377] or [26] for a concrete description.

Let Z�(g)= {h ∈ �|gh = hg} be the centraliser of g in � and put Ng = Z�(g)/〈g〉.
LEMMA 4·4. Assume � is torsion free. Then the isomorphism

τ : H even/odd(B�,C)� H P0/1(C�) (4·5)

holds, if there is l0 > 0 such that Hl(B Ng,C) vanishes for all g �= e and all l ≥ l0.

So a non commutative counterpart of the group cohomology should be the periodic cyclic
cohomology of the group ring.

Proof. Denote by 〈�〉 f the set of conjugacy classes of finite order elements in �, and by 〈�〉i
the one with elements of infinite order. Then HC•(C�) admits a decomposition (see [5])

HCl(C�)= {�g∈〈�〉 f [⊕m+n=l H m(Ng,C)⊗ HCn(C)]} ⊕�g∈〈�〉i H l(Ng,C). (4·6)

Because � is torsion free, so g ∈ 〈�〉 f if and only if g is the identity e. It follows from the
equality H m(Ne,C)= H m(�,C) that (4·6) is reduced to

HCl(C�)= [⊕l−m≥0,even H m(�,C)] ⊕�g �=e Hl(Ng,C).
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Example 4·5. (1) (4·5) holds if �=Zk is free abelian. This follows from the fact that

Hl(B(Z�(g)/〈g〉),C)= Hl(B(Zk/〈g〉),C)= 0

for l > k.
(2) (4·5) is true when � is a torsion free Gromov hyperbolic group, such as the funda-

mental group of a compact hyperbolic manifold. In such case, the centraliser of an element
g ∈ � of infinite order contains the cyclic group 〈g〉 as a subgroup of finite index and then
Hl(Ng,C) vanishes.

(3) In general, (4·5) is not true if � is not torsion free.

4·2. Pairing with K -theory for group C∗-algebras

Let us quickly review the Connes–Chern character

Ch : K0(A)−→ H P0(A)

known as the notion of Chern character in the context of noncommutative geometry. This is
determined by pairing K -theory with cyclic cohomology

HC2k(A)× K0(A)−→C.

Let e be an idempotent of the matrix algebra Mq(A) which represents an element in
K0(A). Let Tr be the matrix trace. A 2k-cyclic cocycle φ lifts to the linear map on matrix
algebras

φq : Mq(A)⊗(2k+1) −→ Mq(C).

Then we denote by φ# Tr the (2k + 1)-linear functional by

(φ# Tr)(a0, . . . , a2k) := Tr[φq(a
0, . . . , a2k)] a j ∈ Mq(A).

This induces a natural pairing HC2k(A)× K0(A)→C given by

〈[φ], [e]〉 = 1

k! (φ# Tr)(e, . . . , e). (4·7)

LEMMA 4·6. The pairing (4·7) is compatible with the S-map (4·3), i.e., 〈[φ], [e]〉 =
〈[Sφ], [e]〉 and thus this leads to a well-defined pairing

H P0(A)× K0(A)−→C. (4·8)

([6, section III·3, proposition 2]. See also [7, p· 110] for the odd degree case.)

Definition 4·7. The Connes–Chern character map on K -theory is the map induced by the
pairing in Lemma 4·6

Ch : K∗(A)−→Hom(H P∗(A),C) ∗= 0, 1.

Identifying the dual theory H P∗(A), the cyclic homology of A, with Hom(H P∗(A),C),
under a natural pairing H P∗(A)⊗ H P∗(A)→C, (4·7) is equivalent to

Ch : K∗(A)−→ H P∗(A) ∗= 0, 1.
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Denote the restriction

Chn : K•(A)−→Hom(HCn(A),C)

by composing the right-hand-side with HCn(A)→ H P•(A), given by (4·2), where n and
• have the same parity.

For example, the first Chern class c1(E)=Ch2[E] is an element in Hom(HC2(A),C)

given by the pairing

[τ ] �→ 〈[E], [τ ]〉.
Let � be a finitely generated group. We introduce an intermediate algebra which can be

regarded as a kind of non commutative version of the algebra of smooth functions.
The following Lemma is well known, and is used in [9].

LEMMA 4·8. Consider an intermediate algebra C� ⊂ A⊂C∗r (�). If
(1) A is closed under holomorphic functional calculus in C∗r (�), and
(2) A is dense in C∗r (�),
then the isomorphism holds:

K0(C
∗
r (�))� K0(A). (4·9)

We will call A as a smooth algebra of �, if it satisfies both the above two conditions, and
will denote A=C∞(�). Notice that a smooth algebra always exists (say, take C∗r (�) itself).

For a general �, a smooth algebra may not be unique. On the other hand a group with
the property RD (rapidly decay) has a canonical candidate for C∞(�). For every smooth
subalgebra, there is a well-defined Connes–Chern character map

Ch : K∗(C∗r (�))−→ H P∗(C∞(�)). (4·10)

A canonical smooth subalgebra and a geometric description of the Connes-Chern character
is obtained by Lott for hyperbolic groups [26].

4·3. Assembly map

Let � be a finitely generated group. Let us briefly explain the Baum–Connes assembly
map

μ : K∗(B�)→ K∗(C∗r (�)).

To understand this map, let us consider the example of a free abelian � ∼=Zm . Then
the assembly map is expressed as μ : K∗(T m)→ K ∗(T̂ m). An element of the K -homology
group K0(BZm) is represented by a triple (E, F, D) where both E and F are complex vector
bundles over T m and D is an elliptic differential operator between their sections. To describe
μ(E, F, D), take an element ρ ∈ T̂ m which represents a homomorphism ρ :Zm→ S1. It
gives a flat U (1) bundle on T m , and twists the triplet as (Eρ, Fρ, Dρ). Then the family of
indices ⊔

ρ∈T̂ m

ker Dρ − coker Dρ

represents an element in K 0(T̂ m). This construction works only for a commutative �.
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Let us reformulate this assignment of μ, replacing C(T̂ m) by C∗r (Z). Recall the iso-
morphism C∗r (Zm)∼=C(T̂ m) given by the Gelfand transform. Consider a flat C∗-bundle
γ :=Rm ×Zm C∗r (Zm), and twist the two bundles as Eγ := E ⊗ γ and Fγ := F ⊗ γ so that
they are both C∗r (Zm)-module bundles. Since γ is flat, D extends to an operator Dγ

between them. Then both ker Dγ and coker Dγ are finitely generated projective C∗r (Zm)

modules (after stabilisation). So their difference ker Dγ − coker Dγ gives rise to an element
K0(C∗r (Zm)). Through the isomorphism K 0(T̂ m)∼= K0(C∗r (Zm)), these two constructions
coincide.

Now the latter construction works for any finitely generated groups �: just replace Rm

by E� and Zm by �. This is the Baum–Connes assembly map. An element in K∗(B�)

is represented by a continuous map f : M→ B� with a complex vector bundle E→ B�,
where M is a compact spinc manifold. Then we obtain a twisted Dirac operator D f ∗E over
S⊗ f ∗E with the spinc bundle S. The image of the element in K∗(C∗r (�)) is given by the
higher index of D f ∗E (see Section 4·5).

The Baum–Connes conjecture claims rational isomorphism of the assembly map. It is still
open in general, but various classes of discrete groups have been verified to be true. Both the
Novikov conjecture and the Gromov–Lawson conjecture follow from rational injectivity of
the assembly map, and the Kaplansky conjecture follows from surjectivity of the map.

4·4. Admissibility

The assembly map μ factors through the index map of �-invariant elliptic operators

μ0 : K∗(B�)−→ K∗(C�⊗R)

i.e., μ= j∗ ◦μ0 for the inclusion j :C�⊗R→C∗r (�)⊗K. Here R is the algebra of
smooth operators on M and K consists of compact operators, the C∗-algebra closure of
R. See Section 4·5 or [9].

Recall τη ∈ HC•(C�) given by (4·4) for η ∈ H ∗(�,C). Let us say that an element of
the group cohomology η ∈ H ∗(�;C) is extendable, if there exists τ̃η ∈Hom(K∗(C∗r (�)),C)

such that j∗τ̃η = τη# Tr. This implies that

〈τ̃η, μ(D)〉 = 〈τη# Tr, μ0(D)〉 (4·11)

for all [D] ∈ K∗(B�). See (4·7) for τη# Tr or [9, p· 377]. We say that a group � is extendable,
if any element η ∈ H ∗(�;C) is extendable.

Let C∞(�) be a smooth algebra. Recall that the inclusion i :C�→C∞(�) induces a map
i∗ : HC∗(C∞(�))→ HC∗(C�). Let us introduce a class of discrete groups:

Definition 4·9. A group � is admissible, if it admits a smooth algebra C∞(�) such that
there exists a map ν : H ∗(�,C)→ HC∗(C∞(�)) such that i∗ν(η)= τη for all η ∈ H ∗(�,C).

Example 4·10. (1) � is admissible, if it satisfies both polynomial cohomology and rapid
decay property in the sense of [9]. It is known that a finitely generated hyperbolic group
with respect to some word metric satisfies the two properties.

(2) � is admissible, if it is isomorphic to a free abelian group or a torsion free hyper-
bolic group. In fact, a canonical smooth algebra C∞(�) exists for both classes of groups.
By Lemma 4·4 τ is an isomorphism, i.e., H ∗(�;C)� H P∗(C�). Thus, the claim follows
because of the existence of ν ′ : H P∗(C�)→ H P∗(C∞(�)) such that i∗ν ′ = 1 which is a
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result of surjectivity of i∗. Note that H P∗(C�)� H P∗(C∞(�)) for free abelian group and
that i∗ : H P∗(C∞(�))→ H P∗(C�) is surjective when � is hyperbolic [17].

Remark 4·11. (1) If � is admissible, the map ν gives rise to a well defined pairing

H ∗(�;C)× H P∗(C∞(�))−→C.

(2) If moreover H P∗(C∞(�)) is finite dimensional, then there is a well defined pairing

H ∗(�;C)⊗ H ∗(�;C)× H P∗(C∞(�)⊗C∞(�))−→C.

See the proof of Lemma 4·16 for Künneth formula for the periodic cyclic cohomology.

Recall that the Connes–Chern character (4·10) determines a dual Connes–Chern character

Cht : H P∗(C∞(�))−→Hom(K∗(C∗r (�)),C) a �→ (x �→ 〈Ch(x), a〉). (4·12)

LEMMA 4·12. If � is admissible, then � is extendable.

Proof. Suppose � is admissible, i.e., i∗ν(η)= τη. Similar to (4·12), there is a dual
Connes–Chern character Cht : HC∗(C�)→Hom(K∗(C�⊗R),C) (see [9]). Denoting
τ̃η :=Cht(ν(η)) ∈Hom(K∗(C∗r (�)),C), we have

j∗(τ̃η)= j∗(Cht(ν(η)))=Cht(i∗(ν(η)))=Cht τη = τη# Tr .

The second equality follows from the functoriality of Cht .

Suppose the classifying space of � is homotopy equivalent to a finite CW complex, and
consider the dualized Baum–Connes assembly map

μt :Hom(K∗(C∗r (�)),C)−→ K ∗(B�)

given by

〈μt(α), β〉 := 〈α, μ(β)〉 β ∈ K∗(B�).

This map is directly constructed in [29]. See also [10]. Together with the dual Connes–Chern
character Cht and ordinary Chern character ch we obtain a canonical map

H P∗(C∞(�))
Cht−−−−→ Hom(K∗(C∗r (�)),C)

μt−−−−→ K ∗(B�)
ch−−−−→ H ∗(�;C).

(4·13)
Here, the last map, the Chern character ch for K -homology, is defined so that the pairing
of K -theory and K -homology is compatible with the pairing of cohomology and homology
after taking Chern character (see [7]).

PROPOSITION 4·13. If � is admissible, then the canonical map H P∗(C∞(�))→ H ∗(�,C)

given by (4·13) is surjective, mapping ν(η) to η.

Proof. If � is admissible, then ν(η) exists for all η ∈ H ∗(�,C). Then we need only to show
that ch ◦μt ◦Cht(ν(η))= η. Every element in K∗(B�) is represented by a f : M→ B�
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with E→ B� and a spinc Dirac operator D on M . We denote this element by f∗[DE ]. It is
thus sufficient to show

〈ch ◦μt ◦Cht(ν(η)), ch( f∗[DE ])〉 = 〈η, ch( f∗[DE ])〉.

From the proof of Lemma 4·12, one may choose τη =Cht(ν(η)) so that j∗τ̃η = τη# Tr. Thus

〈ch ◦μt ◦Cht(ν(η)), ch( f∗[DE ])〉 = 〈ch(μt(τη)), ch( f∗[DE ])〉.

By definition of ch and μt and then the Connes-Moscovici’s index theorem, we have

〈ch(μt(τη)), ch( f∗[DE ])〉 = 〈μt(τη), f∗[DE ]〉 = 〈τη, μ( f∗[DE ])〉 =
∫

M
Â(M) ch(E)∧ f ∗η.

On the other hand by definition of ch, ch(D) is the de Rham current f∗(
∫

M Â(M)∧) (see
Theorem 4·20), and then

〈η, ch( f∗[DE ])〉 = 〈 f ∗η, ch(DE)〉 =
∫

M
Â(M) ch(E)∧ f ∗η.

The proposition is then proved.

COROLLARY 4·14. Suppose the classifying space of � is homotopy equivalent to a
finite CW complex. Then � being extendable implies that the assembly map μ : K∗(B�)→
K∗(C∗r (�)) is rationally injective.

Proof. From the previous proposition, the composition μt ◦ ch :Hom(K∗(C∗r (�)),C)→
H ∗(�,C) maps Cht(ν(η)) to η, hence surjective. The corollary then follows observing
that rational injectivity of μ is equivalent to rational surjectivity of μt and that the Chern
character K ∗(B�)→ H ∗(�;C) is rationally isomorphic.

Remark 4·15. Either extendability or admissibility of � implies the Novikov conjecture
for the group. The rational injectivity of the assembly map μ is called the strong Novikov
conjecture, which is a sufficient condition to induce both Novikov conjecture (homotopy
invariance of higher signatures) and Gromov-Lawson conjecture, where the latter claims that
no positive scalar curvature metric can be equipped with on a compact K (�, 1) manifold.

The following technical Lemma gives a sufficient condition that the canonical map (4·13)
(with tensors) is an isomorphism, which is used in Definition 5·7.

LEMMA 4·16. Suppose that the classifying space of � is homotopy equivalent to a finite
CW complex, � is admissible, and H P∗(C∞(�)) is finite dimensional.

Then there is a surjective map

H Pl(C∞(�)⊗C∞(�)⊗C∞(B))−→
⊕

i+ j+k=l(2)

H i (�)⊗ H j (�)⊗ Hk(B).

If moreover � satisfies the Baum-Connes conjecture and Connes–Chern character (4·10) is
an isomorphism, then the map is an isomorphism.
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Here, the tensor product on the left hand side is the projective tensor product of Frechét
algebras (see [27] for example). When � is abelian, C∞(�) and C∞(B) are nuclear, the
tensor product is uniquely defined.

For the reduced group C∗-algebras, we will use the minimal tensor product C∗r (�)⊗min

C∗r (�) and just denote as C∗r (�)⊗C∗r (�).

Example 4·17. Free abelian groups satisfies the assumptions of Lemma 4·16.

To conclude the subsection, we present a proof of Lemma 4·16.

Proof of Lemma 4·16. First of all, we have an isomorphism

H Pl(C∞(�)⊗C∞(�)⊗C∞(B))

�
⊕

i+ j+k=l(2)

H Pi (C∞(�))⊗ H P j (C∞(�))⊗ H Pk(C∞(B)) (4·14)

following from the Künneth theorem. In fact, the cup product (4·1) on the cyclic cohomolol-
ogy induces the one on periodic cyclic cohomology⊕

i+ j=k

H Pi (A1)⊗ H P j (A2)−→ H Pk(A1 ⊗A2).

It is known to be isomorphic when one of Ai is countably generated and H P•(Ai) is finite
dimensional.

The algebra C∞(�) is always countably generated when � is a countable discrete group.
C∞(B) is also countably generated. H P•(C∞(B)) is finite dimensional when B is compact
(see Subsection 4·1). Together with the assumption that H P∗(C∞(�)) is finite dimensional,
we obtain the isomorphism (4·14).

In view of H P∗(C∞(B))∼= H∗(B) (see Example 4·3), we only need a surjective map
from H P∗(C∞(�)) to H ∗(�;C), guaranteed by Lemma 4·13: the composition of maps

H P∗(C∞(�))
Cht−→Hom(K∗(C∗r (�)),C)

μt−→ K ∗(B�)
ch−→ H ∗(�;C) (4·15)

is a surjection.
Together with (4·14) there exist a surjective map as required.
If � satisfies the Baum–Connes conjecture, then μ is rationally isomorphic and so is μt .

The first and third maps in (4·15) are both isomorphic over C. Hence, the above surjective
map is actually an isomorphism.

4·5. Higher indices

Let � be a discrete group where B� is its classifying space. We shall review the cohomo-
logical formula of the higher index of a �-invariant twisted Dirac operator by Connes and
Moscovici [9].

Let M be a closed Riemannian manifold and φ : M→ B� a continuous map. Let
M̃φ→ M be the �-principal bundle given by the pull-back φ∗π of the universal covering π :
E�→ B�. Denote by D an elliptic operator over E→ M , and by D̃φ its lift over M̃φ as a
�-invariant elliptic operator.

Let C∗r (�) be the reduced group C∗-algebra which is given by the operator norm com-
pletion of the group ring C� by the regular representation on l2(�). The quotient of
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M̃φ ×C∗r (�) by the diagonal action of � gives a flat C∗r (�) bundle γ on M . Denote by
Dφ

� the twisted operator obtained by twisting D with the flat bundle γ . Then Dφ

� is a
C∗r (�)-Fredholm operator over E ⊗ γ .

The higher index of D̃φ is defined as the index Ind Dφ

� of the C∗r (�)-Fredholm
operator Dφ

�

Ind D̃φ := [KerDφ

�] − [CokerDφ

�] ∈ K0(C
∗
r (�)),

where Ker Dφ

� and Coker Dφ

� are both regarded as finitely generated projective C∗r (�)-
modules after compact perturbations. See [20].

By choosing a suitable parametrix of D̃φ , Connes and Moscovici [9] verified that the
higher index of D̃φ comes from an element in the K -theory of a smaller algebra

Ind D̃φ ∈ K0(C�⊗R),

where R is the algebra of smoothing operators on M. Recall that R is dense in the C∗-
algebra of compact operators K. The higher index coincides with the image of this element
under composition of the maps

K0(C�⊗R)−→ K0(C
∗
r (�)⊗K)� K0(C

∗
r (�))

induced by the inclusion j :C�⊗R→C∗r (�)⊗K. That is, j∗(Ind D̃φ)= Ind D̃φ =
Ind Dφ

�. See [9, Lemma 6·1]. So we shall also call these elements the higher index.

Remark 4·18. In Section 5, we have to use the C∗r (�)-Fredholm index of Dφ

� in K0(C∗r (�))

given by the higher index of D̃φ , rather than the element in K0(C�⊗R). Therefore, as we
shall see below, � being admissible is essential in deriving a local index theorem for Dφ

�.

Let us state the cohomological formula on the higher index of a twisted Dirac opera-
tor. Denote the element by τη ∈ HCn(C�), which corresponds to an element η ∈ H n(�,C),
through the map τ in (4·4). By composition with the operator trace it gives a cyclic cocycle

τη# Tr ∈ HCn(C�⊗R).

THEOREM 4·19 ([9], see also [26]). Let φ : M→ B� be a continuous map. Let DE be a
twisted Dirac operator over M and D̃φ

E be its lift to the �-principal bundle M̃φ→ M.

Then the image of the higher index Ind D̃φ

E ∈ K0(C�⊗R) by the Connes–Chern
character admits the cohomological formula

〈Ch(Ind D̃φ

E), τη# Tr〉 = c
∫

M
Â(M)∧ ch(E)∧ φ∗η

which is an element in Hom(H P0(C�⊗R),C), where c is some normalising constant.

In particular the first Chern class c1(Ind D̃φ

E) of the higher index is described as a
homomorphism for η ∈ H 2(�,C)

HC2(C�⊗R)−→C, τη# Tr �→ c
∫

M
Â(M)∧ ch(E)∧ φ∗η.

From analytic view point, it is important to find the cohomological formula of the Connes–
Chern character of the higher indices Ind Dφ

� of C∗r (�)-Fredholm operators in K0(C∗r (�)).
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For this, the cyclic cocycle τη ∈ HC•(C�) should be extended to a map τ̃η : K0(C∗r (�))→C

such that j∗τ̃η = τη# Tr for every group cocycle η ∈ H •(�;C). Connes-Moscovici devised
a sufficient condition on � for the extendability, namely, polynomial cohomology and rapid
decay ([9, Proposition 6·3]), and in our setting this is implied by � being admissible
(Lemma 4·12).

PROPOSITION 4·20 ([9]). Suppose that � is admissible so that τη ∈ HC•(C�) gives rise to
a map τ̃η : K0(C∗r (�))→C.

Then the cohomological formula holds:

〈Ch(Ind Dφ

E,�), τ̃η〉 = c
∫

M
Â(M)∧ ch(E)∧ φ∗η. (4·16)

PROPOSITION 4·21. Assume that � is admissible. Let M be a closed manifold and φ : M→
B� a continuous map. Let DE be a twisted Dirac operator over M, and M̃φ→ M be the
principal �-bundle pulled back from E�→ B� by φ. Let Dφ

E,� be the operator DE twisted

by the bundle γ = M̃φ ×� C∗r (�).

Then the Connes–Chern character of the C∗r (�)-Fredholm index of Dφ

E,� in K0(C∗r (�)) is
completely determined by the cohomological formula (4·16).

Proof. For every y ∈Hom(K∗(C∗r (�)),C), let us put η := ch(μt(y)) ∈ H ∗(�;C). Then the
equality

〈μ(D), τ̃η〉 = 〈μ(D), y〉 (4·17)

holds, because both sides are equal to 〈ch(D), η〉 by functoriality and Connes–Moscovici’s
theorem. Note that the equality η= ch(μt(τ̃η)) also holds.

By definition, the equality holds:

j∗ Ind D̃φ

E = Ind Dφ

E,�.

Then we have

〈Ind Dφ

E,�, y〉 =〈Ind Dφ

E,�, τ̃η〉
=〈Ind D̃φ

E , τη# Tr〉
=c

∫
M

Â(M)∧Ch(E)∧ φ∗[ch(μt(y))].

The first equality follows from (4·17); the second from the � being admissible; the third is
Connes–Moscovici’s index formula. Therefore, Ch(Ind Dφ

E,�) is completely determined by
the cohomological formula.

5. Twisted Donaldson’s invariant for non commutative case

Throughout Section 5, we always assume that all four manifolds Y or X are compact and
spin with b+ > 1, without mention.

Let E→ X be an SU (2) vector bundle and � a discrete group. Fix a homomorphism
f : π1(X)= π1(X̂)→ � which induces a continuous map

f̂ : X̂ −→ B�.
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In this section, we will introduce the twisted μ-map

μtw
f :
Spin

∗ (X)⊗
Spin
∗ (B�)−→ H P0(C

∞(�)⊗C∞(�)⊗C∞(B)),

where 
Spin
∗ (B�) is the spin bordism group, and B runs over compact submanifolds in

B∗(Ê). Let Aπ(X) be as in (1·3). Then we construct a twisted Donaldson’s invariant

�
tw,(r)

X,f : Aπ(X)× (
Spin(X)⊗
Spin(B�))−→ H P∗(C∞(�)⊗C∞(�))

for r = 1, 2 when � is not necessarily abelian, in terms of non commutative geometry.

Remark 5·1. Our formulation of the twisted Donaldson invariant requires existence of
C∞(�) only, however we need to assume that � is admissible, when we compute the index
formula on the twisted μ map, which is necessary to check well definedness of the twisted
μ map.

The isomorphism H ∗(�;C)∼= H P∗(C∞(�)) holds, when � satisfies the Baum–Connes
conjecture with isomorphic Chern character (see Lemma 4·16), in particular, when �∼=Zm

is free abelian. The above map �
tw,(r)

X,f extends the twisted Donaldson map (�
tw,(r)

X,f )ab in
Section 3 as

A(X)⊗ H∗(X;Z)⊗ H∗(B�;Z)
(�

tw,(r)

X,f )ab−−−−→ H∗(�;Q)⏐⏐� ⏐⏐�
A(X)⊗ H∗(X;Z)⊗
Spin(B�)

�
tw,(r)

X,f−−−−→ H∗(�;C)⊗ H∗(�;C),

where the right-hand vertical arrow is given by the diagonal embedding.

5·1. Parametrised higher indices

Let us take an element α ∈
Spin
∗ (X) which is realised by a map i : M→ X , and another

element β ∈
Spin
∗ (B�) by j : N→ B�.

Assume the product spin manifold M × N has even dimension, and denote by S = S+ ⊕
S− the spinor bundle equipped with the spin connection ∇ S on M × N . Then we have the
associated Dirac operator D± : �(S±)→ �(S∓) over M × N . Notice that D is the operator
on the external tensor product of the spinors SM � SN , given by the equality D = DM � 1+
1 � DN .

Take an SU (2)-vector bundle E on X with c2(E) odd. Recall that in order to avoid
difficulty caused by reducible flat connections, we use the U (2)-vector bundle Ê on the

blow-up X̂ = X#CP
2
. It satisfies c1(Ê)= e and c2(Ê)= c2(E), where e is the generator of

H 2(CP
2;Z)⊂ H 2(X̂;Z).

Let B be a compact submanifold in B∗(Ê), and take an element [A] ∈ B. The restriction
A|M gives the Dirac operator DA twisted with DM over M , and hence it extends to the Dirac
operator DA = DA � 1+ 1 � DN over M × N .

Let us also restrict the universal bundle Ê→ X̂ × B. Then DA is regarded as the Dirac
operator on (Ê|M×{A} ⊗ SM)� SN .

Denote the C∗r (�)-bundle over B� by

γ := E�×� C∗r (�)
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equipped with a flat connection ∇. Let f : X̂→ B� be the continuous map induced by f.
Then we consider the pull-back bundle

[Ê|M×{A} ⊗ ( f ◦ i)∗γ ]� j∗γ −→ M × N . (5·1)

The set of L2-sections of this bundle forms a C∗r (�)⊗C∗r (�) module.
The restriction A|M together with the flat connection gives the pull-back connection

(A|M ⊗ 1+ 1⊗ ( f ◦ i)∗∇)� 1+ 1 � j∗∇. (5·2)

Twist the Dirac operator D with the connection (5·2) over S⊗ ([E|M×{A} ⊗ ( f ◦ i)γ ]�
j∗γ ), and denote it by D̃A. It is a (C∗r (�)⊗C∗r (�))-Fredholm operator on M × N with the
higher index (see Section 4·3)

Ind D̃A = [ker D̃+A ] − [ker D̃−A ] ∈ K0(C
∗
r (�)⊗C∗r (�)).

Remark 5·2. In the notation of Section 4, D̃A should have been denoted Dφ

A,�×� where φ is
the continuous map ( f ◦ i, j) : M × N→ B(�× �).

Now consider a family of Dirac operators

D := {D̃A}A∈B

over M × N parametrised by B, acting on sections of the (C∗r (�)⊗C∗r (�))-bundle

S⊗ (Ê|M×B � ( f ◦ i)∗γ � j∗γ )−→ M × B × N .

Recall Lemma 4.1 and that the classical Atiyah–Singer index for the family

ind{DA}A∈B = {[ker D+A ] − [ker D−A ]}A∈B ∈ K 0(B)= K0(C(B))

takes its value in K cohomology of B, determined by the Fredholm property of each DA.
Replacing [ker D+A ] − [ker D−A ] by the higher index of D̃A, we obtain the family of higher

indices

IndB D= {Ind D̃A}A∈B ∈ K0(C(B, C∗r (�)⊗C∗r (�))).

The relevent C∗ algebra in K -theory is

C(B, C∗r (�)⊗C∗r (�))∼=C(B)⊗C∗r (�)⊗C∗r (�)

which consists of the set of continuous maps with coefficient in C∗r (�)⊗C∗r (�).
IndB D is compatible with restrictions in K -theory, i.e.,

IndB ′ D|B = {Ind D̃A}A∈B = IndB D,

where B ⊂ B ′.

Remark 5·3. There is a local formula of the higher index as below.

LEMMA 5·4. The higher index of D̃A is computed by

Ind D̃A :=
[

S2
0 S0(1+ S0)Q

S1 D̃A 1− S2
1

]
−
[

0 0

0 1

]
∈ K0(C

∗
r (�)⊗C∗r (�)),
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where Q is a parametrix of D̃A where

S0 := 1− Q D̃A, S1 := 1− D̃A Q

are compact operators in the C∗r (�)⊗C∗r (�)-module.
When DA depends continuously on A, then the operators D̃A, Q and Si also depend

continuouly on A. So the family of higher indices gives an element in K0(C(B, C∗r (�)⊗
C∗r (�))).

5·2. Twisted μ-map

The Connes–Chern character in Definition 4·7, with Lemma 4·8, gives rise to the map

Ch : K0(C(B, C∗r (�)⊗C∗r (�)))∼= K0(C(B, C∞(�)⊗C∞(�)))

−→ H P0(C
∞(�)⊗C∞(�)⊗C∞(B)),

where H P0(C∞(�)⊗C∞(�)⊗C∞(B)) is identified with Hom(H P0(C∞(�)⊗C∞(�)⊗
C∞(B)),C). Note that holomorphic calculus being closed under project tensor product is
not verifed. However, assuming Kunneth formula for K -theory, for instance, the conditions
for Lemma 4·16, we always have the above isomorphism.

Definition 5·5. Let us fix a smooth algebra C∞(�). The twisted μ-map

μtw
f :
Spin

∗ (X)⊗
Spin
∗ (B�)−→ lim←−

B

H P0(C
∞(�)⊗C∞(�)⊗C∞(B)) (5·3)

is defined for every compact B in B∗(Ê) by the Connes–Chern character of the higher index
of the family of twisted Dirac operators D= {D̃A}A∈B

μtw
f (α, β) := {Ch(IndB D)}B .

In particular μtw
f (α, β) is independent of choices of i : M→ X of the class α of 
Spin

∗ (X),
choice of j : N→ B� of the class β of 
Spin

∗ (B�) and the choice of spin structure on
M × N .

Assume that � is admissible, and H P∗(C∞(�)) is finite dimensional. In view of
Remark 4·11, we have the pairing⊕

i+ j+k=l(2)

H i (�)⊗ H j (�)⊗ Hk(B)

× H Pl(C
∞(�)⊗C∞(�)⊗C∞(B)) −→ C (5·4)

given by

([η], [ξ ], [C], [E]) �→ 〈Tr #(τη ∪ τξ ∪ τC), [E]〉.
Later we shall use this pairing to evaluate the twisted μ-map.

Recall that an element β ∈
Spin
∗ (B�) is given by a map j : N→ B�. Realize an element

α ∈
Spin
∗ (X) by i : M→ X . Let Ê→ X̂ × B be the universal bundle.

The twisted μ map admits the cohomological formula.

THEOREM 5·6. Assume that � is admissible, and H P∗(C∞(�)) is finite dimensional. Let
us take elements [η] ∈ H i (�;C), [ξ ] ∈ H j (�;C) and [C] ∈ Hk(B).
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Under the pairing (5·4) the twisted μ-map (5·3) is determined by the following cohomo-
logical formula

〈 [η] ⊗ [ξ ] ⊗ [C], μtw
f (α, β) 〉

= 〈 (i × id )∗ ch(Ê)∧ f ∗η , [M ×C] 〉 〈 Â(N )∧ j∗ξ , [N ] 〉 ∈C,

where f : X̂→ B� is the continuous map depending on f.

Proof. Observe that the wedge product is compatible with the cup product under τ

H i+ j (B�× B�)−→ H Pi+ j (C�⊗C�)

[p∗1η ∧ p∗2ξ ] �→ [τη ∪ τξ ].
Because � is admissible, there exist [τ̃η], [τ̃ξ ] ∈Hom(K∗(C∗r �),C) such that

〈μ(D), τ̃η ∪ τ̃ξ 〉 = 〈μ0(D), (τη ∪ τξ )# Tr〉.
In our context, μ(D)= Ind D̃A and the right-hand side is calculted by Connes–Moscovici’s
theorem. Thus, we have the formula

〈Ch(Ind D̃A), τ̃η ∪ τ̃ξ 〉 = c
∫

M×N
Â(M × N )∧ i∗ ch(Ê|M×{A})∧ f ∗η ∧ j∗ξ ∈C

for A ∈ B. Moreover, by Proposition 4·21 Ch(Ind D̃A) is completely determined by this
formula. In our family case, the proof in [9] goes in a parallel way with coefficient, and
hence we obtain the family version

〈Ch(Ind D), τ̃η ∪ τ̃ξ 〉 =
c
∫

M×N
Â(M × N )∧ i∗ ch(Ê|M×B)∧ f ∗η ∧ j∗ξ ∈ H ∗(B). (5·5)

More precisely [τ̃η ∪ τ̃ξ ] ∈Hom(K∗(C∗r (�)⊗C∗r (�)),C) is paired with

Ind D ∈ K0(C(B))⊗ K0(C
∗
r (�)⊗C∗r (�))

under the Künneth formula on periodic cyclic homology [15]. Notice that this is the Atiyah–
Singer’s index theorem for family, when the group cocycle is trivial.

Now the equalities hold since Â(M)= 1 by dim M ≤ 3

〈 [η] ⊗ [ξ ] ⊗ [C], μ(α, β) 〉
= 〈 (i × id )∗ ch(Ê)∧ Â(N )∧ f ∗η ∧ j∗ξ , [M × N ×C] 〉
= 〈 (i × id )∗ ch(Ê)∧ f ∗η , [M ×C] 〉 〈 Â(N )∧ j∗ξ , [N ] 〉 ∈C

under the isomorphism

Hk(B)� H Pk(C∞(B)) [C] �→ [τC ].
The formula (5·5) is obtained.

Now similarly to the proof of Proposition 4·21 Ch(Ind D) is determined by this formula
because � is admissible.
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Let us choose a closed submanifold B ⊂M(Ê) (see Proposition 2·6)

B ≡ V (Ê, ĝ;�0, M1, . . . , Md)=M(Ê)∩ V�0 ∩ VM1 ∩ · · · ∩ VMd .

Here, dim M(E)=∑d
k=1(4− dim Mk)+ r with dim B = r = 1, 2. Note that the homology

class of B depends on Aπ(X), i.e., [B] depends only on Ê , the homotopy class [M j : S1→
X ] ∈ π1(X) with dim M j = 1 and the homology class [M j ] ∈ H∗(X;Z) with dim M j ≥ 2.

Definition 5·7. Let us fix a smooth algebra C∞(�). The twisted Donaldson invariant is
given by a map

�
tw,(r)

X,f :Aπ(X)× (
Spin(X)⊗
Spin(B�))−→ H P∗(C∞(�)⊗C∞(�)),

( [M1], . . . , [Md], α, β ) �−→ 1

2 · 4d0
〈 μtw(α, β), [B] 〉.

Here, dim B = r = 1, 2 and d0 is the number of homology classes [M j ] of degree 0.

In particular this gives rise to the map

�
tw,(r)

X,f : Aπ(X)× (
Spin(X)⊗
Spin(B�))−→ H∗(�;C)⊗ H∗(�;C)

when � satisfies the conditions of Lemma 4·16, for example, when � is a free abelian group.

Remark 5·8. Recall that when � admits a cohomological formula in the sense of
Theorem 5·6, π1(X) can be reduced to H1(X;Z) and Aπ(X) can be simplified to the form
A(X) in (1·2).

5·3. Relation to the commutative case

Suppose � is free abelian. So � is admissible. The space of irreducible representations
�̂ = Pic(B�) is isomorphic to a torus, and Fourier transform gives rise to the isomorphism

C∗r (�) ∼= C0(�̂) = ∪a∈�̂ Ca,

where Ca stands for the one dimensional complex representation space of the character
a ∈ �̂.

LEMMA 5·9. The higher index Ind D̃A ∈ K0(C∗r (�)⊗C∗r (�)) coincides with the index
for family with the value in K 0(�̂× �̂), passing through the above isomorphism.

Proof. The C∗r (�) bundle γ over B� is a family of line bundles over B�× �̂

γ := E�×� C∗r (�)= E�×� (∪a∈�̂Ca)=
⊔
a∈�̂

E�×� Ca (5·6)

which is nothing but the universal line bundle L.
Now we have the line bundle over B�× �̂× B� × �̂

γ � γ =
⊔

a,b∈�̂
( E�×� Ca )� ( E�×� Cb ).

Denote by La the summand E�×� Ca , and consider a bundle with connection

E|M×{A} �M [( f ◦ i)∗La � j∗Lb] −→ M × N ,
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where the connection is given by A|M on E |M and the induced flat connection on ( f ◦
i)∗Lα � j∗Lβ. Let DA,a,b be the Dirac operator D on M × N twisted by this connection.
Then {DA,a,b}a,b∈�̂ is a continuous family of Dirac operators whose family index takes the
value

(ind DA,a,b)a,b∈�̂ ∈ K 0(�̂× �̂)

which corresponds the higher index:

Ind D̃A ∈ K0(C
∗
r (�)⊗C∗r (�)).

If we vary A ∈ B, then the higher index

D= {D̃A}A∈B

is also parametrised by B ⊂M(Ê). Under the isomorphism

K0(C(B, C∗r (�)⊗C∗r (�)))∼= K 0(B × �̂× �̂),

the higher index for family in Section 5·1
Ind D= {Ind D̃A}A∈B ∈ K0(C(B, C∗r (�)⊗C∗r (�)))

corresponds to the index for family

(ind DA,a,b)A∈B,a,b∈�̂ ∈ K 0(B × �̂× �̂).

The image of the Chern character of the index for family takes the value

μtw
f (α, β)=Ch(Ind D) ∈ H even(B × �̂× �̂;C)

∼= H P0(C
∞(B)⊗C∞(�)⊗C∞(�))

by Lemma 4·16.
So far we have constructed two versions of the twisted μ maps

μtw
f,ab(α, β) ∈ H P0(C

∞(B)⊗C∞(�)),

μtw
f (α, β) ∈ H P0(C

∞(B)⊗C∞(�)⊗C∞(�))

and the twisted Donaldson’s maps

�
tw,(r)

X,f,ab :A(X)⊗ H∗(X;Z)⊗
Spin(B�)−→ H P∗(C∞(�)),

�
tw,(r)

X,f :A(X)⊗ H∗(X;Z)⊗
Spin(B�)−→ H P∗(C∞(�)⊗C∞(�)).

where in both cases the formers are given in Section 3 and the latters are in Section 5 (ab
stands for ‘abelian’).

Let us describe their relations below. Let

� : �̂ ↪−−→ �̂× �̂

be the diagonal map.
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PROPOSITION 5·10. Suppose π1(X)= � is free abelian. then they satisfy the following
relations

�∗(�)=�ab, �∗(μ(α, β))=μab(α, β).

Proof. Recall the commutative case in Section 3

E|M×B �X ( f ◦ i)∗L�Pic j∗L−→ M × N × B,

where L→ B� × �̂ is the universal family of flat line bundles defined in Section 3.
Notice that the fibered product

L�Pic L= {(E�×� E�)×� Ca}a∈�̂ −→ B� × B�× �̂

is obtained by restricting γ � γ over the diagonal in �̂× �̂

γ �Pic γ =
⊔
a∈�̂

(E�×� Ca)� (E�×� Ca)−→ B�× B� × �̂.

Then it follows from naturality that the equalities hold:

�∗ Ch(ind{DA,a,b}A∈B,a,b∈�̂)=Ch(�∗ ind{DA,a,b}A∈B,a,b∈�̂)

=Ch(ind{DA,a}A∈B,a∈�̂).

Remark 5·11. Notice that the diagonal map induces a ∗-homomorphism

C0(�̂)⊗C0(�̂)→C0(�̂)

but in general, there are no such homomorpshism C∗r (�)⊗C∗r (�)→C∗r (�) if � is non
commutative.
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