We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let E be an elliptic curve defined over $\mathbb {Q}$ with good ordinary reduction at a prime $p\geq 5$ and let F be an imaginary quadratic field. Under appropriate assumptions, we show that the Pontryagin dual of the fine Mordell–Weil group of E over the $\mathbb {Z}_{p}^2$-extension of F is pseudo-null as a module over the Iwasawa algebra of the group $\mathbb {Z}_{p}^2$.
We prove a comparison theorem between Greenberg–Benois $\mathcal {L}$-invariants and Fontaine–Mazur $\mathcal {L}$-invariants. Such a comparison theorem supplies an affirmative answer to a speculation of Besser–de Shalit.
This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$-extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$, where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$-extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$-extension, then it holds for almost all $\mathbb{Z}_{p}$-extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p-adic Lie extension.
For each prime p, we show that there exist geometrically simple abelian varieties A over
${\mathbb Q}$
with . Specifically, for any prime
$N\equiv 1 \ \pmod p$
, let
$A_f$
be an optimal quotient of
$J_0(N)$
with a rational point P of order p, and let
$B = A_f/\langle P \rangle $
. Then the number of positive integers
$d \leq X$
with is
$ \gg X/\log X$
, where
$\widehat B_d$
is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of
$\operatorname {\mathrm {GL}}_2$
-type with a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results, including many examples where for an explicit positive proportion of integers d.
Let
$N/K$
be a finite Galois extension of p-adic number fields, and let
$\rho ^{\mathrm {nr}} \colon G_K \longrightarrow \mathrm {Gl}_r({{\mathbb Z}_{p}})$
be an r-dimensional unramified representation of the absolute Galois group
$G_K$
, which is the restriction of an unramified representation
$\rho ^{\mathrm {nr}}_{{{\mathbb Q}}_{p}} \colon G_{{\mathbb Q}_{p}} \longrightarrow \mathrm {Gl}_r({{\mathbb Z}_{p}})$
. In this paper, we consider the
$\mathrm {Gal}(N/K)$
-equivariant local
$\varepsilon $
-conjecture for the p-adic representation
$T = \mathbb Z_p^r(1)(\rho ^{\mathrm {nr}})$
. For example, if A is an abelian variety of dimension r defined over
${{\mathbb Q}_{p}}$
with good ordinary reduction, then the Tate module
$T = T_p\hat A$
associated to the formal group
$\hat A$
of A is a p-adic representation of this form. We prove the conjecture for all tame extensions
$N/K$
and a certain family of weakly and wildly ramified extensions
$N/K$
. This generalizes previous work of Izychev and Venjakob in the tame case and of the authors in the weakly and wildly ramified case.
The plus and minus norm groups are constructed by Kobayashi as subgroups of the formal group of an elliptic curve with supersingular reduction, and they play an important role in Kobayashi’s definition of the signed Selmer groups. In this paper, we study the cohomology of these plus and minus norm groups. In particular, we show that these plus and minus norm groups are cohomologically trivial. As an application of our analysis, we establish certain (quasi-)projectivity properties of the non-primitive mixed signed Selmer groups of an elliptic curve with good reduction at all primes above p. We then build on these projectivity results to derive a Kida formula for the signed Selmer groups under a slight weakening of the usual µ = 0 assumption, and study the integrality property of the characteristic element attached to the signed Selmer groups.
Let $p$ be an odd prime number and $E$ an elliptic curve defined over a number field $F$ with good reduction at every prime of $F$ above $p$. We compute the Euler characteristics of the signed Selmer groups of $E$ over the cyclotomic $\mathbb{Z}_{p}$-extension. The novelty of our result is that we allow the elliptic curve to have mixed reduction types for primes above $p$ and mixed signs in the definition of the signed Selmer groups.
We show that the Galois cohomology groups of $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ can be computed via the generalization of Herr’s complex to multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. Using Tate duality and a pairing for multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules we extend this to analogues of the Iwasawa cohomology. We show that all $p$-adic representations of a direct power of $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/\mathbb{Q}_{p})$ are overconvergent and, moreover, passing to overconvergent multivariable $(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules is an equivalence of categories. Finally, we prove that the overconvergent Herr complex also computes the Galois cohomology groups.
Let $p$ be a prime and let $G$ be a finite group. By a celebrated theorem of Swan, two finitely generated projective $\mathbb{Z}_{p}[G]$-modules $P$ and $P^{\prime }$ are isomorphic if and only if $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P$ and $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P^{\prime }$ are isomorphic as $\mathbb{Q}_{p}[G]$-modules. We prove an Iwasawa-theoretic analogue of this result and apply this to the Iwasawa theory of local and global fields. We thereby determine the structure of natural Iwasawa modules up to (pseudo-)isomorphism.
Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.
Arithmetic duality theorems over a local field $k$ are delicate to prove if $\text{char}\,k>0$. In this case, the proofs often exploit topologies carried by the cohomology groups $H^{n}(k,G)$ for commutative finite type $k$-group schemes $G$. These ‘Čech topologies’, defined using Čech cohomology, are impractical due to the lack of proofs of their basic properties, such as continuity of connecting maps in long exact sequences. We propose another way to topologize $H^{n}(k,G)$: in the key case when $n=1$, identify $H^{1}(k,G)$ with the set of isomorphism classes of objects of the groupoid of $k$-points of the classifying stack $\mathbf{B}G$ and invoke Moret-Bailly’s general method of topologizing $k$-points of locally of finite type $k$-algebraic stacks. Geometric arguments prove that these ‘classifying stack topologies’ enjoy the properties expected from the Čech topologies. With this as the key input, we prove that the Čech and the classifying stack topologies actually agree. The expected properties of the Čech topologies follow, and these properties streamline a number of arithmetic duality proofs given elsewhere.
In this article we study the geometry of the eigenvarieties of unitary groups at points corresponding to tempered non-stable representations with an anti-ordinary (a.k.a evil) refinement. We prove that, except in the case where the Galois representation attached to the automorphic form is a sum of characters, the eigenvariety is non-smooth at such a point, and that (under some additional hypotheses) its tangent space is big enough to account for all the relevant Selmer group. We also study the local reducibility locus at those points, proving that in general, in contrast with the case of the eigencurve, it is a proper subscheme of the fiber of the eigenvariety over the weight space.
Using the $\ell $-invariant constructed in our previous paper we prove a
Mazur–Tate–Teitelbaum-style formula for derivatives of $p$-adic $L$-functions of modular forms at trivial zeros. The novelty of this
result is to cover the near-central point case. In the central point case our formula
coincides with the Mazur–Tate–Teitelbaum conjecture proved by Greenberg and Stevens
and by Kato, Kurihara and Tsuji at the end of the 1990s.
For a smooth proper variety over a p-adic field, its Brauer group and abelian fundamental group are related to higher Chow groups by the Brauer–Manin pairing and class field theory. We generalize this relation to smooth (possibly nonproper) varieties, using motivic homology and a variant of Wiesend’s ideal class group. Several examples are discussed.
This paper studies affine Deligne–Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, and extends previous conjectures concerning their dimensions. We generalize the superset method, an algorithmic approach to the questions of non-emptiness and dimension. Our non-emptiness results apply equally well to the p-adic context and therefore relate to moduli of p-divisible groups and Shimura varieties with Iwahori level structure.
We associate two almost Cp-representations to a (ϕ,Γ)-module, and we compute their dimensions and heights. As a corollary, we get a full faithfulness result for Be-representations.
Let F be the fraction field of the ring of Witt vectors over a perfect field of characteristic p (for example $F=\mathbb{Q}_p$), and let GF be the absolute Galois group of F. The main result of this article is the following: a p-adic representation of GF, which is a limit of subquotients of crystalline representations with Hodge–Tate weights in an interval [a; b], is itself crystalline with Hodge–Tate weights in [a; b]. In order to show this, we study the $(\phi,\Gamma)$-modules attached to crystalline representations, which allows us to improve some results of Fontaine, Wach and Colmez.
A conjecture is formulated which relates the equivariant local epsilon constant of a Galois extension of $p$-adic fields to a natural algebraic invariant coming from étale cohomology. Some evidence for the conjecture is provided and its relation to a conjecture for the equivariant global epsilon constant of an extension of number fields formulated by Bley and Burns is established.
In this note, we develop the notion of a Zp-tower in a Demuskin group, and apply the results of Koch and Wingberg on the uniqueness of so-called Demuškin formations to give a classification of such towers in the case p ≠ 2.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.