We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a new linear relation for multiple zeta values. This is a natural generalisation of the restricted sum formula proved by Eie, Liaw and Ong. We also present an analogous result for finite multiple zeta values.
We compute the limit shape for several classes of restricted integer partitions, where the restrictions are placed on the part sizes rather than the multiplicities. Our approach utilizes certain classes of bijections which map limit shapes continuously in the plane. We start with bijections outlined in [43], and extend them to include limit shapes with different scaling functions.
In this paper we introduce some Christoffel–Darboux type identities for independence polynomials. As an application, we give a new proof of a theorem of Chudnovsky and Seymour, which states that the independence polynomial of a claw-free graph has only real roots. Another application is related to a conjecture of Merrifield and Simmons.
In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study properties of the generating functions, including recurrence relations, grammatical interpretations and convolution formulas.
We give a new combinatorial interpretation of the stationary distribution of the (partially) asymmetric exclusion process on a finite number of sites in terms of decorated alternative trees and coloured permutations. The corresponding expressions of the multivariate partition functions are then related to multivariate generalisations of Eulerian polynomials for coloured permutations considered recently by N. Williams and the third author, and others. We also discuss stability and negative dependence properties satisfied by the partition functions.
A new, elementary proof of the Macdonald identities for An−1 using induction on n is given. Specifically, the Macdonald identity for An is deduced by multiplying the Macdonald identity for An−1 and n Jacobi triple product identities together.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.