Let
$G$ be a finite group and
$\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes
$\mathbb{P}$, that is,
$\mathbb{P}=\bigcup _{i\in I}\unicode[STIX]{x1D70E}_{i}$ and
$\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}=\emptyset$ for all
$i\neq j$. We say that
$G$ is
$\unicode[STIX]{x1D70E}$-primary if
$G$ is a
$\unicode[STIX]{x1D70E}_{i}$-group for some
$i$. A subgroup
$A$ of
$G$ is said to be:
$\unicode[STIX]{x1D70E}$-subnormal in
$G$ if there is a subgroup chain
$A=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G$ such that either
$A_{i-1}\unlhd A_{i}$ or
$A_{i}/(A_{i-1})_{A_{i}}$ is
$\unicode[STIX]{x1D70E}$-primary for all
$i=1,\ldots ,n$; modular in
$G$ if the following conditions hold: (i)
$\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ for all
$X\leq G,Z\leq G$ such that
$X\leq Z$ and (ii)
$\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ for all
$Y\leq G,Z\leq G$ such that
$A\leq Z$; and
$\unicode[STIX]{x1D70E}$-quasinormal in
$G$ if
$A$ is modular and
$\unicode[STIX]{x1D70E}$-subnormal in
$G$. We study
$\unicode[STIX]{x1D70E}$-quasinormal subgroups of
$G$. In particular, we prove that if a subgroup
$H$ of
$G$ is
$\unicode[STIX]{x1D70E}$-quasinormal in
$G$, then every chief factor
$H/K$ of
$G$ between
$H^{G}$ and
$H_{G}$ is
$\unicode[STIX]{x1D70E}$-central in
$G$, that is, the semidirect product
$(H/K)\rtimes (G/C_{G}(H/K))$ is
$\unicode[STIX]{x1D70E}$-primary.