Let G be a graph with m edges, minimum degree
$\delta $ and containing no cycle of length 4. Answering a question of Bollobás and Scott, Fan et al. [‘Bisections of graphs without short cycles’, Combinatorics, Probability and Computing 27(1) (2018), 44–59] showed that if (i) G is
$2$-connected, or (ii)
$\delta \ge 3$, or (iii)
$\delta \ge 2$ and the girth of G is at least 5, then G admits a bisection such that
$\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$, where
$e(V_i)$ denotes the number of edges of G with both ends in
$V_i$. Let
$s\ge 2$ be an integer. In this note, we prove that if
$\delta \ge 2s-1$ and G contains no
$K_{2,s}$ as a subgraph, then G admits a bisection such that
$\max \{e(V_1),e(V_2)\}\le (1/4+o(1))m$.