No CrossRef data available.
Article contents
On pattern completion, cues and future-oriented cognition
Published online by Cambridge University Press: 14 November 2023
Abstract
Barzykowski and Moulin's view on involuntary autobiographical memory focuses on automatic activation of representations and inhibitory control mechanisms. We discuss how and when a known neural mechanism – pattern completion – may result in involuntary autobiographical memories, the types of cues that may elicit this phenomenon and consider interactions with future-oriented cognition.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Becker, S. (2016). Marr's theory of the hippocampus as a simple memory: Decades of subsequent research suggest it is not that simple. In Vaina, L. M. & Passingham, R. E. (Eds.), Computational theories and their implementation in the brain: The legacy of David Marr (pp. 159–178). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198749783.003.0007CrossRefGoogle Scholar
Berntsen, D. (2009). Involuntary autobiographical memories: An introduction to the unbidden past. Cambridge University Press. https://doi.org/10.1017/CBO9780511575921CrossRefGoogle Scholar
Cole, S. N., & Berntsen, D. (2016). Do future thoughts reflect personal goals? Current concerns and mental time travel into the past and future. Quarterly Journal of Experimental Psychology, 69, 273–284. https://doi.org/10.1080/17470218.2015.1044542CrossRefGoogle ScholarPubMed
Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261–288. https://doi.org/10.1037/0033-295x.107.2.261CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. https://doi.org/10.1146/annurev.neuro.30.051606.094328CrossRefGoogle ScholarPubMed
Elfman, K. W., Aly, M., & Yonelinas, A. P. (2014). Neurocomputational account of memory and perception: Thresholded and graded signals in the hippocampus. Hippocampus, 24, 1672–1686. https://doi.org/10.1002/hipo.22345CrossRefGoogle ScholarPubMed
Falandays, J. B., Nguyen, B. T., & Spivey, M. J. (2021). Is prediction nothing more than multi-scale pattern completion of the future? Brain Research, 1768, 147578. https://doi.org/10.1016/j.brainres.2021.147578CrossRefGoogle ScholarPubMed
Ford, J. H., Addis, D. R., & Giovanello, K. S. (2011). Differential neural activity during search of specific and general autobiographical memories elicited by musical cues. Neuropsychologia, 49, 2514–2526. https://doi.org/10.1016/j.neuropsychologia.2011.04.032CrossRefGoogle ScholarPubMed
Ingvar, D. H. (1985). “Memory of the future”: An essay on the temporal organization of conscious awareness. Human Neurobiology, 4, 127–136.Google ScholarPubMed
Jeunehomme, O., & D'Argembeau, A. (2016). Prevalence and determinants of direct and generative modes of production of episodic future thoughts in the word cueing paradigm. Quarterly Journal of Experimental Psychology, 69, 254–272. https://doi.org/10.1080/17470218.2014.993663CrossRefGoogle ScholarPubMed
Klinger, E. (1978). Modes of normal conscious flow. In Pope, K. S. & Singer, J. L. (Eds.), The stream of consciousness (pp. 225–258). Plenum. https://doi.org/10.1007/978-1-4684-2466-9_9CrossRefGoogle Scholar
Klinger, E. (2013). Goal commitments and the content of thoughts and dreams: Basic principles. Frontiers in Psychology, 4, 415. https://doi.org/10.3389/fpsyg.2013.00415CrossRefGoogle ScholarPubMed
Klinger, E., & Cox, W. M. (2004). Motivation and the theory of current concerns. In Cox, W. M. & Klinger, E. (Eds.), Handbook of motivational counseling: Concepts, approaches, and assessment (pp. 3–27). John Wiley & Sons Ltd. https://doi.org/10.1002/9780470713129.ch1Google Scholar
Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society B-Biological Sciences, 262, 23–81. https://doi.org/10.1098/rstb.1971.0078Google ScholarPubMed
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457. https://doi.org/10.1037/0033-295X.102.3.419CrossRefGoogle ScholarPubMed
McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14, S127–S144. https://doi.org/10.1002/acp.775CrossRefGoogle Scholar
Norman, K. A., & O'Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110, 611–646. https://doi.org/10.1037/0033-295X.110.4.611CrossRefGoogle ScholarPubMed
Rolls, E. T. (2016). Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiology of Learning and Memory, 129, 4–28. https://doi.org/10.1016/j.nlm.2015.07.008CrossRefGoogle ScholarPubMed
Szpunar, K. K., Addis, D. R., McLelland, V. C., & Schacter, D. L. (2013). Memories of the future: New insights into the adaptive value of episodic memory. Frontiers in Behavioral Neuroscience, 7, 47. https://doi.org/10.3389/fnbeh.2013.0004CrossRefGoogle ScholarPubMed
Target article
Are involuntary autobiographical memory and déjà vu natural products of memory retrieval?
Related commentaries (27)
A possible shared underlying mechanism among involuntary autobiographical memory and déjà vu
A rational analysis and computational modeling perspective on IAM and déjà vu
A spontaneous neural replay account for involuntary autobiographical memories and déjà vu experiences
Accommodating the continuum hypothesis with the déjà vu/déjà vécu distinction
Accounting for the strangeness, infrequency, and suddenness of déjà vu
Are involuntary autobiographical memory and déjà vu cognitive failures?
Cueing involuntary memory
Deconstructing spontaneous expressions of memory in dementia
Distinguishing involuntary autobiographical memories and déjà vu experiences: Different types of cues and memory representations?
Does inhibitory (dys)function account for involuntary autobiographical memory and déjà vu experience?
Déjà vu and involuntary autobiographical memories as two distinct cases of familiarity in patients with Alzheimer's disease
Déjà vu may be illusory gist identification
Déjà vu: A botched memory operation, illegitimate to start with
Evolutionary mismatch and anomalies in the memory system
From jamais to déjà vu: The respective roles of semantic and episodic memory in novelty monitoring and involuntary memory retrieval
Intracranial electrical brain stimulation as an approach to studying the (dis)continuum of memory experiential phenomena
Involuntary autobiographical memories and déjà vu: When and why attention makes a difference
Involuntary memories are not déjà vu
Involuntary memory signals in the medial temporal lobe
Neuropsychological predictions on involuntary autobiographical memory and déjà vu
Oh it's me again: Déjà vu, the brain, and self-awareness
On pattern completion, cues and future-oriented cognition
On the frequency and nature of the cues that elicit déjà vu and involuntary autobiographical memories
The misidentification syndromes and source memory deficits with their neuroanatomical correlates from neuropsychological perspective
The need for a unified framework: How Tulving's framework of memory systems, memory processes, and the SPI-model can guide and sharpen the understanding of déjà vu and involuntary autobiographical memories and add to conceptual clarity
The relation of subjective experience to cognitive processing
What do we gain (or lose) by considering déjà vu a part of autobiographical memory?
Author response
Further advancing theories of retrieval of the personal past