Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T18:54:27.488Z Has data issue: false hasContentIssue false

ERRATUM: CONTINUITY OF HILBERT–KUNZ MULTIPLICITY AND F-SIGNATURE

Published online by Cambridge University Press:  23 October 2020

THOMAS POLSTRA
Affiliation:
Department of Mathematics University of UtahSalt Lake City, UtahUSApolstra@math.utah.edu
ILYA SMIRNOV*
Affiliation:
Department of Mathematics Stockholm UniversitySE - 106 91StockholmSweden
Rights & Permissions [Opens in a new window]

Abstract

Unfortunately, there is a mistake in [PS, Lemma 3.10] which invalidates [PS, Theorem 3.12]. We show that the theorem still holds if the ring is assumed to be Gorenstein.

Type
Correction
Copyright
© (2020) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

1 Introduction

Alessandro De Stefani brought to our attention that [Reference Polstra and SmirnovPS, Theorem 3.12] is wrong as stated, and an explicit counter-example can be found in [Reference De Stefani and SmirnovDSS20, Theorem 5.3]. The problem lays in [Reference Polstra and SmirnovPS, Lemma 3.10], where the formula for the splitting number was written incorrectly as

$$ \begin{align*} a_{e}(R/(\underline{f}+\underline{\epsilon}))= [k : k^{p^{e}}] \operatorname{\mathrm{\lambda}} \left(\frac{R}{(\underline{f}+\underline{\epsilon}, (I_{t_{\underline{\epsilon}}}^{[p^{e}]}:_{R} u_{t_{\underline{\epsilon}}}^{p^{e}}))}\right), \end{align*} $$

while it should be instead

$$ \begin{align*} a_{e}(R/(\underline{f}+\underline{\epsilon}))= [k : k^{p^{e}}] \operatorname{\mathrm{\lambda}} \left(\frac{R}{(\underline{f}+\underline{\epsilon}, I_{t_{\underline{\epsilon}}}^{[p^{e}]}):_{R} u_{t_{\underline{\epsilon}}}^{p^{e}}}\right). \end{align*} $$

Below we will present a proof of [Reference Polstra and SmirnovPS, Theorem 3.12] under additional Gorenstein hypothesis. In the main case of interest, when $ \operatorname {\mathrm {s}} (R/(\underline {f}))> 0$ , this result was generalized in [Reference De Stefani and SmirnovDSS20, Theorem 5.11] to the $\mathbb Q$ -Gorenstein case.

It is also likely that the Gorenstein hypothesis is necessary for [Reference Polstra and SmirnovPS, Questions 4.5, 4.8] to have positive answers; however, [Reference De Stefani and SmirnovDSS20, Theorem 5.11] does not provide a counter-example.

2 Continuity of F-signature

We begin by recalling the following theorem of Huneke and Leuschke.

Theorem 2.1. [Reference Huneke and LeuschkeHL02, Proof of Theorem 11] Let $(R,\mathfrak {m})$ be an F-finite local Gorenstein ring of prime characteristic $p>0$ and dimension d. Suppose $f_{1},\ldots ,f_{d}$ is a system of parameters of R and u generates the socle mod $(f_{1},\ldots ,f_{d})$ . Then for each $e\in \mathbb {N}$ ,

$$ \begin{align*} a_{e}(R)=[k:k^{p^{e}}]\operatorname{\mathrm{\lambda}}(R/((f_{1},\ldots,f_{d})^{[p^{e}]}:u^{p^{e}})). \end{align*} $$

The following corollary is the Gorenstein version of [Reference Polstra and SmirnovPS, Lemma 3.10]

Corollary 2.2. Let $(R,\mathfrak {m})$ be a local Gorenstein F-finite ring of prime characteristic p. Let $\underline {f}$ be a regular sequence of length c. Then for any integer e, there exists an integer N such that $a_{e}(R/(\underline {f})) = a_{e}(R/(\underline {f} + \underline {\epsilon }))$ for any $\underline {\epsilon } \in ({\mathfrak {m}^{N}})^{\oplus \,c}$ .

Proof. If $\dim (R) = c$ , then $R/(f)$ is artinian and, thus, has a splitting if an only if it is a field. If we take $\underline {\epsilon } \in ({\mathfrak {m}^{2}})^{\oplus \,c}$ , then $(\underline {f}) = \mathfrak {m}$ if and only if $(\underline {f}+ \underline {\epsilon }) = \mathfrak {m}$ . So the Frobenius splitting numbers of $R/(\underline {f})$ and $R/(\underline {f}+\underline {\epsilon })$ will be the same, either $0$ or $[k : k^{p^{e}}]$ , the latter of which occurs if and only if $(\underline {f}) = \mathfrak {m}$ .

Suppose $\dim (R)=d+c> c$ . Let $x_{1},\ldots , x_{d}$ be a system of parameters for $R/(\underline {f})$ and let $u\in R$ generate the socle mod $(\underline {f},x_{1},\ldots , x_{d})$ . By the proof of [Reference Polstra and SmirnovPS, Corollary 3.2], there exists an integer N so that for each $\underline {\epsilon }\in (\mathfrak {m}^{N})^{\oplus \,c}$ one has that $(\underline {f}+\underline {\epsilon }, x_{1},\ldots ,x_{d})=(\underline {f},x_{1},\ldots ,x_{d})$ and $(\underline {f}+\underline {\epsilon }, x^{p^{e}}_{1},\ldots ,x^{p^{e}}_{d})=(\underline {f},x^{p^{e}}_{1},\ldots ,x^{p^{e}}_{d})$ . For such choices of $\underline {\epsilon }$ the sequence $x_{1},\ldots ,x_{d}$ is a full system of parameters for $R/(\underline {f}+\underline {\epsilon })$ , u still generates the socle of $R/(\underline {f}+\underline {\epsilon },x_{1},\ldots ,x_{d})$ , and by multiple applications of Theorem 2.1

$$ \begin{align*} a_{e}(R/(\underline{f}))&=[k:k^{p^{e}}]{\mathrm{\lambda}}(R/((\underline{f},x_{1}^{p^{e}},\ldots,x_{d}^{p^{e}}):u^{p^{e}}))\\ &=[k:k^{p^{e}}]{\mathrm{\lambda}}(R/((\underline{f}+\underline{\epsilon},x_{1}^{p^{e}},\ldots,x_{d}^{p^{e}}):u^{p^{e}}))=a_{e}(R/(\underline{f}+\underline{\epsilon})).\\[-40pt] \end{align*} $$

Theorem 2.3. Let $(R, \mathfrak m, k)$ be a Gorenstein F-finite ring of prime characteristic p and dimension $d+c$ . If $\underline {f}$ is a parameter sequence of length c such that $\hat {R}/(\underline {f})\hat {R}$ is reduced, then for any $\delta> 0$ , there exists an integer $N> 0$ such that for any $\underline {\epsilon } \in ({\mathfrak {m}^{N}})^{\oplus \,c}$

$$ \begin{align*} |{\mathrm{s}} (R/(\underline{f})) - {\mathrm{s}} (R/(\underline{f} + \underline{\epsilon})) | < \delta. \end{align*} $$

Proof. We may assume R is complete. By the Cohen–Gabber theorem [Reference Gabber and OrgogozoGO08], we may choose parameters $x_{1},\ldots , x_{d}\in R$ such that $x_{1},\ldots , x_{d}$ is a system of parameters for $R/(\underline {f})$ and $R/(\underline {f})$ is module finite and generically separable over the regular local ring $A:=k[[x_{1},\ldots ,x_{d}]]$ . Thus we have short exact sequence

$$ \begin{align*} 0 \to R/(\underline{f})[A^{1/p}] \to (R/(\underline{f}))^{1/p} \to M \to 0 \end{align*} $$

and $0 \neq c = {\mathrm {D}}_{A} (R/(\underline {f}))$ annihilates M.

Let M and $M_{\underline {\epsilon }}$ be as in the proof of [Reference Polstra and SmirnovPS, Theorem 3.5], so that there are isomorphisms $R/(\underline {f} + \underline {\epsilon })[A^{1/p}] \cong \oplus ^{p^{d} [k : k^{p}]} (R/(\underline {f} + \underline {\epsilon }))$ and short exact sequences

$$ \begin{align*} 0 \to R/(\underline{f} + \underline{\epsilon})[A^{1/p}] \to (R/(\underline{f} + \underline{\epsilon}))^{1/p} \to M_{\underline{\epsilon}} \to 0. \end{align*} $$

Apply the exact functor $(-)^{1/p^{e}}$ to the above to get the exact sequence

$$ \begin{align*} 0 \to \bigoplus^{p^{d} [k : k^{p}]}\left ( (R/(\underline{f} + \underline{\epsilon})^{1/p^{e}}) \right) \to (R/(\underline{f} + \underline{\epsilon}))^{1/p^{e+1}} \to M_{\underline{\epsilon}}^{1/p^{e}} \to 0. \end{align*} $$

By [Reference Polstra and TuckerPT18, Lemma 2.1]

$$ \begin{align*} {\mathrm{freerank}} \left ( (R/(\underline{f} + \underline{\epsilon}))^{1/p^{e+1}} \right ) \leq p^{d}[k : k^{p}] {\mathrm{freerank}} \left ( (R/(\underline{f} + \underline{\epsilon}))^{1/p^{e}} \right) + \mu ((M_{\underline{\epsilon}})^{1/p^{e}}), \end{align*} $$

or, equivalently, $ a_{e+1}(R/(\underline {f}+\underline {\epsilon }))\leq p^{d}[k : k^{p}]a_{e}(R/(\underline {f}+\underline {\epsilon }))+\mu ((M_{\underline {\epsilon }})^{1/p^{e}}). $ The proof of [Reference Polstra and SmirnovPS, Theorem 3.5] gives the existence of a constant C such that for all $\underline {\epsilon }\in ({\mathfrak {m}^{N}})^{\oplus \,c}$

$$ \begin{align*} \mu ((N_{\underline{\epsilon}})^{1/p^{e}}) = {\mathrm{\lambda}} (N_{\underline{\epsilon}}/\mathfrak{m}^{[p^{e}]}N_{\underline{\epsilon}}) \leq Cp^{e(d-1)}. \end{align*} $$

Let L and $L_{\underline {\epsilon }}$ be as in the proof [Reference Polstra and SmirnovPS, Theorem 3.5]. Similarly, we can also bound

$$ \begin{align*} p^{d}[k : k^{p}] {\mathrm{freerank}} \left ( (R/(\underline{f} + \underline{\epsilon}))^{1/p^{e}} \right) - {\mathrm{freerank}} \left ( (R/(\underline{f} + \underline{\epsilon}))^{1/p^{e + 1}} \right ) \leq {\mathrm{\lambda}} (L_{\underline{\epsilon}}/\mathfrak{m}^{[p^{e}]}L_{\underline{\epsilon}}) \end{align*} $$

and once again obtain constant C, independent of $\underline {\epsilon }$ , such that

$$ \begin{align*}|a_{e+ 1} (R/(\underline{f} + \underline{\epsilon})) - p^{d}[k : k^{p}] a_{e} (R/(\underline{f} + \underline{\epsilon}))| < Cp^{e(d-1)}.\end{align*} $$

Since $ {\mathrm {rank}} R^{1/p^{e}} = p^{ed} [k : k^{p^{e}}]$ [Reference KunzKun76, Proposition 2.3], as explained in [Reference Polstra and SmirnovPS, Corollary 3.6], this gives us a uniform convergence statement: there exist $D, N> 0$ such that for all $\underline {\epsilon } \in ({\mathfrak {m}^{N}})^{\oplus \,c}$

$$ \begin{align*} \left |{\mathrm{s}} (R/(\underline{f}+ \underline{\epsilon})) - \frac 1{{\mathrm{rank}} R^{1/p^{e}}} a_{e} (R/(\underline{f} + \underline{\epsilon})) \right| < \frac{D}{p^{e}}. \end{align*} $$

The statement now follows by employing Corollary 2.2 and following the proof of [Reference Polstra and SmirnovPS, Corollary 3.7].

Acknowledgment

Polstra was supported in part by NSF Postdoctoral Research Fellowship DMS $\#1703856$ .

References

De Stefani, A. and Smirnov, I., Stability and deformation of F-singularities, preprint, 2020. https://arxiv.org/abs/2002.00242.Google Scholar
Gabber, O. and Orgogozo, F., Sur la p-dimension des corps , Invent. Math. 174 (2008), 4780.CrossRefGoogle Scholar
Huneke, C. and Leuschke, G. J., Two theorems about maximal Cohen-Macaulay modules , Math. Ann. 324 (2002), 391404.CrossRefGoogle Scholar
Kunz, E., On Noetherian rings of characteristic p , Amer. J. Math. 98 (1976), 9991013.CrossRefGoogle Scholar
Polstra, T. and Smirnov, I., Continuity of Hilbert–Kunz multiplicity and F-signature, Nagoya Math. J., 239:322345, 2020.CrossRefGoogle Scholar
Polstra, T. and Tucker, K., F-signature and Hilbert-Kunz multiplicity: A combined approach and comparison , Algebra Number Theory 12 (2018), 6197.CrossRefGoogle Scholar