Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-11T02:02:10.077Z Has data issue: false hasContentIssue false

Characterising variations in perceptual decision making

Published online by Cambridge University Press:  10 January 2019

Johannes Schultz
Affiliation:
Department of Psychiatry and Division of Medical Psychology, University of Bonn Medical Center, 53105 Bonn, Germany. johannes.schultz@gmail.comrenehurlemann@icloud.comhttp://sites.google.com/site/johannesschultz/http://renehurlemann.squarespace.com/welcome/
René Hurlemann
Affiliation:
Department of Psychiatry and Division of Medical Psychology, University of Bonn Medical Center, 53105 Bonn, Germany. johannes.schultz@gmail.comrenehurlemann@icloud.comhttp://sites.google.com/site/johannesschultz/http://renehurlemann.squarespace.com/welcome/

Abstract

Current perspectives propose that observer models accounting for both optimal and suboptimal behaviour may yield real progress in understanding perception. We propose that such models could, in addition, be very useful for precisely characterising the variation in perception across healthy participants and those affected by psychiatric disorders, as well as the effects of neuromodulators such as oxytocin.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2018 

In their thought-provoking target article, Rahnev & Denison (R&D) argue that real progress in understanding perception could be achieved by observer models that account for optimal and suboptimal behaviour. We believe that such models could furthermore be very useful for characterising variations in perception across healthy participants and those affected by psychiatric disorders. Inter-individual variations in perception (e.g., Grzeczkowski et al. Reference Grzeczkowski, Clarke, Francis, Mast and Herzog2017; Partos et al. Reference Partos, Cropper and Rawlings2016; Schultz & Bülthoff Reference Schultz and Bülthoff2013; van Boxtel et al. Reference van Boxtel, Peng, Su and Lu2017) and perceptual decision making (Ratcliff et al. Reference Ratcliff, Thapar and McKoon2010; Reference Ratcliff, Thapar and McKoon2011; Schmiedek et al. Reference Schmiedek, Oberauer, Wilhelm, Süss and Wittmann2007) have been widely reported. An established approach to investigate these processes and their variations has been to model accuracy and response times using diffusion models (Ratcliff Reference Ratcliff1978; Ratcliff et al. Reference Ratcliff, Smith, Brown and McKoon2016). Comparing parameters of these models with personality traits across healthy participants, or between healthy participants and patients, provides insight into the origins of the variability. This has allowed researchers to relate individual differences in perceptual decision making to individual differences in IQ, working memory, and reading measures (Ratcliff et al. Reference Ratcliff, Thapar and McKoon2010; Reference Ratcliff, Thapar and McKoon2011; Schmiedek et al. Reference Schmiedek, Oberauer, Wilhelm, Süss and Wittmann2007) and to characterise deficits in participants with aphasia (Ratcliff et al. Reference Ratcliff, Perea, Colangelo and Buchanan2004), dyslexia (McKoon & Ratcliff Reference McKoon and Ratcliff2016), attention-deficit/hyperactivity disorder (Mulder et al. Reference Mulder, Bos, Weusten, van Belle, van Dijk, Simen, van Engeland and Durston2010), schizophrenia (Moustafa et al. Reference Moustafa, Kéri, Somlai, Balsdon, Frydecka, Misiak and White2015), depression, and anxiety (White et al. Reference White, Ratcliff, Vasey and McKoon2009).

As part of the Research Domain Criteria (RDoC) project (Insel et al. Reference Insel, Cuthbert, Garvey, Heinssen, Pine, Quinn, Sanislow and Wang2010) aiming to incorporate genetics, neuroimaging, and cognitive science into future psychiatric diagnostic schemes, applying neurobiologically plausible models of value-based decision making to characterise deficits observed in psychiatric disorders (Collins et al. Reference Collins, Albrecht, Waltz, Gold and Frank2017; Huys et al. Reference Huys, Daw and Dayan2015) has led to the development of computational psychiatry (Maia et al. Reference Maia, Huys and Frank2017; Wiecki et al. Reference Wiecki, Poland and Frank2014). This approach promises mechanistic explanations of how psychiatric symptoms such as cognitive biases may result from failures of decision variable evaluation (Huys et al. Reference Huys, Daw and Dayan2015). Bayesian models combining prior information with sensory evidence are particularly promising in yielding insight into pathophysiological mechanisms of perceptual distortions observed in schizophrenia. For example, information processing favouring prior knowledge over incoming sensory evidence can account for differences in visual illusion perception observed in early psychosis and schizotypy (Partos et al. Reference Partos, Cropper and Rawlings2016; Teufel et al. Reference Teufel, Subramaniam, Dobler, Perez, Finnemann, Mehta, Goodyer and Fletcher2015). The “jumping-to-conclusions” bias in event probability estimation typical of schizophrenia can be characterised by increased circular inference – that is, the corruption of sensory data by prior information, with feedforward and feedback loops of the model correlating with negative and positive symptoms, respectively (Jardri et al. Reference Jardri, Duverne, Litvinova and Deneve2017). In time, such approaches may allow us to develop specific therapeutic approaches, such as metacognitive training (e.g., see Moritz & Woodward Reference Moritz and Woodward2007).

Observer models may allow similar progress in understanding the mechanisms underlying dysfunctions of social perception and interaction. Parameterizable social stimuli may prove very helpful in this regard; for example, point-light motion stimuli and tasks assessing different levels of processing have allowed researchers to better understand how autistic traits affect certain aspects of biological motion perception (van Boxtel et al. Reference van Boxtel, Peng, Su and Lu2017). The response to others’ gaze is also affected in autism (Leekam et al. Reference Leekam, Hunnisett and Moore1998; Wallace et al. Reference Wallace, Coleman, Pascalis and Bailey2006); here, a recently developed computational model of the perception of gaze direction (Palmer & Clifford Reference Palmer and Clifford2017) has yielded insight into the origin of those dysfunctions: It has been proposed that autism is associated with reduced divisive normalisation of sensory responses, attributable to an increased ratio of cortical excitation to inhibition (Rosenberg et al. Reference Rosenberg, Patterson and Angelaki2015). Interestingly, both divisive normalisation and sensory adaptation occur robustly in autism in the context of gaze processing (Palmer et al. Reference Palmer, Lawson, Shankar, Clifford and Rees2018). This suggests that the differences in response to others’ gaze may instead be related to differences in the interpretation of gaze direction or the spontaneous following of others’ gaze (Senju et al. Reference Senju, Southgate, White and Frith2009). Similar work could be undertaken for elucidating other essential social cognitive functions, such as face recognition. Face recognition capacities widely vary across healthy participants (Wilmer et al. Reference Wilmer, Germine, Chabris, Chatterjee, Gerbasi and Nakayama2012), ranging from congenital prosopagnosia (Behrmann & Avidan Reference Behrmann and Avidan2005; McConachie Reference McConachie1976) to “super-recognition” (Russell et al. Reference Russell, Duchaine and Nakayama2009). Although progress towards understanding the cognitive and neural underpinnings of congenital prosopagnosia is being made (Susilo & Duchaine Reference Susilo and Duchaine2013), the most widely used tests may not capture the alternative perceptual strategies adopted by people afflicted by prosopagnosia (Esins et al. Reference Esins, Schultz, Stemper, Kennerknecht and Bülthoff2016). Parameterizable face stimuli (Dobs et al. Reference Dobs, Bülthoff, Breidt, Vuong, Curio and Schultz2014; Esins et al. Reference Esins, Schultz, Wallraven and Bülthoff2014; Reference Esins, Schultz, Stemper, Kennerknecht and Bülthoff2016) may allow us to better characterise those strategies by allowing direct comparisons between human and ideal observer performance (Dobs et al. Reference Dobs, Bülthoff and Schultz2016; Reference Dobs, Ma and Reddy2017). Such approaches may be instrumental in identifying alternative heuristics used by participants with congenital prosopagnosia and other impairments of social perception.

Recent studies have demonstrated that exogenous administration of the neuropeptide oxytocin (OT) influences the perception of social stimuli such as facial emotions in a dose-dependent manner (Spengler et al. Reference Spengler, Schultz, Scheele, Essel, Maier, Heinrichs and Hurlemann2017b). Furthermore, OT modulates attractiveness judgements of faces (Hurlemann et al. Reference Hurlemann, Scheele, Maier and Schultz2017; Striepens et al. Reference Striepens, Matusch, Kendrick, Mihov, Elmenhorst, Becker, Lang, Coenen, Maier, Hurlemann and Bauer2014), alters the sensory quality of social touch (Kreuder et al. Reference Kreuder, Scheele, Wassermann, Wollseifer, Stoffel-Wagner, Lee, Hennig, Maier and Hurlemann2017; Scheele et al. Reference Scheele, Kendrick, Khouri, Kretzer, Schläpfer, Stoffel-Wagner, Güntürkün, Maier and Hurlemann2014) and body odours (Maier et al. Reference Maier, Scheele, Spengler, Menba, Mohr, Güntürkün, Stoffel-Wagner, Kinfe, Maier, Khalsa and Hurlemann2018), increases a tendency to anthropomorphise (Scheele et al. Reference Scheele, Schwering, Elison, Spunt, Maier and Hurlemann2015), or, in rats, boosts the salience of acoustic social stimuli (Marlin et al. Reference Marlin, Mitre, D'amour, Chao and Froemke2015). At present, it is still unclear whether the behavioural effects of OT result from perceptual changes, such as increased attention to the socially informative eye region (Guastella et al. Reference Guastella, Mitchell and Dadds2008), improved recognition of cues about sex and relationship (Scheele et al. Reference Scheele, Wille, Kendrick, Stoffel-Wagner, Becker, Güntürkün, Maier and Hurlemann2013), and/or facilitated sensing of and responding to emotional stimuli (Spengler et al. Reference Spengler, Scheele, Marsh, Kofferath, Flach, Schwarz, Stoffel-Wagner, Maier and Hurlemann2017a). Analysing these effects using observer models may help identify which aspect of the perceptual decision-making process is influenced by OT. As OT is also a promising therapeutic (Hurlemann Reference Hurlemann2017; Palmer & Clifford Reference Palmer and Clifford2017), understanding its mode of action may be informative in order to specifically target dysfunctional perceptual processes particularly amenable to OT treatment.

References

Behrmann, M. & Avidan, G. (2005) Congenital prosopagnosia: Face-blind from birth. Trends in Cognitive Sciences 9(4):180–87. Available at: http://doi.org/10.1016/j.tics.2005.02.011.Google Scholar
Collins, A. G. E., Albrecht, M. A., Waltz, J. A., Gold, J. M. & Frank, M. J. (2017) Interactions among working memory, reinforcement learning, and effort in value-based choice: A new paradigm and selective deficits in schizophrenia. Biological Psychiatry 82(6):431–39. Available at: http://doi.org/10.1016/j.biopsych.2017.05.017.Google Scholar
Dobs, K., Bülthoff, I., Breidt, M., Vuong, Q. C., Curio, C. & Schultz, J. (2014) Quantifying human sensitivity to spatio-temporal information in dynamic faces. Vision Research 100:7887. Available at: http://doi.org/10.1016/j.visres.2014.04.009.Google Scholar
Dobs, K., Bülthoff, I. & Schultz, J. (2016) Identity information content depends on the type of facial movement. Scientific Reports 6:34301. Available at: http://doi.org/10.1038/srep34301.Google Scholar
Dobs, K., Ma, W. J. & Reddy, L. (2017) Near-optimal integration of facial form and motion. Scientific Reports 7:11002. Available at: http://doi.org/10.1038/s41598-017-10885-y.Google Scholar
Esins, J., Schultz, J., Stemper, C., Kennerknecht, I. & Bülthoff, I. (2016) Face perception and test reliabilities in congenital prosopagnosia in seven tests. i-Perception 7(1). Available at: http://doi.org/10.1177/2041669515625797.Google Scholar
Esins, J., Schultz, J., Wallraven, C. & Bülthoff, I. (2014) Do congenital prosopagnosia and the other-race effect affect the same face recognition mechanisms? Frontiers in Human Neuroscience 8:759. Available at: https://doi.org/10.3389/fnhum.2014.00759.Google Scholar
Grzeczkowski, L., Clarke, A. M., Francis, G., Mast, F. W. & Herzog, M. H. (2017) About individual differences in vision. Vision Research 141:282–92. Available at: http://doi.org/10.1016/j.visres.2016.10.006.Google Scholar
Guastella, A. J., Mitchell, P. B. & Dadds, M. R. (2008) Oxytocin increases gaze to the eye region of human faces. Biological Psychiatry 63(1):35. Available at: http://doi.org/10.1016/j.biopsych.2007.06.026.Google Scholar
Hurlemann, R. (2017) Oxytocin-augmented psychotherapy: Beware of context. Neuropsychopharmacology 42(1):377. Available at: http://doi.org/10.1038/npp.2016.188.Google Scholar
Hurlemann, R., Scheele, D., Maier, W. & Schultz, J. (2017) Oxytocin drives prosocial biases in favor of attractive people. Behavioral and Brain Sciences 40:e30. Available at: http://doi.org/10.1017/S0140525X16000510.Google Scholar
Huys, Q. J. M., Daw, N. D. & Dayan, P. (2015) Depression: A decision-theoretic analysis. Annual Review of Neuroscience 38(1):123. Available at: http://doi.org/10.1146/annurev-neuro-071714-033928.Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C. & Wang, P. (2010) Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry 167(7):748–51. Available at: http://doi.org/10.1176/appi.ajp.2010.09091379.Google Scholar
Jardri, R., Duverne, S., Litvinova, A. S. & Deneve, S. (2017) Experimental evidence for circular inference in schizophrenia. Nature Communications 8:14218. Available at: http://doi.org/10.1038/ncomms14218.Google Scholar
Kreuder, A.-K., Scheele, D., Wassermann, L., Wollseifer, M., Stoffel-Wagner, B., Lee, M. R., Hennig, J., Maier, W. & Hurlemann, R. (2017) How the brain codes intimacy: The neurobiological substrates of romantic touch. Human Brain Mapping 38(9):4525–34. Available at: http://doi.org/10.1002/hbm.23679.Google Scholar
Leekam, S. R., Hunnisett, E. & Moore, C. (1998) Targets and cues: Gaze-following in children with autism. Journal of Child Psychology and Psychiatry 39(7):951–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9804028.Google Scholar
Maia, T. V., Huys, Q. J. M. & Frank, M. J. (2017) Theory-based computational psychiatry. Biological Psychiatry 82(6):382–84. Available at: http://doi.org/10.1016/j.biopsych.2017.07.016.Google Scholar
Maier, A., Scheele, D., Spengler, F. B., Menba, T., Mohr, F., Güntürkün, O., Stoffel-Wagner, B., Kinfe, T. M., Maier, W., Khalsa, S. S. & Hurlemann, R. (2018) Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology. Available at: http://doi.org/10.1038/s41386-018-0063-3.Google Scholar
Marlin, B. J., Mitre, M., D'amour, J. A., Chao, M. V. & Froemke, R. C. (2015) Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520(7548):499504. Available at: http://doi.org/10.1038/nature14402.Google Scholar
McConachie, H. R. (1976) Developmental prosopagnosia. A single case report. Cortex 12(1):7682. Available at: http://psycnet.apa.org/record/1976-20939-001.Google Scholar
McKoon, G. & Ratcliff, R. (2016) Adults with poor reading skills: How lexical knowledge interacts with scores on standardized reading comprehension tests. Cognition 146:453–69. Available at: http://doi.org/10.1016/j.cognition.2015.10.009.Google Scholar
Moritz, S. & Woodward, T. S. (2007) Metacognitive training in schizophrenia: From basic research to knowledge translation and intervention. Current Opinion in Psychiatry 20(6):619–25. Available at: http://doi.org/10.1097/YCO.0b013e3282f0b8ed.Google Scholar
Moustafa, A. A., Kéri, S., Somlai, Z., Balsdon, T., Frydecka, D., Misiak, B. & White, C. (2015) Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research 291:147–54. Available at: http://doi.org/10.1016/j.bbr.2015.05.024.Google Scholar
Mulder, M. J., Bos, D., Weusten, J. M. H., van Belle, J., van Dijk, S. C., Simen, P., van Engeland, H. & Durston, S. (2010) Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry 68(12):1114–19. Available at: http://doi.org/10.1016/j.biopsych.2010.07.031.Google Scholar
Palmer, C. J. & Clifford, C. W. G. (2017) Functional mechanisms encoding others’ direction of gaze in the human nervous system. Journal of Cognitive Neuroscience 29(10):1725–38. Available at: http://doi.org/10.1162/jocn_a_01150.Google Scholar
Palmer, C. J., Lawson, R. P., Shankar, S., Clifford, C. W. G. & Rees, G. (2018) Autistic adults show preserved normalisation of sensory responses in gaze processing. Cortex 103:1323. Available at: http://doi.org/10.1016/j.cortex.2018.02.005.Google Scholar
Partos, T. R., Cropper, S. J. & Rawlings, D. (2016) You don't see what I see: Individual differences in the perception of meaning from visual stimuli. PLoS ONE 11(3):e0150615. Available at: http://doi.org/10.1371/journal.pone.0150615.Google Scholar
Ratcliff, R. (1978) A theory of memory retrieval. Psychological Review 85(2):59108. Available at: http://doi.org/10.1037/0033-295X.85.2.59.Google Scholar
Ratcliff, R., Perea, M., Colangelo, A. & Buchanan, L. (2004) A diffusion model account of normal and impaired readers. Brain and Cognition 55(2):374–82. Available at: http://doi.org/10.1016/j.bandc.2004.02.051.Google Scholar
Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. (2016) Diffusion decision model: Current issues and history. Trends in Cognitive Sciences 20(4):260–81. Available at: http://doi.org/10.1016/j.tics.2016.01.007.Google Scholar
Ratcliff, R., Thapar, A. & McKoon, G. (2010) Individual differences, aging, and IQ in two-choice tasks. Cognitive Psychology 60(3):127–57. Available at: http://doi.org/10.1016/j.cogpsych.2009.09.001.Google Scholar
Ratcliff, R., Thapar, A. & McKoon, G. (2011) Effects of aging and IQ on item and associative memory. Journal of Experimental Psychology: General 140(3):464–87. Available at: http://doi.org/10.1037/a0023810.Google Scholar
Rosenberg, A., Patterson, J. S. & Angelaki, D. E. (2015) A computational perspective on autism. Proceedings of the National Academy of Sciences of the United States of America 112(30):9158–65. Available at: https://doi.org/10.1073/pnas.1510583112.Google Scholar
Russell, R., Duchaine, B. & Nakayama, K. (2009) Super-recognizers: People with extraordinary face recognition ability. Psychonomic Bulletin and Review 16(2):252–57. Available at: http://doi.org/10.3758/PBR.16.2.252.Google Scholar
Scheele, D., Kendrick, K. M., Khouri, C., Kretzer, E., Schläpfer, T. E., Stoffel-Wagner, B., Güntürkün, O., Maier, W. & Hurlemann, R. (2014) An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology 39(9):2078–85. Available at: http://doi.org/10.1038/npp.2014.78.Google Scholar
Scheele, D., Schwering, C., Elison, J. T., Spunt, R., Maier, W. & Hurlemann, R. (2015) A human tendency to anthropomorphize is enhanced by oxytocin. European Neuropsychopharmacology 25(10):1817–23. Available at: http://doi.org/10.1016/j.euroneuro.2015.05.009.Google Scholar
Scheele, D., Wille, A., Kendrick, K. M., Stoffel-Wagner, B., Becker, B., Güntürkün, O., Maier, W. & Hurlemann, R. (2013) Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Sciences of the United States of America 110(50):20308–13. Available at: http://doi.org/10.1073/pnas.1314190110.Google Scholar
Schmiedek, F., Oberauer, K., Wilhelm, O., Süss, H.-M. & Wittmann, W. W. (2007) Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General 136(3):414–29. Available at: http://doi.org/10.1037/0096-3445.136.3.414.Google Scholar
Schultz, J. & Bülthoff, H. H. (2013) Parametric animacy percept evoked by a single moving dot mimicking natural stimuli. Journal of Vision 13(4):119. Available at: http://doi.org/10.1167/13.4.15.Google Scholar
Senju, A., Southgate, V., White, S. & Frith, U. (2009) Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science 325(5942):883–85. Available at: http://doi.org/10.1126/science.1176170.Google Scholar
Spengler, F. B., Scheele, D., Marsh, N., Kofferath, C., Flach, A., Schwarz, S., Stoffel-Wagner, B., Maier, W. & Hurlemann, R. (2017a) Oxytocin facilitates reciprocity in social communication. Social Cognitive and Affective Neuroscience 12(8):1325–33. Available at: http://doi.org/10.1093/scan/nsx061.Google Scholar
Spengler, F. B., Schultz, J., Scheele, D., Essel, M., Maier, W., Heinrichs, M. & Hurlemann, R. (2017b) Kinetics and dose dependency of intranasal oxytocin effects on amygdala reactivity. Biological Psychiatry 82:885–94. Available at: http://doi.org/10.1016/j.biopsych.2017.04.015.Google Scholar
Striepens, N., Matusch, A., Kendrick, K. M., Mihov, Y., Elmenhorst, D., Becker, B., Lang, M., Coenen, H. H., Maier, W., Hurlemann, R. & Bauer, A. (2014) Oxytocin enhances attractiveness of unfamiliar female faces independent of the dopamine reward system. Psychoneuroendocrinology 39:7487. Available at: http://doi.org/10.1016/j.psyneuen.2013.09.026.Google Scholar
Susilo, T. & Duchaine, B. (2013) Advances in developmental prosopagnosia research. Current Opinion in Neurobiology 23(3):423–29. Available at: http://doi.org/10.1016/j.conb.2012.12.011.Google Scholar
Teufel, C., Subramaniam, N., Dobler, V., Perez, J., Finnemann, J., Mehta, P. R., Goodyer, I. M. & Fletcher, P. C. (2015) Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proceedings of the National Academy of Sciences of the United States of America 112(43):13401–406. Available at: http://doi.org/10.1073/pnas.1503916112.Google Scholar
van Boxtel, J. J. A., Peng, Y., Su, J. & Lu, H. (2017) Individual differences in high-level biological motion tasks correlate with autistic traits. Vision Research 141:136–44. Available at: http://doi.org/10.1016/j.visres.2016.11.005.Google Scholar
Wallace, S., Coleman, M., Pascalis, O. & Bailey, A. (2006) A study of impaired judgment of eye-gaze direction and related face-processing deficits in autism spectrum disorders. Perception 35(12):1651–64. Available at: http://doi.org/10.1068/p5442.Google Scholar
White, C., Ratcliff, R., Vasey, M. & McKoon, G. (2009) Dysphoria and memory for emotional material: A diffusion-model analysis. Cognition & Emotion 23(1), 181205. Available at: http://doi.org/10.1080/02699930801976770.Google Scholar
Wiecki, T. V., Poland, J. & Frank, M. J. (2014) Model-based cognitive neuroscience approaches to computational psychiatry. Clinical Psychological Science 3(3):378–99. Available at: http://doi.org/10.1177/2167702614565359.Google Scholar
Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Gerbasi, M. & Nakayama, K. (2012) Capturing specific abilities as a window into human individuality: The example of face recognition. Cognitive Neuropsychology 29(5–6):360–92. Available at: http://doi.org/10.1080/02643294.2012.753433.Google Scholar