Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-05T18:06:15.371Z Has data issue: false hasContentIssue false

The Size of the Giant Component of a Random Graph with a Given Degree Sequence

Published online by Cambridge University Press:  01 September 1998

MICHAEL MOLLOY
Affiliation:
Department of Computer Science, University of Toronto, Toronto, Canada (e-mail: molloy@cs.toronto.edu)
BRUCE REED
Affiliation:
Equipe Combinatoire, CNRS, Université Pierre et Marie Curie, Paris, France (e-mail: reed@ecp6.jussieu.fr)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a sequence of nonnegative real numbers λ0, λ1, … that sum to 1, we consider a random graph having approximately λin vertices of degree i. In [12] the authors essentially show that if [sum ]i(i−2)λi>0 then the graph a.s. has a giant component, while if [sum ]i(i−2)λi<0 then a.s. all components in the graph are small. In this paper we analyse the size of the giant component in the former case, and the structure of the graph formed by deleting that component. We determine ε, λ′0, λ′1 … such that a.s. the giant component, C, has εn+o(n) vertices, and the structure of the graph remaining after deleting C is basically that of a random graph with n′=n−[mid ]C[mid ] vertices, and with λ′in′ of them of degree i.

Type
Research Article
Copyright
1998 Cambridge University Press