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Given a sequence of nonnegative real numbers λ0, λ1, . . . that sum to 1, we consider a random

graph having approximately λin vertices of degree i. In [12] the authors essentially show

that if
∑

i(i− 2)λi > 0 then the graph a.s. has a giant component, while if
∑

i(i− 2)λi < 0

then a.s. all components in the graph are small. In this paper we analyse the size of the

giant component in the former case, and the structure of the graph formed by deleting that

component. We determine ε, λ′0, λ′1 . . . such that a.s. the giant component, C , has εn + o(n)

vertices, and the structure of the graph remaining after deleting C is basically that of a

random graph with n′ = n− |C| vertices, and with λ′in′ of them of degree i.

1. Introduction and overview

Perhaps the most studied phenomenon in the field of random graphs is the behaviour

of the size of the largest component in Gn,p
† when p = c/n for c near 1. For c < 1 the

size of the largest component is almost surely‡ (a.s.) O(log n), for c = 1 the size of the

largest component is a.s. Θ(n2/3), and for c > 1 a.s. the size of the largest component is

Θ(n) while the size of the second largest component is O(log n) (see [8], [7] or [9]). For

c > 1, this largest component is commonly referred to as the giant component and the

point p = 1/n is referred to as the critical point or the double jump threshold.

For c > 1, we can also determine the approximate size of the giant component, C , as

well as the structure of the graph formed by deleting it. Its size is a.s. εcn+ o(n), where εc
is the unique solution to ε + e−cε = 1, and the graph formed by deleting C is essentially

† Gn,p is the random graph with n vertices where each edge appears independently with probability p.

‡ We say that a random event En holds almost surely if limn→∞ Pr(En) = ∞.
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equivalent to Gn′ ,p=dc/n′ , where n′ = n− |C| = (1− εc)n+ o(n), and dc = c(1− εc) (see [1]

or [10]). (Note that dc < 1.) The latter property is referred to as the Discrete Duality

Principle.

In [12], the authors showed that a similar phenomenon occurs among random graphs

with a fixed degree sequence. Essentially, we considered random graphs on n vertices

with λin + o(n) vertices of degree i, for some fixed sequence λ0, λ1, . . .. We introduced the

parameter Q =
∑
i(i − 2)λi and showed that, if Q < 0, then a.s. the size of the largest

component is O(ω2 log n), where ω is the highest degree in the graph, and if Q > 0, then

a.s. the size of the largest component is Θ(n), and the size of the second largest component

is O(log n).

In this paper we refine our arguments to determine the approximate size of the giant

component in such a graph. We also find an analogue to the Discrete Duality Principle,

showing that there is a sequence λ′0, λ′1, . . ., such that the graph remaining after deleting the

giant component, C , is basically equivalent to a random graph on n′ = n − |C| vertices,

with approximately λ′in′ vertices of degree i for each i. Of course,
∑
i(i− 2)λ′i < 0.

To be expeditious, we will state our main theorems here, momentarily postponing the

definition of a well-behaved sparse asymptotic degree sequence, which was introduced in

[12].

Given a sequence of nonnegative reals λ0, λ1, . . . summing to one, we set K =
∑

i>0 iλi,

and define χ : [0, 1]→ R as

χ(α) = K − 2α−∑
i>1

iλi

(
1− 2α

K

) i
2

,

and we denote the smallest positive solution to χ(α) = 0 (if such a solution exists), by αD.

Now setting

εD = 1−∑
i>1

λi

(
1− 2αD

K

) i
2

,

λ′i =
λi

(1− εD)

(
1− 2αD

K

) i
2

,

we have the following theorems.

Theorem 1. Let D = d0(n), d1(n), . . . be a well-behaved sparse asymptotic degree sequence

where, for each i > 0, limn→∞ di(n)/n = λi and for which there exists ε > 0 such that, for

all n and i > n1/4−ε, di(n) = 0. Suppose that Q(D) =
∑
i(i − 2)λi > 0. If G is a random

graph with n vertices and degree sequence Dn, then a.s. the giant component of G has size

εDn+ o(n).

Theorem 2. Let D be a degree sequence meeting the conditions of Theorem 1. Let G be

a random graph with n vertices and degree sequence Dn. Almost surely, the structure of the

graph formed by deleting the largest component, C , from G is essentially the same as that

of a random graph on n′ = n− |C| = (1− εD)n+ o(n) vertices, with degree sequence D′, for

some D′ = d′0(n), d′1(n), . . ., where d′i(n) = λ′in+ o(n).
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Now we will recall the relevant definitions from [12]. Throughout this paper, all

asymptotics will be taken as n tends to ∞ and we only claim things to be true for

sufficiently large n. By A ≈ B we mean that limn→∞ A/B = 1.

Definition 1. An asymptotic degree sequence is a sequence of integer-valued functions

D = d0(n), d1(n), . . . such that

(a) di(n) = 0 for i > n;
(b)

∑
i>0 di(n) = n.

Given an asymptotic degree sequence D, let Dn be the degree sequence {c1, c2, . . . , cn},
where cj > cj+1 and |{j : cj = i}| = di(n) for each i > 0. Define ΩDn to be the set of all

graphs with vertex set [n] with degree sequence Dn. A random graph on n vertices with

degree sequence D is a uniformly random member of ΩDn .

Definition 2. An asymptotic degree sequence D is feasible if ΩDn 6= ∅ for all n > 1.

Definition 3. An asymptotic degree sequence D is smooth if there exist constants λi such

that limn→∞ di(n)/n = λi.

Definition 4. An asymptotic degree sequence D is sparse if
∑

i>0 idi(n)/n = K + o(1) for

some constant K .

Definition 5. Given a smooth asymptotic degree sequence, D, Q(D) =
∑

i>1 i(i− 2)λi.

Definition 6. An asymptotic degree sequence D is well-behaved if the following conditions

hold.

(a) D is feasible and smooth.

(b) i(i− 2)di(n)/n tends uniformly to i(i− 2)λi, i.e., for all ε > 0 there exists N such that,

for all n > N and for all i > 0,∣∣∣∣ i(i− 2)di(n)

n
− i(i− 2)λi

∣∣∣∣ < ε.

(c) The limit

L(D) = lim
n→∞

∑
i>1

i(i− 2)di(n)/n

exists, and the sum approaches the limit uniformly, that is,

(i) if L(D) is finite, then for all ε > 0 there exists i∗, N such that, for all n > N,∣∣∣∣∣
i∗∑
i=1

i(i− 2)di(n)/n− L(D)

∣∣∣∣∣ < ε,

(ii) if L(D) is infinite, then for all T > 0 there exists i∗, N such that, for all n > N,

i∗∑
i=1

i(i− 2)di(n)/n > T .
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We note that it is an easy exercise to show that if D is well-behaved then

L(D) = Q(D).

Note that, for a well-behaved asymptotic degree sequence D, if Q(D) is finite then

D is sparse. Note further that if D is sparse and well-behaved then, since for i∗ > 1,∑
i>i∗ idi(n) <

∑
i>i∗ i(i − 2)di(n), the sum limn→∞

∑
i>1 idi(n)/n approaches its limit uni-

formly in the sense of condition (c) in Definition 6.

The main result of [12] is the following.

Theorem 3. Let D = d0(n), d1(n), . . . be a well-behaved sparse asymptotic degree sequence

for which there exists ε > 0 such that, for all n and i > n
1
4−ε, di(n) = 0. Let G be a graph

with n vertices, di(n) of which have degree i, chosen uniformly at random from amongst all

such graphs.

(a) If Q(D) > 0 then there exist constants ζ1, ζ2 > 0 dependent on D such that G a.s. has

a component with at least ζ1n vertices and ζ2n cycles. Furthermore, if Q(D) is finite

then G a.s. has exactly one component of size greater than γ log n for some constant γ

dependent on D.

(b) If Q(D) < 0 and, for some function 0 6 ω(n) 6 n
1
8−ε, di(n) = 0 for all i > ω(n),

then, for some constant R dependent on Q(D), G a.s. has no component with at least

Rω(n)2 log n vertices, and a.s. has fewer than 2Rω(n)2 log n cycles. Also, a.s. no com-

ponent of G has more than one cycle.

To be consistent with the model Gn,p, we call the component referred to in Theorem

3(a) the giant component.

To prove Theorem 3, we worked with the configuration model introduced in this form

by Bollobás [6] and motivated in part by the work of Bender and Canfield [4]. This model

arose in a somewhat different form in the work of Békéssy, Békéssy and Komlós [3] and

Wormald [13, 14]. A random configuration with n vertices and a fixed degree sequence is

formed by taking a set L containing deg(v) distinct copies of each vertex v, and choosing

a random matching of the elements of L. Each configuration represents an underlying

multigraph whose edges are defined by the pairs in the matching. We often abuse notation

by referring to a configuration as if it were a multigraph. For example, we say that a

configuration has a graphical property P when we mean that its underlying multigraph

does, and we discuss the components of a configuration rather than the components of

its underlying multigraph.

This very useful lemma follows from the main result in [11], and allows us to prove

results concerning a random graph on a particular degree sequence by analysing a random

configuration.

Lemma 1. Suppose D is a degree sequence meeting the conditions of Theorem 3 for which

Q(D) < ∞. If a random configuration with degree sequence D a.s. has a property P , then a

random graph with degree sequence D a.s. has P .

The key to the proof of Theorem 3 is the manner in which we exposed the configuration.
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Given D, we expose a random configuration F on n vertices with degree sequence D as

follows.

At each step, a vertex, all of whose copies are in exposed pairs, is entirely exposed. A

vertex, some but not all of whose copies are in exposed pairs, is partially exposed. All

other vertices are unexposed. The copies of partially exposed vertices which are not in

exposed pairs are open.

1. Form a set L consisting of i distinct copies of each of the di(n) vertices that have

degree i.
2. Repeat until L is empty.

(a) Expose a pair of F by first choosing any member of L, and then choosing its

partner at random. Remove them from L.

(b) Repeat until there are no partially exposed vertices:

Choose an open copy of a partially exposed vertex, and pair it with another

randomly chosen member of L. Remove them both from L.

All random choices are made uniformly. Note that we have complete freedom as to

which vertex copy we pick in step 2(a), but for the purposes of this paper we will choose

it in the same manner in which we choose all other vertex copies, that is, we will simply

pick a uniformly random member of L. It is clear that every possible matching amongst

the vertex copies occurs with the same probability under this procedure, and hence this is

a valid way to choose a random configuration.

Let Xi represent the number of open vertex copies after the ith pair is exposed. Initially

the expected increase in Xi is approximately∑
i>1 i(i− 2)di(n)∑

j>1 jdj(n)
=
Q(D)

K
,

explaining the significance of our parameter Q(D).

Suppose that Q(D) is positive, and thus so is the initial expected increase in Xi. If this

expected increase remained positive throughout the process then a.s. some component

would keep growing in size. Of course, the expected increase does not remain positive:

it changes as the set of unexposed vertices changes. However, we proved that it takes at

least Θ(n) steps for the expected increase to change significantly, and that this was enough

time for a component to become giant.

In this paper, we gain a better understanding of this process by studying the way in

which the expected increase of Xi changes throughout the exposure. The key to this will

be to keep track of the degrees of the unexposed vertices at each step. Recall that initially

there are di(n) unexposed vertices of degree i. We will define the random variable di,j to

be the number of unexposed vertices of degree i after j pairs of the configuration have

been exposed. Thus di,0 = di(n) ≈ λin.
In the next section, we will determine a sequence of functions Z0(α), Z1(α), . . . and prove

that a.s. di,αn = Zi(α)n+ o(n). We will do this by solving a system of differential equations

with the property that

D′i(α) ≈ Exp(di,j+1 − di,j), for j ≈ αn,
and then applying a recent theorem of Wormald, which states that, under certain con-
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ditions, random variables a.s. behave like the solution to such a system of differential

equations. One of these conditions (in fact the only one that doesn’t apply here) is that the

number of variables is bounded. Fortunately, our differential equations are particularly

well-behaved, allowing us to skirt this issue by dealing with the equations individually.

Once we have determined what the degree sequence of the set of unexposed vertices

looks like throughout the exposure of the giant component, it will be a simple matter

to analyse the size of that component. Furthermore, once that component is completely

exposed, we will know the degree sequence of the unexposed vertices. The remainder of

the graph will have the structure of a random graph on that degree sequence, and this

yields the analogue to the Discrete Duality Principle.

2. A detailed analysis

Recall that a function f(u1, . . . , uj) satisfies a Lipschitz condition on D ⊆ Rj if a constant

L > 0 exists with the property that

|f(u1, . . . , uj)− f(v1, . . . , vj)| 6 L
j∑
i=1

|ui − vi|

for all (u1, . . . , uj) and (v1, . . . , vj) in D.

The following theorem appears in a more general form in [15]. In it, ‘uniformly’ refers

to the convergence implicit in the o() terms. Hypothesis (i) ensures that Yt does not change

too quickly throughout the process, (ii) tells us what we expect the rate of change to be,

and (iii) ensures that this rate does not change too quickly.

Theorem 4. Suppose Yt, 0 6 t 6 m = m(n) is a sequence of real-valued random variables,

such that 0 6 Yt 6 Cn for some constant C , and Hj is the history of the sequence, that is,

the array (Y0, . . . , Yj). Suppose, further, that for some function f : R2 → R the following

statements hold.

(i) There is a constant C ′ such that, for all t < m and all l,

|Yt+1 − Yt| < C ′

always.

(ii) Uniformly over all t < m,

Exp(Yt+1 − Yt|Ht) = f(t/n, Yt/n) + o(1)

always.

(iii) The function f is continuous and satisfies a Lipschitz condition on D, where D is some

bounded connected open set containing the intersection of {(t, z) : t > 0} with some

neighbourhood of {(0, z) : Pr(Y0 = zn) 6= 0 for some n}.
Then,

(a) for (0, ẑ) ∈ D the differential equation

dz

ds
= f(s, z)
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has a unique solution in D for z : R→ R passing through

z(0) = ẑ,

and which extends to points arbitrarily close to the boundary of D;

(b) and

Yt = nz(t/n) + o(n)

with probability at least 1 − n−1/2 uniformly for 0 6 t 6 min{σn, m} and for each l,

where z(t) is the solution in (a) with ẑ = Y0/n, and σ = σ(n) is the supremum of those

s to which the solution can be extended.

Remark. The only part of Theorem 4 that does not follow directly from the statement

of Theorem 1 in [15] is the bound on the probability in (b). This is implicit in its proof.

Now, suppose that we are given a well-behaved degree sequence D, such that Q(D) > 0.

We expose a random configuration, F , with n vertices and degree sequence D using our

branching process.

It is important to note that with high probability it will not take very many steps before

we begin to expose the giant component, as demonstrated by the following lemma.

Lemma 2. For any function ω(n) → ∞, ω(n) = o(n/ log n), a.s. the largest component of

F will be one of the first ω(n) components exposed.

Proof. Let E1 be the event that F has a cyclic component of size at least ζ1n, and

no other component of size greater than γ log n, where ζ1, γ are as in Theorem 3. By

Theorem 3, E1 a.s. occurs.

For any configuration with degree sequence D, we say that C is the subset of the compo-

nents defined as follows. We consider the components to be sorted first in non-increasing

order of the sizes of their edge sets, and then by decreasing order of their highest labelled

vertex. We take C to be the smallest initial sequence of components that contains a total

of at least ζ1n edges. Note that, if E1 occurs, then C contains only the largest component.

Let E2 be the event that one of the first ω(n) components exposed lies in C. Now, each

time we start a new component, either we have already exposed a member of C, or the

probability that a uniformly selected copy of an unexposed vertex lies in C is at least

2ζ1/K . Therefore,

Pr(E2) > 1−
(

1− 2ζ1

K

)ω(n)

= 1− o(1).

Clearly, the probability that the largest component is one of the first ω(n) components

exposed is at least the probability that E1 and E2 hold, thus proving the lemma.

Corollary 1. Almost surely, the blog2 ncth edge exposed will lie in the largest component

of F .

Proof. This follows immediately from Lemma 2 and Theorem 3(a).

And now we can prove our main theorems.
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Proof of Theorem 1. We prove this by analysing the asymptotic value of di,j . Clearly

di,0 = di(n) for each i. Consider any fixed i0 > 1, and set M =
∑

i>0 idi(n). When exposing

the (j + 1)st edge, we have exactly M − 2j − 1 vertex copies to choose from, i0di0 ,j of

which are copies of unexposed vertices of degree i0. Therefore, if Xj > 0 then the expected

change in di0 ,j is

Exp(di0 ,j+1 − di0 ,j) = − i0di0 ,j

M − 2j − 1
,

and the distribution of this change is mutually independent of the values of di,j for all

i 6= i0.

Thus, if it were not for the complications that arise when Xj = 0, it would be

straightforward to apply Theorem 4 to di,j . To deal with these complications, we add two

twists to our analysis. The first is that we begin our analysis at step j = blog2 nc. Clearly,

di,blog2 nc = di,0 + o(n) for each i. Furthermore, by Corollary 1, after this step, Xj will

almost surely remain positive until after the giant component has been entirely exposed.

However, we must still deal with the slim chance that X ‘plummets’ to 0 prematurely. To

do this, we introduce twin random variables δi,j , defined as follows.

For j = 0, and for each j such that XJ > 0 for all blog2 nc 6 J 6 j + blog2 nc,
δi,j = di,j+blog2 nc. For any other j, we define

δi,j =

 δi,j−1 − 1, with probability
iδi,j−1

M − 2(j − 1)− 1
,

δi,j−1, otherwise.

Now, for any fixed i0 > 1, by applying Theorem 4 with Yj = δi0 .j , C
′ = 1, m = n

and f(s, z) = −iz/(K − 2s), we see that with probability at least 1 − o(n−1/2), for every

0 < α < 1,

δi0 ,dαne = Zi0 (α)n+ o(n), (2.1)

where

Zi(α) = di,0

(
1− 2α

K

) i
2

is the unique solution to

Zi(0) = di,0/n,

Z ′i (α) = − iZi(α)

K − 2α
.

Since our degree sequence has maximum degree o(n1/4), a.s. (2.1) holds for every i.

Note that Xj = M − 2j −∑i>1 idi,j . Thus, by applying Corollary 1 and using the fact

that D is well-behaved, we have that, for any 0 6 α 6 αD and any I > 0, a.s.

Xdαne = M − 2dαne −
I∑
i=1

idi,j −
∑
i>I

idi,j

= Kn− 2dαne −
I∑
i=1

idi(n)

(
1− 2α

K

) i
2

+ S

=

(
K − 2α−

I∑
i=1

iλi

(
1− 2α

K

) i
2

)
n+ S,
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for each 0 6 α 6 αD, where |S | < γn for some γ = γ(I) where limI→∞ γ(I) = 0, and so a.s.

Xdαne = χ(α)n+ o(n), (2.2)

and Theorem 1 now follows.

Proof of Theorem 2. By Lemma 2, for any ω(n) → ∞ we a.s. expose less than ω(n)

components prior to the exposure of the giant component. In fact, with probability εD,

the giant component is the first component exposed.

Upon completion of the exposure of the giant component, the configuration induced

by the unexposed vertices is a uniformly random configuration with di,j vertices of degree

i for each i, where j is the number of exposed pairs. By Theorem 1, this configuration a.s.

has n′ = (1− εD)n vertices, λ′in′ + o(n′) of which have degree i.

Recall that G a.s. has exactly one component of size greater than γ log n, so it should

not be surprising that
∑

i>1 i(i− 2)λ′i < 0, as we will now see.

For 0 6 α 6 αD,

χ′(α) = −2 + (K − 2α)−1
∑
i>1

i2λi

(
1− 2α

K

) i
2

= (K − 2α)−1

(∑
i>1

i2λi

(
1− 2α

k

) i
2 − 2(K − 2α)

)

> (K − 2α)−1

(∑
i>1

i2λi

(
1− 2αD

k

) i
2 − 2

∑
i>1

iλi

(
1− 2αD

k

) i
2

)
= (K − 2αD)−1(1− εD)

∑
i>1

i(i− 2)λ′i

= (K − 2αD)−1(1− εD)Q(D′).
Furthermore, the inequality is strict for α < αD, and so Q(D′) < 0, as otherwise αD

could not be the smallest positive zero of χ(α).

3. The model Gn,p

We close by noting that some previously known results about Gn,p=c/n are special cases of

Theorems 1 and 2.

Select Gn,p by first exposing its degree sequence, and then choosing a random graph

with that degree sequence. Note that every graph with that degree sequence occurs as Gn,p
with the same probability and so this is a valid method of selection.

It is well known that Gn,p=c/n a.s. has ci/(i!) e−cn + o(n) vertices of degree i, for each

i 6 O(log n/ log log n), and no vertices of higher degree. It is straightforward to verify

that, if this property holds, then K = c, and so in order to apply Theorem 1 we wish to
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solve

c− 2α−∑
i>1

i
ci

i!
e−c
(

1− 2α

c

) i
2

= 0. (3.1)

There are two solutions at α = 0, c/2. We will see that there is another and so

0 < αD < c/2.

For α 6= 0, c/2, (3.1) is congruent to√
c− 2α

c
= exp

(√
c2 − 2cα− c

)
.

Now set

ε(α) = 1−∑
i>1

ci

i!
e−c
(

1− 2α

c

) i
2

= 1− exp
(√

c2 − 2cα− c
)
.

By Theorem 1, a.s. the size of the giant component of Gn,p=c/n is εn+ o(n), with ε = ε(αD),

where αD is the smallest positive solution to (3.1). Now, for 0 < α < c/2, χ(α) = 0 if and

only if

ε(α) + e−cε(α) = 1− exp
(√

c2 − 2cα− c
)

+ exp
(
−c
(

1− exp
(√

c2 − 2cα− c
)))

= 1− exp
(√

c2 − 2cα− c
)

+ exp

(
−c
(

1−
√
c− 2α

c

))
= 1− exp

(√
c2 − 2cα− c

)
+ exp

(√
c2 − 2cα− c

)
= 1,

thus verifying that a.s. the size of the largest component of Gn,p=c/n is εcn+ o(n), where εc
is the unique solution to ε+ e−cε = 1.

We will now see that the Discrete Duality Principle is a special case of Theorem 1, by

showing that, if

λi =
ci

i!
e−c,

then

λ′i =
dic
i!

e−dc , (3.2)

where dc = c(1− εc). It can easily be shown (see, for example, [1]) that ce−c = dce
−dc , and

thus
e−c

1− εc = e−dc .

Since εc = 1− exp
(√

c2 − 2cα∗ − c
)

, dc = c exp
(√

c2 − 2cα∗ − c
)

. Therefore, c exp(−c) =
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dc exp
(
−√c2 − 2cα∗

)
, and so

dc =
√
c2 − 2cαD.

Therefore,

λ′i =
λi

1− εc
(

1− 2αD
K

)
=

cie−c

i!(1− εc)
(

1− 2αD
c

)
=

(√
c2 − 2αDc

)i e−c

i!(1− εc)
=

dic
i!

e−dc ,

as claimed, thus verifying the Discrete Duality Principle.
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