Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-02-11T20:15:05.375Z Has data issue: false hasContentIssue false

Set Systems Containing Many Maximal Chains

Published online by Cambridge University Press:  09 October 2014

J. ROBERT JOHNSON
Affiliation:
School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK (e-mail: r.johnson@qmul.ac.uk)
IMRE LEADER
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK (e-mail: i.leader@dpmms.cam.ac.uk, p.a.russell@dpmms.cam.ac.uk)
PAUL A. RUSSELL
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK (e-mail: i.leader@dpmms.cam.ac.uk, p.a.russell@dpmms.cam.ac.uk)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this short problem paper is to raise the following extremal question on set systems: Which set systems of a given size maximise the number of (n + 1)-element chains in the power set $\mathcal{P}$(1,2,. . .,n)? We will show that for each fixed α > 0 there is a family of α2n sets containing (α + o(1))n! such chains, and that this is asymptotically best possible. For smaller set systems we conjecture that a ‘tower of cubes’ construction is extremal. We finish by mentioning briefly a connection to an extremal problem on posets and a variant of our question for the grid graph.

Keywords

Type
Problem Papers
Copyright
Copyright © Cambridge University Press 2014 

References

[1]Alon, N. and Frankl, P. (1985) The maximum number of disjoint pairs in a family of subsets. Graphs Combin. 1 1321.Google Scholar
[2]Bollobás, B. (1986) Combinatorics, Cambridge University Press.Google Scholar
[3]Das, S., Gan, W. and Sudakov, B. Sperner's theorem and a problem of Erdős, Katona and Kleitman. Combin. Probab. Comput., to appear.Google Scholar
[4]Dove, A. P., Griggs, J. R., Kang, R. J. and Sereni, J.-S. (2014) Supersaturation in the Boolean lattice. Integers 14A, Paper No. A4Google Scholar
[5]Katona, G. O. H., Katona, G. Y. and Katona, Z. (2012) Most probably intersecting families of subsets. Combin. Probab. Comput. 21 219227.Google Scholar
[6]Kleitman, D. (1968) A conjecture of Erdős–Katona on commensurable pairs of subsets of an n-set. In Theory of Graphs: Proc. Colloquium Held at Tihany, Hungary, September 1966 (Erdős, P. and Katona, G., eds), Academic Press, pp. 215218.Google Scholar
[7]Russell, P. A. (2012) Compressions and probably intersecting families. Combin. Probab. Comput. 21 301313.Google Scholar