Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-11T21:49:30.387Z Has data issue: false hasContentIssue false

Corners Over Quasirandom Groups

Published online by Cambridge University Press:  06 June 2017

PAVEL ZORIN-KRANICH*
Affiliation:
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany (e-mail: pzorin@math.uni-bonn.de), http://www.math.uni-bonn.de/people/pzorin/
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finite D-quasirandom group and AGk a δ-dense subset. Then the density of the set of side lengths g of corners

$$ \{(a_{1},\dotsc,a_{k}),(ga_{1},a_{2},\dotsc,a_{k}),\dotsc,(ga_{1},\dotsc,ga_{k})\} \subset A $$
converges to 1 as D → ∞.

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

References

[1] Ajtai, M. and Szemerédi, E. (1974) Sets of lattice points that form no squares. Studia Sci. Math. Hungar. 9 911.Google Scholar
[2] Austin, T. (2015) Quantitative equidistribution for certain quadruples in quasi-random groups. Combin. Probab. Comput. 24 376381. With erratum.Google Scholar
[3] Austin, T. (2016) Ajtai–Szemerédi theorems over quasirandom groups. In Recent Trends in Combinatorics, Vol. 159 of The IMA Volumes in Mathematics and its Applications, Springer, pp. 453484.Google Scholar
[4] Austin, T. (2016) Non-conventional ergodic averages for several commuting actions of an amenable group. J. Analyse Math. 130 243274. arXiv:1309.4315 Google Scholar
[5] Bergelson, V., McCutcheon, R. and Zhang, Q. (1997) A Roth theorem for amenable groups. Amer. J. Math. 119 11731211.Google Scholar
[6] Bergelson, V., Robertson, D. and Zorin-Kranich, P. (2017) Triangles in Cartesian squares of quasirandom groups. Combin. Probab. Comput. 26 161182.Google Scholar
[7] Bergelson, V. and Tao, T. (2014) Multiple recurrence in quasirandom groups. Geom. Funct. Anal. 24 148.Google Scholar
[8] Furstenberg, H. (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 204256.Google Scholar
[9] Furstenberg, H. and Katznelson, Y. (1978) An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math. 34 275291.Google Scholar
[10] Gowers, W. T. (2007) Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. (2) 166 897946.CrossRefGoogle Scholar
[11] Gowers, W. T. (2008) Quasirandom groups. Combin. Probab. Comput. 17 363387.Google Scholar
[12] Roth, K. F. (1953) On certain sets of integers. J. London Math. Soc. 28 104109.Google Scholar
[13] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 199245.Google Scholar
[14] Tao, T. (2006) A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113 12571280.Google Scholar
[15] Tao, T. (2007) The ergodic and combinatorial approaches to Szemerédi's theorem. In Additive Combinatorics, Vol. 43 of CRM Proc. Lecture Notes, AMS, pp. 145–193.CrossRefGoogle Scholar
[16] Tao, T. (2012) Higher Order Fourier Analysis, Vol. 142 of Graduate Studies in Mathematics, AMS.Google Scholar