
Combinatorics, Probability and Computing (2017) 26, 944–951. c© Cambridge University Press 2017

doi:10.1017/S0963548317000190

Corners Over Quasirandom Groups

PAVEL ZORIN-KRANICH

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

(e-mail: pzorin@math.uni-bonn.de)

http://www.math.uni-bonn.de/people/pzorin/

Received 3 July 2015; revised 1 April 2017; first published online 6 June 2017

Let G be a finite D-quasirandom group and A ⊂ Gk a δ-dense subset. Then the density of

the set of side lengths g of corners

{(a1, . . . , ak), (ga1, a2, . . . , ak), . . . , (ga1, . . . , gak)} ⊂ A

converges to 1 as D → ∞.

2010 Mathematics subject classification: Primary 05D10

Secondary 20D60

1. Notation and background

In this article we will be concerned with a version of the multidimensional Szemerédi

theorem over quasirandom groups. In order to state our results and put them into historical

perspective, we begin by introducing appropriate notation. Let G be a countable group

and let Ti be the commuting G-actions on Gk given by

T
g
i (a1, . . . , ak) := (a1, . . . , ai−1, gai, ai+1, . . . , ak).

We write T
g
[j,i] := T

g
j · · ·Tg

i . A (BMZ ) corner in Gk is a configuration of the form

C(g,�a) := {�a, T g
[1,1]�a, . . . , T

g
[1,k]�a}, g ∈ G,�a ∈ Gk. (1.1)

We let �a denote the base point and g the side length of a corner. A corner is called

non-trivial if its side length is distinct from 1G.

BMZ corners are not the only natural configurations generalizing the corners that

appear in the commutative situation G = Z. However, they seem to be the best behaved

ones. Resolving a conjecture of Bergelson, McCutcheon and Zhang [5], Austin [4] has

recently proved that if G is amenable and A ⊂ Gk has positive upper Banach density,

then A contains (many) non-trivial BMZ corners. This extends several previous results.

The case G = Z is the multidimensional Szemerédi theorem due to Furstenberg and

https://doi.org/10.1017/S0963548317000190 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000190


Corners Over Quasirandom Groups 945

Table 1. Previous results

Z Z
k Gk

k = 2 Roth (1953) [12] Ajtai and Szemerédi (1974) [1] Bergelson et al. (1997) [5]

k � 3 Szemerédi (1975) [13] Furstenberg and Katznelson (1978) [9] Austin (2016) [4]

Katznelson, from which the original Szemerédi theorem on arithmetic progressions in Z

can be deduced using the projection map Z
k → Z, �a �→ a1 + · · · + ak . The cases k = 2 of

all these results were known prior to the general cases, as indicated in Table 1. A finitary

version of the multidimensional Szemerédi theorem reads as follows.

Theorem 1.1 (Bergelson and Tao [7, Theorem 11]). Let δ > 0 and k ∈ N. Then there exist

ε > 0 and N ∈ N such that, for every finite group G with |G| > N, every subset A ⊂ Gk with

|A| > δ|G|k contains at least ε|G|k+1 BMZ corners.

This theorem is an easy consequence of Gowers’ hypergraph removal lemma [10], and

we reproduce the proof here in order to motivate both the definition of the BMZ corners

and the change of variables that will be used in the proof of Theorem 2.2.

Proof of Theorem 1.1. Here and later we use a subscript to denote omission of the ith

coordinate in a vector, as follows:

�x(i) = (x0, . . . , xi−1, xi+1, . . . , xk)

For i = 0, . . . , k consider the changes of variables

N
[0,k]
i (�x(i)) := (x0, x0x1, . . . , (x0 · · · xi−1), (xi+1 · · · xk)−1, . . . , x−1

k ).

They are related to each other as follows: if x ∈ Gk+1 and g = x0 · · · xk , then

T
g
[1,i]N

[0,k]
0 (x(0)) = N

[0,k]
i (x(i)).

In particular, corners are precisely the configurations

{N[0,k]
i (x(i)), i = 0, . . . , k}, x ∈ Gk+1.

Define a (k + 1)-partite k-uniform hypergraph F with vertex sets X0 = · · · = Xk = G by

�x(i) ∈ F : ⇐⇒ N
[0,k]
i (�x(i)) ∈ A.

Then a corner corresponds to a simplex in the hypergraph F . If there were fewer than

ε|G|k+1 simplices in F , then by the hypergraph removal lemma [10, Theorem 10.1] the

hypergraph F could be made simplex-free by removing fewer than δ|G|k edges. But if we

remove the element of A corresponding to each removed edge and repeat the construction

of F , we obtain an even smaller hypergraph that still contains simplices (since each

remaining member of A gives rise to a trivial corner), a contradiction.

A similar argument works for A ⊂ Φk , where Φ ⊂ G is a set with |Φ−1Φ| � C|Φ|, with

constants depending on C . This proves a version of Theorem 1.1 over infinite amenable
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groups that admit a Følner sequence satisfying the Tempelman condition. This argument

does not seem to extend easily to general Følner sequences.

2. Main result

The problem of finding arithmetic progressions, and later more general configurations,

in dense subsets of amenable groups was transferred to ergodic theory by Furstenberg

[8], who reformulated Szemerédi’s theorem as a multiple recurrence theorem and gave

it a new proof. An important special case of the multiple recurrence theorem occurs for

weakly mixing actions, when its conclusion can be strengthened to the extent that corners

with almost every possible side length can be found.

A (necessarily infinite) group is called weakly mixing if it has no non-trivial finite-

dimensional unitary representations. For such groups many combinatorial results can be

strengthened substantially; see e.g. Bergelson and Tao [7]. A quantitative notion of weak

mixing was introduced by Gowers [11]. A group is called D-quasirandom if it has no

non-trivial unitary representation of dimension less than D. Our result says that in dense

subsets over quasirandom groups one can find corners of almost every side length.

Theorem 2.1. Let δ > 0 and k ∈ N. Then, for every finite D-quasirandom group G and every

subset A ⊂ Gk with |A| > δ|G|k , we have

|{g ∈ G : |{�a ∈ Gk : C(g,�a) ⊂ A}| > ε(δ, k)|G|k/2}| > (1 − oD→∞;δ,k(1))|G|,

where ε(δ, k) is the quantity from Theorem 1.1.

The case k = 2 was previously shown in [3, 6], and we refer to those articles for further

discussion of why BMZ corners are natural.

Since the set {�a ∈ Gk : C(g,�a) ⊂ A} has density at least ε on average (over g) by

Theorem 1.1, it suffices to show that its density is usually close to the average. We

formulate this in the language of dynamical systems as a multiple weak mixing property.

Theorem 2.2. Let G be a compact D-quasirandom group, k � 0, and fi : Gk → [−1, 1], i ∈
[0, k]. Consider the multicorrelation sequence

cg :=

∫
Gk

k∏
i=0

fiT
g
[1,i].

Then ∫
g

|cg − ∫h ch| = oD→∞;k(1).

In other words, the multicorrelation sequence converges to its average in density as

D → ∞. Here and later, compact groups are equipped with the normalized Haar measure

and fT = f ◦ T denotes the composition of functions f and T .
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Proof of Theorem 2.1 assuming Theorem 2.2. Let f0 = · · · = fk = 1A. Then the mul-

ticorrelation sequence cg counts the elements �a ∈ Gk such that C(g,�a) ⊂ A. On the other

hand, by Theorem 1.1 we have
∫
g
cg > ε(δ, k) provided |G| > D is large enough.

3. Tools

In this and the next section G always denotes a compact group with normalized Haar

measure. Quasirandomness will be used in the following form.

Lemma 3.1 (Austin [2, Corollary 3]). Let V be a (real or complex ) Hilbert space equipped

with an (orthogonal or unitary) right action of a compact D-quasirandom group G, and let

P be the projection onto the invariant subspace. Then for every u, v ∈ V we have∫
G

|〈u, vg〉 − 〈Pu, P v〉|2dg � D−1‖u‖2‖v‖2
.

This result was stated for left actions by Austin [2]; the version above follows by

considering either the adjoint action or the opposite group.

We use the following version of the van der Corput lemma.

Lemma 3.2 (Austin [3, Lemma 1]). Let V be a (real or complex ) Hilbert space and

u : G → V a measurable function. Then for every v ∈ V with ‖v‖ � 1 we have

∫
|〈v, u(g)〉|dg �

√∫∫
|〈u(g), u(h)〉|dgdh.

For a function F : Gk → R, k � 1, the k-variable Gowers box norm is defined by

‖F‖2k

�k =

∫ ∏
�ε∈{0,1}[1,k]

F(�xε(i))d(xj,ε)j∈[1,k],ε∈{0,1},

where �xεj = xj,εj and [1, k] = {1, . . . , k}. See, for example, Tao [16] for a discussion of the

basic properties of these norms.

Recall a version of the (weak) weighted hypergraph regularity lemma [14, Lemma 2.9].

This particular version can be found in Tao [15, Corollary 6.8] for k = 2, and the proof

for general k is similar.

Lemma 3.3 (weak regularity lemma). For every k ∈ N and ε > 0 there exists M ∈ N such

that every measurable function F : Gk → [−1, 1] can be written as F = Fs + Fu, where

(1) Fs is measurable with respect to ∨k
j=1Bj , where each Bj is a σ-algebra on Gk generated

by at most M atoms that does not depend on the jth coordinate,

(2) ‖Fu‖�k � ε, and

(3) |Fs|, |Fu| � 2.
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4. Multiple weak mixing

Theorem 2.2 is proved by induction on k via the following steps.

(1) Prove a Gowers box norm estimate for the average in question.

(2) Apply the hypergraph regularity lemma to split one of the functions into a structured

and a quasirandom part.

(3) Estimate the quasirandom part using step (1) and the structured part using the

inductive hypothesis.

Step (1) in this plan is given by the following estimate.

Proposition 4.1. Let G be a compact D-quasirandom group and k � 1. Then for every tuple

of functions fi : Gk → [−1, 1], i ∈ [0, k], we have

∫
G

∣∣∣∣∫Gk

k∏
i=0

fiT
g
[1,i]

∣∣∣∣dg � min
i

‖fiN[0,k]
i ‖�k + CkD

−2−k

.

Proof. By induction on k. For k = 1 the box norm is just the absolute value of the

integral, so writing

∫
G

∣∣∣∣∫G1

1∏
i=0

fiT
g
[1,i]

∣∣∣∣dg �
∫
G

|∫G1 f0 · f1T
g
1 − ∫ f0 ∫ f1|dg + |∫ f0||∫ f1|

we can estimate the second term by the minimum of the box norms. In the first term we

apply Jensen’s inequality and Lemma 3.1 with the Hilbert space L2(G) and the unitary

right G-action (g, f) �→ fT
g
1 . Since the invariant subspace of this action consists only of

the constant functions, the projection onto this subspace amounts to integration over G.

Suppose now that k > 1 and the claim is known for k − 1. Applying T
g−1

[1,k] to the

function in the inner integral and reversing the order of the indices 0, . . . , k, we see that

the bound with f0 follows from the bound with fk , so it suffices to establish bounds with

f1, . . . , fk .

Applying Lemma 3.2 with X = G, V = L2(Gk), v = f0, and u(g) =
∏k

i=1 fiT
g
[1,i], we

estimate the square of the left-hand side of the conclusion by

∫
h

∫
g

∣∣∣∣∫Gk

k∏
i=1

fiT
g
[1,i] · fiT h

[1,i]

∣∣∣∣ =

∫
h

∫
g

∣∣∣∣∫Gk

k∏
i=1

(fi · fiT h
[1,i])T

g
[2,i]

∣∣∣∣.
In the last step we have made the change of variables (g, h) �→ (g, hg) on G2 and used the

fact that T
g
1 is a measure-preserving transformation. Pulling one of the integrals out of

the absolute value, we obtain the estimate

∫
h

∫
g

∫
a1

∣∣∣∣∫a2 ,...,ak

k∏
i=1

(fi · fiT h
[1,i])T

g
[2,i](a1, . . . , ak)

∣∣∣∣.
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Applying the inductive hypothesis for each fixed pair (h, a1), for any i ∈ [1, k] we obtain

the estimate ∫
h

∫
a1

‖(fi · fiT h
[1,i])(a1, N

[1,k]
i ·)‖�k−1 + Ck−1D

−2−k+1

,

where N
[1,k]
i (x1, . . . , xi−1, xi+1, . . . , xk) is defined similarly to N

[0,k]
i .

The contribution of the second summand is admissible, so we only have to consider the

first summand. Raising it to the power 2k−1 and applying Jensen’s inequality, we obtain

the bound ∫
h,a1

‖(fi · fiT h
[1,i])(a1, N

[1,k]
i ·)‖2k−1

�k−1 .

Expanding the definition of the box norm and observing that

Th
[1,i](a1, N

[1,k]
i �x(i)) = N

[0,k]
i (ha1, a

−1
1 x1, x2, . . . , xi−1, xi+1, . . . , xk),

we can write the above expression in the form∫
h,a1

∫ ∏
�ε∈{0,1}[1,k]\{i}

fiN
[0,k]
i (a1, a

−1
1 x1,ε1

, x2,ε2
, . . . , xk,εk )

× fiN
[0,k]
i (ha1, a

−1
1 x1,ε1

, x2,ε2
, . . . , xk,εk )d(xj,ε)j∈[1,k]\{i},ε∈{0,1}.

With the change of variables (a1, x1,0, x1,1) �→ (a1, a1x1,0, a1x1,1), this becomes∫
h,a1

∫ ∏
ε

fiN
[0,k]
i (a1,�x

ε
(i)) ·

∏
ε

fiN
[0,k]
i (ha1,�x

ε
(i))d(xj,ε)j∈[1,k]\{i},ε∈{0,1}.

We interpret the integral in all variables but h as an inner product in L2(G2k−1) and the

appearance of h in the first argument of the second product as a right unitary action

of G on this space. Applying Lemma 3.1, we obtain an admissible error term and the

bound ∫
a1

∫
P

(∏
ε

fiN
[0,k]
i

)2

(a1,�x
ε
(i))d(xj,ε)j∈[1,k]\{i},ε∈{0,1},

where P denotes the projection onto the invariant subspace. But this projection is simply

integration in the variable a1, so this can be written as∫ (∫
a1

∏
ε

fiN
[0,k]
i (a1,�x

ε
(i))

)2

d(xj,ε)j∈[1,k]\{i},ε∈{0,1}.

Relabelling a1 = x0,0 in the first factor of the square and a1 = x0,1 in the second factor,

we see that this coincides with

‖fiN[0,k]
i ‖2k

�k ,

and the conclusion follows.
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Proof of Theorem 2.2. By induction on k. The base case k = 0 is very easy.

Now let k � 1, and suppose that the result holds for k − 1. Let ε > 0 be arbitrary and

apply the weak regularity lemma to the function fkN
[0,k]
k , so that

fkN
[0,k]
k =

∑
l∈L

k−1∏
i=0

Fi,l + Fu,

where all functions on the right-hand side are uniformly bounded, the functions Fi,l do not

depend on the ith and the kth coordinates, the index set L has size Oε(1), and ‖Fu‖�k � ε.

Split the multicorrelation sequence accordingly as

cg =
∑
l∈L

cl,g + cu,g.

The inverse of the change of variables N
[0,k]
i is given by

(N[0,k]
i )−1(�a) = (a1, a

−1
1 a2, . . . , a

−1
i−1ai, a

−1
i+1ai+2, . . . , a

−1
k−1ak, a

−1
k ),

and it can be verified that we have

((N[0,k]
k )−1T

g
[1,k])(i) = ((N[0,k]

k )−1T
g
[1,i])(i).

Thus the actions T[1,k] and T[1,i] coincide on the functions Fi,l . This is a common theme

in the hypergraph regularity approach to multiple ergodic averages in the work of Austin

(although it takes much less effort to exploit this phenomenon in our compact group

setting than in the setting of infinite amenable groups). Since the maps f �→ fT
g
[1,i] are

algebra homomorphisms, it follows that

cl,g =

∫
Gk

k−1∏
i=0

(fi · Fi,l(N
[0,k]
k )−1)Tg

[1,i].

This is an average (in the last coordinate of Gk) of multicorrelation sequences of length

k − 1, so its total variation is bounded by oD→∞;k−1(1) by the inductive hypothesis. On

the other hand, we have ∫
g

|cu,g| � ε + oD→∞;k(1)

by Proposition 4.1. This shows that the total variation of the multicorrelation sequence cg
can be estimated by

|L|oD→∞;k−1(1) + ε + oD→∞;k(1) = ε + oD→∞;k,ε(1).

Since ε > 0 was arbitrary, this concludes the proof.
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[13] Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression.

Acta Arith. 27 199–245.

[14] Tao, T. (2006) A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113

1257–1280.

[15] Tao, T. (2007) The ergodic and combinatorial approaches to Szemerédi’s theorem. In Additive
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