Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-06T23:05:41.986Z Has data issue: false hasContentIssue false

The (7, 4)-Conjecture in Finite Groups

Published online by Cambridge University Press:  10 February 2015

JÓZSEF SOLYMOSI*
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z4, Canada (e-mail: solymosi@math.ubc.ca)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first open case of the Brown–Erdős–Sós conjecture is equivalent to the following: for every c > 0, there is a threshold n0 such that if a quasigroup has order nn0, then for every subset S of triples of the form (a, b, ab) with |S| ⩾ cn2, there is a seven-element subset of the quasigroup which spans at least four triples of S. In this paper we prove the conjecture for finite groups.

Type
Paper
Copyright
Copyright © Cambridge University Press 2015 

References

[1]Ajtai, M. and Szemerédi, E. (1974) Sets of lattice points that form no squares. Stud. Sci. Math. Hungar. 9 911.Google Scholar
[2]Brown, W. G., Erdős, P. and Sós, V. T. (1973) On the existence of triangulated spheres in 3-graphs and related problems. Period. Math. Hungar. 3 221228.Google Scholar
[3]Bryant, D. and Horsley, D. (2009) A proof of Lindner's conjecture on embeddings of partial Steiner triple systems. J. Combin. Des. 17 6389.CrossRefGoogle Scholar
[4]Erdős, P. and Straus, E. G. (1975/76) How abelian is a finite group? Linear and Multilinear Algebra 3 307312.CrossRefGoogle Scholar
[5]Forbes, A. D., Grannell, M. J. and Griggs, T. S.(2007) On 6-sparse Steiner triple systems. J. Combin. Theory Ser. A 114 235252.CrossRefGoogle Scholar
[6]Frankl, P. and Rödl, V. (2002) Extremal problems on set systems. Random Struct. Alg. 20 131164.CrossRefGoogle Scholar
[7]Fujiwara, Y. (2006) Sparseness of triple systems: A survey. RIMS Kokyuroku 1465 173185.Google Scholar
[8]Gowers, W. T. (2007) Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. 166 897946.CrossRefGoogle Scholar
[9]Lindner, C. C. (1975) A partial Steiner triple system of order n can be embedded in a Steiner triple system of order 6n + 3. J. Combin. Theory Ser. A 18 349351.CrossRefGoogle Scholar
[10]McKay, B., Meynert, A. and Myrvold, W. (2007) Small Latin squares, quasigroups, and loops. J. Combin. Des. 15 98119.CrossRefGoogle Scholar
[11]Miller, G. A., Blichfeldt, H. F. and Dickson, L. E. (1916) Theory and Applications of Finite Groups, Wiley.Google Scholar
[12]Nagle, B., Rödl, V. and Schacht, M. (2006) The counting lemma for regular k-uniform hypergraphs. Random Struct. Alg. 28 113179.CrossRefGoogle Scholar
[13]Pyber, L. (1997) How abelian is a finite group? In The Mathematics of Paul Erdős I, Vol. 13 of Algorithms and Combinatorics, Springer, pp. 372384.Google Scholar
[14]Rödl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Alg. 25 142.CrossRefGoogle Scholar
[15]Ruzsa, I. Z. and Szemerédi, E. (1978) Triple systems with no six points carrying three triangles. In Combinatorics: Proc. Fifth Hungarian Colloq., Vol. II (Keszthely 1976), Vol. 18 of Colloquia Mathematica Societatis János Bolyai, North-Holland, pp. 939945.Google Scholar
[16]Solymosi, J. (2004) A note on a question of Erdős and Graham. Combin. Probab. Comput. 13 263267.CrossRefGoogle Scholar
[17]Solymosi, J. (2013) Roth-type theorems in finite groups. European J. Combin. 34 14541458.CrossRefGoogle Scholar
[18]Szemerédi, E. (1978) Regular partitions of graphs. Problèmes Combinatoires et Théorie des Graphes: Colloq. Internat. CNRS, Univ. Orsay (Orsay 1976), Vol. 260 of Colloq. Internat. CNRS, CNRS, pp. 399401.Google Scholar