Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Linear Algebra for Data Science, Machine Learning, and Signal Processing

Authors

, University of Michigan, Ann Arbor, , University of Michigan, Ann Arbor
Published 2024

Description

Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as…

  • Get access
  • Add bookmark
  • Cite
  • Share
Resources available Unlock the full potential of this textbook with additional resources. There are Instructor restricted resources available for this textbook. Explore resources

Key features

  • Engages students with interesting applications in data science, machine learning and signal processing
  • Encourages active learning with over 100 engaging 'explore' problems, with answers at the back of each chapter
  • Contains over 200 questions suitable for in-class interactive learning or quizzes, developed and used in the authors' own courses
  • Provides numerous Julia code examples and a suite of computational notebook demos offering a hands-on learning experience for students

About the book

Access options

Review the options below to login to check your access.

Purchase options

There are no purchase options available for this title.

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers

Curated content

Related content

AI generated results by Discovery for publishers [opens in a new window]