
Combinatorics, Probability and Computing (2020), 29, pp. 780–806
doi:10.1017/S0963548320000127

PAPER

Finding independent transversals efficiently
Alessandra Graf∗ and Penny Haxell1

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
∗Corresponding author. Email: agraf@uwaterloo.ca

(Received 6 November 2018; revised 26 February 2020; accepted 6 March 2020; first published online 14 May 2020)

Abstract
We give an efficient algorithm that, given a graph G and a partition V1, . . . ,Vm of its vertex set, finds
either an independent transversal (an independent set {v1, . . . , vm} in G such that vi ∈Vi for each i), or a
subset B of vertex classes such that the subgraph of G induced by

⋃
B has a small dominating set. A

non-algorithmic proof of this result has been known for a number of years and has been used to solve
many other problems. Thus we are able to give algorithmic versions of many of these applications, a few
of which we describe explicitly here.

2020 MSC Codes: Primary 05C69; Secondary 05C85

1. Introduction
Let G be a graph whose vertex set is partitioned into classes V1, . . . ,Vm. An independent transver-
sal (IT) of G with respect to the given vertex partition is an independent set {v1, . . . , vm} in G
such that vi ∈Vi for each i. This is a very general notion, and many combinatorial problems can
be formulated by asking if a given graph with a given vertex partition has an IT. Indeed, the SAT
problem can be formulated in these terms (see e.g. [41]), and so we cannot expect to find an effi-
cient characterization of those G for which an IT exists. However, there are now various known
results giving sufficient conditions for the existence of an IT. One of the most easily stated and
most frequently applied is the following result from [36, 38].

Theorem 1.1. Let G be a graph with maximum degree �. Then, for any vertex partition
(V1, . . . ,Vm) of G where |Vi|� 2� for each i, there exists an independent transversal of G.

Theorem 1.1 answered the question of how large the vertex classes need to be, in terms of the
maximum degree, to guarantee the existence of an IT in G. This question was first introduced
and studied in 1975 by Bollobás, Erdős and Szemerédi [21], and further progress was contributed
over the years by many authors. In particular, linear upper bounds in terms of � were given by
Alon [7] (in an early application of the Lovász Local Lemma [26]) and independently Fellows [27],
and a later application of the Local Lemma gave that class size 2e� is sufficient (see e.g. Alon and
Spencer [13]). Further refining this approach, Bissacot, Fernández, Procacci and Scoppola [20]
improved this to 4�. Work on lower bounds included results of Jin [44], Yuster [60] and Alon
[10], and in 2006 Szabó and Tardos [59] gave constructions for every � in which |Vi| = 2� − 1

1Partially supported by NSERC.

© The Author(s), 2020. Published by Cambridge University Press.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127
mailto:agraf@uwaterloo.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548320000127&domain=pdf
https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 781

x1 x3

x2 x4 x7 x5

x6 x8 x9 x10

Figure 1. A constellation K for the setB of classes enclosed by the dotted border. Each circle represents a vertex class. The
centres of the stars appear in black (and have labels) and the leaves appear in red.

for each i but there is no IT. Therefore Theorem 1.1 is best possible for every value of �. A more
precise version of Theorem 1.1 (also involving the numberm of vertex classes) is given in [39].

Theorem 1.1 is an immediate consequence of a more general statement described in terms of
domination (stated explicitly in [38], although it follows easily from the argument in [36]). We say
that a subset D⊆V(G) dominates a subgraphW of G if, for all w ∈V(W), there exists uw ∈ E(G)
for some u ∈D. (This definition of domination is quite often referred to as strong domination
or total domination, but since it is the only notion of domination that we will refer to in this
paper, we will use the simpler term.) For a vertex partition (V1, . . . ,Vm) of G and a subset B of
{V1, . . . ,Vm}, we write GB for the subgraph G[

⋃
Vi∈B Vi]− {uv ∈ E(G) : u, v ∈Vi for some Vi ∈

B} obtained by removing any edges inside vertex classes from the subgraph of G induced by the
union of the classes in B.

Theorem 1.2. Let G be a graph with a vertex partition (V1, . . . ,Vm). Suppose that, for each B ⊆
{V1, . . . ,Vm}, the subgraph GB is not dominated in GB by any set of size at most 2(|B| − 1). Then
G has an IT.

To see that Theorem 1.2 implies Theorem 1.1, simply note that if the union of |B| vertex
classes in G contains a total of 2�|B| vertices then GB cannot be dominated by 2|B| − 2 vertices
of degree at most �.

In fact the proof of Theorem 1.2 shows that if G does not have an IT then there exists B ⊆
{V1, . . . ,Vm} such that GB is dominated by the vertex set of a constellation for B.

Definition 1.3. Let B be a set of vertex classes in a vertex-partitioned graph G. A constellation for
B is an induced subgraph K of GB , whose components are stars with at least two vertices, each with
a centre and a non-empty set of leaves distinct from its centre. The set of all leaves of K forms an IT
of |B| − 1 vertex classes of B.

Note that if K is a constellation for B then |V(K)|� 2(|B| − 1). Figure 1 shows an example of
a constellation.

Theorem 1.2 (often in the form of Theorem 1.1) has been used to obtain many results in var-
ious fields, including graph theory (e.g. list colouring [38], strong colouring [4, 39], delay edge
colouring [11], circular colouring [45, 46], various graph partitioning and special independent set
problems [12, 24, 43, 47]), hypergraphs (e.g. hypergraph matching [14, 15, 36, 50]), group theory
(e.g. generators in linear groups [22]) and theoretical computer science (e.g. job scheduling and
other resource allocation problems [17, 18]). Unfortunately the proofs of Theorems 1.1 and 1.2 are
not algorithmic. For certain applications it is enough to know that class sizes of c� in Theorem 1.1
guarantee an IT for some constant c, so for these one could obtain algorithmic versions using (for

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

782 A. Graf and P. Haxell

example) the algorithmic Lovász Local Lemma [19, 53, 54]. However, for many other applications,
having the best possible value of the constant c is important. This therefore raises the question of
how much the hypotheses in Theorems 1.2 and 1.1 need to be strengthened in order to guarantee
that an IT can be found efficiently, thereby giving algorithmic proofs of these applications with
the constants being as close as possible to their optimal values.

Most of the known results on this question have focused on Theorem 1.1, and have been
obtained as applications of algorithmic versions of the Lovász Local Lemma or its lopsided variant.
These include the original algorithm of Beck [19] and its improvements (see e.g. [8, 20, 25, 52, 58])
as well as the resampling algorithm of Moser and Tardos [53] and its improvements (see e.g.
[1, 33, 34, 48, 49, 55]. In particular, using the Moser–Tardos approach (and based on [20, 55]),
Harris and Srinivasan [35] gave a randomized algorithm that finds an IT in expected time O(m�)
in graphs with class size 4�. The current best result for polynomial expected time is due to Harris
[31] who improved the bound on the class size to 4� − 1. Deterministic algorithms based on
derandomizing the Moser–Tardos algorithm have also been studied, but they require the class
size to be C� for some large constant C in order to find an IT efficiently [28, 32]. Some of these
deterministic algorithms are known to be parallelizable [23, 32].

In this paper we address the algorithmic IT question for a large class of graphs, without using
the Lovász Local Lemma or any of its variants. A graph G with vertex partition (V1, . . . ,Vm) is
said to be r-claw-free with respect to (V1, . . . ,Vm) if no vertex of G has r independent neighbours
in distinct vertex classes. Our main theorem is as follows.

Theorem 1.4. There exists an algorithm FindITorBD that takes as input r ∈N and ε > 0, and a
graph G with vertex partition (V1, . . . ,Vm) such that G is r-claw-free with respect to (V1, . . . ,Vm),
and finds either:

(1) an independent transversal in G, or
(2) a set B of vertex classes and a set D of vertices of G such that D dominates GB in G and

|D| < (2+ ε)(|B| − 1). Moreover, D contains V(K) for a constellation K for some B0 ⊇ B,
where |D \V(K)| < ε(|B| − 1).

For fixed r and ε, the running time is polynomial in |V(G)|.

Note in particular that any graph with maximum degree � is (� + 1)-claw-free with respect
to any partition. Thus, taking r = � + 1 and ε = 1/� gives the following algorithmic version of
Theorem 1.1.

Corollary 1.5. Let � ∈N be given. Then there exists an algorithm that takes as input any graph G
with maximum degree � and vertex partition (V1, . . . ,Vm) such that |Vi|� 2� + 1 for each i and
finds, in time polynomial in |V(G)|, an independent transversal in G.

Therefore only a slight strengthening of the hypotheses is required to make these results
algorithmic.

As shown in the proof of Theorem 1.4 in Section 6, the running time of the algorithm
FindITorBD is O(|V(G)|g), where g is a function of r and ε. Similarly, for Corollary 1.5 the degree
g depends on �. We remark that, for simplicity, in this paper we make no attempt to optimize the
running time of our algorithms in terms of these parameters.

The proof of Theorem 1.4 explicitly describes the algorithm FindITorBD. It uses ideas from the
original (non-algorithmic) proof of Theorem 1.2 (see [36, 43]), and modifications of several key
notions (including that of ‘lazy updates’) introduced by Annamalai [14, 16], who gave an algorith-
mic version of the specific case of matchings in bipartite hypergraphs. This appears as Theorem 7.2
in Section 7, and is relevant to other well-studied problems such as the restricted max-min fair
allocation problem (also known as the Santa Claus problem); see [17, 18]. Theorem 1.4 is a broad

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 783

generalization of Theorem 7.2 which, because of the large number of applications of Theorems 1.1
and 1.2 over the years, has algorithmic consequences for many results in a wide variety of settings.
In addition to describing the case of bipartite hypergraph matching, in Section 7 we outline algo-
rithmic versions of a few more selected applications of Theorem 1.2 that follow from our results.
Here we have chosen to discuss circular chromatic index (Kaiser, Král and Škrekovski [45]), strong
colouring (Aharoni, Berger and Ziv [4]), and hitting sets for maximum cliques (King [47]), but
there are many other examples, some of which are described in detail in [29]. In each case, the
algorithmic version is only slightly weaker than the original result due to the error ε introduced in
Theorem 1.4. In fact, for some applications (for example the results on circular chromatic index
and hitting sets for maximum cliques) no weakening at all is needed.

This paper is organized as follows. In Section 2 we give an overview of the proof of our main
result, by first outlining the proof of Theorem 1.2 (which gives an exponential algorithm) and then
sketching how wemodify it to make the algorithm efficient. Our algorithms are described in detail
in Section 4, after definitions and other preliminary material in Section 3. The main components
of the algorithm are analysed in Section 5 and the running time in Section 6. Section 7 is devoted
to applications of our results and Section 8 contains concluding remarks and open questions.

2. Set-up and overview
Throughout this paper we will work with the following notation and assumptions. Let r and ε be
fixed, let G be a graph and let (V1, . . . ,Vm) be a vertex partition of G such that G is r-claw-free
with respect to (V1, . . . ,Vm). By deleting the edges between vertices in the same vertex class Vi
and considering the resulting graph G′, we may assume without loss of generality that each vertex
class Vi is an independent set of vertices. This is because a setM is an IT of G′ if and only ifM is
an IT of G. Since the casem= 1 is trivial we may assume from now on thatm� 2.

Our algorithms will seek to construct an IT of G step by step, by augmenting a previously
constructed partial independent transversal (PIT) of G with respect to the given vertex partition.
A PIT is simply an independent setM in G (of size at most m) such that no two vertices ofM are
in the same vertex class.

Note that any isolated vertex can be added to any PIT that does not contain a vertex in its
vertex class. Thus we may remove the vertex classes from V1, . . . ,Vm that contain at least one
isolated vertex and consider the induced subgraph of the remaining vertex classes as G under the
same partition of these vertices. We will therefore assume from now on that G does not contain
an isolated vertex. In particular, we may also assume that r� 2.

We denote the vertex class that contains the vertex v ∈V(G) byA(v) and the set of vertex classes
containingW ⊆V(G) by A(W)= {A(v) : v ∈W}. We write N(v) for the neighbourhood in G of v,
and NW(v) for N(v)∩W. We denote |NW(v)| by dW(v).

To give an overview of the proof of Theorem 1.4, we first sketch the proof of Theorem 1.2.
The proof does give a procedure for constructing an IT, but (as we will note after the sketch) the
number of steps could be as large as (r − 1)m.

Sketch of the proof of Theorem 1.2. LetM be a PIT and letA be a vertex class such thatA∩M =
∅. We aim to alterM until it can be augmented by a vertex of A.

We build a ‘tree-like structure’ T (which we describe as a vertex set inducing a forest of stars)
as follows. Choose x1 ∈A and set T = {x1}. If dM(x1)= 0, then improve M by adding x1 toM, and
stop. Otherwise add NM(x1) to T.

In the general ith step, it can easily be shown that |T|� 2(|A(T)| − 1). Thus, by assumption,
the subgraph GA(T) of G induced by

⋃
Vi∈A(T) Vi is not dominated by T. Therefore there exists a

vertex of GA(T) that is not adjacent to any vertex in T. Choose such a vertex xi arbitrarily.
If dM(xi)= 0, then improve M by adding xi to M and removing the M-vertex y in A(xi) (if it

exists). This forms a new PITM, and is an improvement in the following sense: it reduces dM(xj)
https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

784 A. Graf and P. Haxell

where y was added to T because it was inNM(xj) in an earlier step. Truncate T to {x1} ∪NM(x1)∪
· · · ∪ {xj} ∪NM(xj).

Otherwise add xi and NM(xi) to T. Thus |A(T)| increases by dM(xi)> 0 and |T| increases by
dM(xi)+ 1, thus maintaining |T|� 2(|A(T)| − 1). See Figure 1 for T (the set of vertices shown)
and A(T) (the set of classes enclosed by the dotted border). Note that T is a constellation for A(T),
whose centres are the xi and whose leaves are the NM(xi).

At each step we either grow T OR reduce dM(xj) for some j, UNTIL the current M can be
extended to include a vertex of A. Thus progress can be measured by a signature vector

(dM(x1), . . . , dM(xt),∞)

that has length at most |M| + 1�m since each NM(xi) is a non-empty subset of M and all such
sets are mutually disjoint. Each step reduces the lexicographic order of the signature vector.
Thus the process terminates, and we succeed in extending M to a larger PIT and eventually to
an IT.

The drawback of the above procedure is that the number of signature vectors (and hence the
number of steps) could potentially be as large as (r − 1)m, where G is r-claw-free. To make this
approach into an efficient algorithm, we make three main modifications. Here the idea of ‘lazy
updates’ from [14, 16] is used, which essentially amounts to performing updates in ‘clusters’ (large
subsets of vertices) rather than at the level of individual vertices (that change the quantities dM(xi)
only one at a time). These modifications are as follows.

(1) Maintaining layers. At each growth step, instead of choosing xi arbitrarily, choose it to be
a vertex in a class at smallest possible ‘distance’ from the root class A, similar to a breadth-
first search. Vertices xi added into classes at the same distance from A are in the same layer
(see Figure 2).

(2) Updating in ‘clusters’. Instead of updating M when a single xi satisfies dM(xi)= 0, update
only when at least a positive proportionμ of an entire layer satisfies dM(x)= 0. Discard later
layers.

(3) Rebuilding layers in ‘clusters’. After an update, add new vertices xi to a layer of T only if
doing so would add a μ proportion of that layer. Then discard later layers.

The parameterμ is a fixed positive constant, chosen to be small enough with respect to the param-
eters ε and 1/r. The extra ε factor in (2) of Theorem 1.4 is enough to guarantee that the same
proof idea as for Theorem 1.2 finds an IT in G, UNLESS (as in that proof) at some point in the
construction of T (a subset B that is almost all of), A(T) is dominated by T (plus a certain very
small set of additional vertices, necessary to deal with the error introduced by the lazy updates in
modifications 2 and 3). This dominating set will have total size less than (2+ ε)(|B| − 1), result-
ing in output (2) in Theorem 1.4. Thus for the rest of this section we will assume that this never
occurs, and in particular that a positive proportion (depending on ε) of the vertices of GA(T) are
not dominated by T.

A consequence of maintaining layers is that the vertices in GA(T) that do not have a neighbour
in T tend to be ‘pushed’ towards the bottom layer. This results in the set of vertices of T in the
bottom layer having size a positive proportion ρ of |T|, where again ρ depends only on ε and r (see
Lemma 5.3). This implies that the total number of layers is always logarithmic inm (Lemma 5.4),
since with each new layer the total size of T increases by a fixed factor larger than one.

Updating in clusters and rebuilding layers in clusters allow a different signature vector, that mea-
sures sizes of layers rather than degrees of individual vertices dM(xi). It has just two entries per
layer: the first is essentially −�log x�, where x is the number of vertices xi in that layer, and the
second is essentially �log y�, where y is the total size of their neighbourhoods inM. UpdatingM in
a cluster (modification 2) decreases the value of y for a layer by a positive proportion. Rebuilding
a layer in a cluster (modification 3) increases the value of x for a layer by a positive proportion.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 785

Hence (with suitably chosen bases for the logarithms) these updates always decrease the relevant
entry by an integer amount. Therefore, as in the proof of Theorem 1.2, each update decreases the
signature vector lexicographically (Lemma 6.2).

Since the length of the signature vector is proportional to the number of layers, as noted above
this is logarithmic inm. The entries are also of the order logm. While this gives a very significant
improvement over the signature vector from the proof of Theorem 1.2, it still does not quite give
a polynomial number of signature vectors. However, as in [14, 16] it can be shown that, with
a suitable alteration of the above definition of signature vector (Definition 6.1), each signature
vector can be associated with a subset of integers from 1 to x, where x is of order logm. It then
follows that the number of signature vectors, and hence the number of iterations of the algorithm,
is polynomial inm (Lemma 6.4).

3. Preliminaries
In this section we formalize themain notions we will need.Much of the terminology in this section
follows that of [14, 16]. Let G and (V1, . . . ,Vm) be as in Section 2. For the definitions that follow,
consider a PITM of G.

Definition 3.1. A vertex u blocks a vertex v if u ∈M and uv ∈ E(G).

Definition 3.2. A vertex v is immediately addable with respect to M if v /∈M and it has no vertices
in V(G) blocking it. For W ⊆V(G), IM(W) denotes the set of vertices in W that are immediately
addable with respect to M.

Definition 3.3. A layer L of G with respect to a PIT M is a pair (X, Y) where:

(1) X ⊆V(G) \M,
(2) X is an independent set,
(3) Y ⊆M is the set of blocking vertices of X, and
(4) every u ∈ Y is adjacent to exactly one vertex from X.

For an example of a layer, refer to Figure 2. Note that Y is also an independent set sinceM is an
independent set.

Definition 3.4. Let M be a PIT in G and let A be a vertex class in the vertex partition of G that does
not contain a vertex in M. An alternating tree T with respect to M and A is a tuple (L0, . . . , L�)
where �� 0 such that:

(1) L0 = (X0, Y0)= (∅, ∅) and A(Y0) :=A,
(2) Li = (Xi, Yi) is a layer for each 1� i� �,
(3) X1 ⊆A and Xi ⊆ ⋃

v∈Yi−1 A(v) for all i= 2, . . . , �, and
(4) (Xi ∪ Yi)∩ (Xi′ ∪ Yi′)= ∅ for all i, i′ ∈ {0, . . . , �}, |i− i′| > 0.

We call A the root of T.

Figure 2 provides an example of an alternating tree.
Let T = (L0, . . . , L�) be an alternating tree of G with respect to a PIT M and root A. For each

0� j� � we let

X�j =
j⋃

i=0
Xi.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

786 A. Graf and P. Haxell

AL1

L2

L3

Figure 2. An alternating tree T arising from a graph G and PITM. The circles are vertex classes, and vertices in the same layer
of T are enclosed with a dotted border. Within each layer Li , the vertices in Xi are shown in black and the vertices in Yi are
shown in red.

Similarly, we define

Y�j =
j⋃

i=0
Yi.

Note that A(Y��) is the set of vertex classes intersecting T. It follows from Definitions 3.3
and 3.4 that the subgraph of G induced by X�� ∪ Y�� \ IM(X��) is a constellation for A(Y��)
(see Figures 1 and 2).

Our algorithmwill make use of fixed constantsμ,U and ρ which will be chosen in advance and
depend only on the input constants r and ε. The following notion formalizes a suitable choice.

Definition 3.5. Let r� 2 and ε > 0 be given. We say a tuple (μ,U, ρ) of positive real numbers is
feasible for (r, ε) if the following hold:

(1) (2+ ε)
[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
>

(
2+ μ(r + 2)+ ρ(r + 1)

1− μ

)
,

(2) ε

[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
>

μ(r + 4)+ ρ(r + 2)
1− μ

, and

(3) U − μρ > ρ.

For example,

(μ,U, ρ)=
(

ε

10r
,
10r
ε

,
ε

10r

)
is feasible for (r, ε) when r� 2 and 0< ε < 1. Thus, when r and ε are fixed, the parameters μ, U
and ρ may also be taken to be fixed constants. As mentioned in the Introduction, we make no
attempt here to choose the constants to optimize the running time (see Lemma 6.4).

The following two definitions will depend on the fixed constants μ and U. Definition 3.6 will
apply when X, Y forms a partially built layer L�+1.

Definition 3.6. Let T = (L0, . . . , L�) be an alternating tree of G with respect to a PIT M and root
A and let X, Y ⊆V(G). A vertex v ∈A(Y�) is an addable vertex for X, Y and T if v /∈ Y� ∪ X ∪ Y,
|A(v)∩ X| <U, and there does not exist a vertex u ∈ X�� ∪ Y�� ∪ X ∪ Y such that uv ∈ E(G).

Definition 3.7. A layer Li = (Xi, Yi) is collapsible if IM(Xi)> μ|Xi|.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 787

4. Algorithms
Recall that G is an r-claw-free graph with respect to vertex partition (V1, . . . ,Vm). LetM be a PIT
inG and let A be a vertex class in the vertex partition of G that does not contain a vertex inM. The
main idea of the algorithm FindITorBD in Theorem 1.4 is to perform a series of modifications to
M that will allow us to augment it with a vertex in A. If we are not successful then we will find a
subset of classes (based on an alternating tree of G) that has a small dominating set.

The algorithm FindITorBD is given in Section 6. In the following subsections, we describe
three algorithms that are used by FindITorBD. The first two algorithms, called BuildLayer
and SuperposedBuild, are used as subroutines in the third algorithm, called GrowTransversal.
GrowTransversal appears as the main subroutine of FindITorBD.

Let T = (L0, . . . , L�) be an alternating tree of G with respect to M and A. Let μ, U and ρ be
fixed constants chosen in advance so that (μ,U, ρ) is feasible for (r, ε) (see Definition 3.5).

4.1 BuildLayer
BuildLayer is a subroutine in the main algorithm for augmenting M that helps construct new
layers for an alternating tree T = (L0, . . . , L�). The function takes as inputs T and some X, Y ⊆
V(G) ((X, Y) can be thought of as a ‘partially built’ layer). It then creates a new layer L�+1 =
(X�+1, Y�+1) by augmenting X and Y and returning the resulting pair (X, Y).
1: function BUILDLAYER(T, X, Y)
2: while there is a vertex v ∈A(Y�) that is addable for X, Y and T do
3: X := X ∪ {v}
4: Y := Y ∪ {u ∈M : uv ∈ E(G)}
5: end while
6: return (X, Y)
7: end function

4.2 SuperposedBuild
SuperposedBuild is a subroutine in the main algorithm for augmenting M that, after a modifica-
tion ofM occurs in the algorithm, modifies T so that it remains an alternating tree with respect to
the new PITM. SuperposedBuild possibly augments T by adding some vertices that are no longer
blocked due to the modification ofM. The function takes as inputs the current T and its number
of layers �. It then performs some tests on the layers of T, to see if any Xi could be substantially
enlarged, and returns a possibly modified alternating tree to replace T for the next iteration of the
main algorithm as well as the number of layers in the returned alternating tree.
1: function SUPERPOSEDBUILD(T, �)
2: i := 1
3: while i� � do
4: (X′

i , Y ′
i) := BuildLayer((L0, . . . , Li−1), Xi, Yi)

5: if |X′
i|� (1+ μ)|Xi| then

6: (Xi, Yi) := (X′
i , Y ′

i)
7: Li := (Xi, Yi)
8: T := (L0, . . . , Li)
9: � := i
10: end if
11: i := i+ 1
12: end while
13: return (T, �)
14: end function

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

788 A. Graf and P. Haxell

4.3 GrowTransversal
GrowTransversal is the main algorithm for augmenting M. It takes as inputs M and A and per-
forms a series of modifications to M until either a vertex in A is added to M or an iteration
constructs a layer Li with too small an Xi relative to the size of T. When GrowTransversal termi-
nates, it returnsM, T and a flag variable x as (M, T, x). The variable x is set to 1 if GrowTransversal
terminates due to an iteration constructing a layer Li with at most ρ|Y�i−1| vertices inXi and is set
to 0 if GrowTransversal successfully augments M with a vertex in A. If GrowTransversal returns
(M, T, 1), we will show in the next section that T contains a subset B of vertex classes whose
vertices are dominated by a set of fewer than (2+ ε)|B| vertices with the properties stated in
Theorem 1.4.
1: function GROWTRANSVERSAL(M, A)
2: L0 := (X0, Y0) := (∅, ∅)
3: A(Y0) :=A
4: L0 := (X0, Y0)
5: T := (L0)
6: � := 0
7: while A∩M = ∅ do
8: (X�+1, Y�+1) := BuildLayer(T, ∅, ∅)
9: L�+1 := (X�+1, Y�+1)
10: T := (L0, . . . , L�, L�+1)
11: if |X�+1|� ρ|Y��| then
12: return (M, T, 1) and terminate
13: else
14: � := � + 1
15: while |IM(X�)| > μ|X�| do
16: if � = 1 then
17: AugmentM with a vertex from IM(X1)
18: return (M, T, 0) and terminate
19: else
20: for all w ∈ Y�−1 such that IM(X�)∩A(w)
= ∅ do
21: M := (M \ {w})∪ {u} for some arbitrary u ∈ IM(X�)∩A(w)
22: Y�−1 := Y�−1 \ {w}
23: end for
24: end if
25: T′ := (L0, . . . , L�−1)
26: �′ := � − 1
27: (T, �) := SuperposedBuild(T′, �′)
28: end while
29: end if
30: end while
31: end function
The GrowTransversal algorithm begins by initializing the alternating tree T with respect toM

and its number of layers �. While A does not contain a vertex in the PITM, the algorithm repeats
a building layer operation (line 8) followed by a loop of collapsing operations (lines 15–28) that
modifyM when enough immediately addable vertices with respect toM are present in the newly
constructed layer. Figure 3 shows an example of one collapse operation (lines 20–23).

Performing one collapse operation can result in more vertices becoming immediately addable
with respect to the new M in earlier layers. Hence one collapse operation can lead to a cascade
of collapse operations being performed on layers of T. Also, any collapse operation can modify
M in such a way that SuperposedBuild can modify a layer (Xi, Yi) of T to contain a significantly

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 789

(a) (b) (c)

Figure 3. An example of collapsing layer L�. In (a), a substantial set IM(X�) of immediately addable vertices is found in X�

(line 15). In (b), the vertexw ofM in each class that intersects IM(X�) is replaced by some u ∈ IM(X�) in that same class (line 21).
In (c), each w ∈M that was replaced in line 21 disappears from Y�−1 (line 22) and the entire last layer (X�, Y�) is removed
(line 25).

larger number of vertices (|X′
i|� (1+ μ)|Xi| and so replacing (Xi, Yi) by (X′

i , Y ′
i) adds at leastμ|Xi|

vertices to the layer). These modifications to a layer (which is the final layer of the tree returned
by SuperposedBuild) may still leave it collapsible, so more collapse operations may be possible if
SuperposedBuild modifies a layer of T. Thus, for the T at the conclusion of line 28 to remain an
alternating tree with respect to M after all these modifications are made to M, GrowTransversal
removes all layers of T constructed after the earliest layer that contains a vertex class where M
is modified (lines 25–27). This leaves the resulting T as an alternating tree with respect to the
modifiedM.

Due to these operations, at the beginning and end of each iteration of the main loop of
GrowTransversal (which starts in line 7), M remains a PIT and T remains an alternating tree
with respect toM. Also, the modifications toM do not change the set of vertex classes containing
vertices inM (lines 20–23) unless L1 is collapsible. In this case, a vertex in IM(X1), which is there-
fore in A, is added toM (lines 15–18) and so A is added to the set of vertex classes covered by the
PITM. As this is the goal of GrowTransversal, the algorithm returns (M, T, 0) and terminates (see
line 18).

The algorithm also terminates if, at the start of some iteration, BuildLayer produces a layer
L�+1 whose X�+1 is not sufficiently large with respect to the number of vertex classes already
in T, i.e. |X�+1|� ρ|Y��| (see lines 11–12). If GrowTransversal terminates because of this,
GrowTransversal returns (M, T, 1), which distinguishes this case from when the algorithm ter-
minates because it successfully augments M to include a vertex of A. We will show in the next
section that, given an alternating tree T = (L0, . . . , L�+1) with respect to M and A such that
|X�+1|� ρ|Y��|, there exists some set B of the vertex classes in T such that GB is dominated
by a set D of vertices with the properties stated in outcome (2) of Theorem 1.4. Our analysis will
provide a specific B and its corresponding D given that GrowTransversal returns (M, T, 1).

5. Analysis
The main result of this section (Lemma 5.3) shows that if GrowTransversal terminates because
BuildLayer constructs a layer L�+1 with |X�+1|� ρ|Y��| (line 11), then we can find a set B of
vertex classes and a set D of vertices that satisfy the conditions of outcome (2) of Theorem 1.4.
Otherwise GrowTransversal will succeed in augmenting the current PITM with a vertex of A.

As discussed in Section 2, we will bound the total number of steps taken by GrowTransversal
using a signature vector (see Definition 6.1) that is defined in terms of logarithmic functions of the
sizes of the layers of T. The last lemma of this section (Lemma 5.4) establishes that the number
of layers in T (and hence length of any signature vector) is bounded by a logarithmic function
of the number m of vertex classes. This fact will be key to the proof given in Section 6 that the
total number of signature vectors (and hence the number of steps taken by GrowTransversal) is
polynomial inm.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

790 A. Graf and P. Haxell

Recall from Section 3 that we can assume G is an r-claw-free graph with respect to vertex
partition (V1, . . . ,Vm), each vertex class Vi is an independent set of vertices, and r� 2 and ε > 0
are fixed. Also, recall from Section 4 that μ, U and ρ are fixed constants such that (μ,U, ρ) is
feasible for (r, ε).

For concreteness, we may also assume that the vertices of the graph G have been assigned
some arbitrary but fixed ordering, and that vertices are processed by our algorithms subject to
this ordering. For example, we assume that BuildLayer(T, X, Y) adds vertices to X and Y in order,
that is, during an iteration of the while loop in BuildLayer, the addable vertex with the lowest index
in the ordering is the vertex chosen to be v in line 3. Similarly we may assume that the vertex u in
line 21 of GrowTransversal is chosen to be the vertex in IM(X�)∩A(w) with the lowest index in
the ordering. The proof of Lemma 5.3 will also use this convention.

We begin by establishing two preliminary results on basic properties of the alternating tree
constructed in GrowTransversal.

Lemma 5.1. Let T = (L0, . . . , L�) andM be the alternating tree and partial independent transversal
at the beginning of some iteration of the while loop in line 7 of GrowTransversal. Then none of the
layers L0, . . . , L� are collapsible. Hence |Yi|� (1− μ)|Xi| for each i ∈ {1, . . . , �}.

Proof. Suppose the statement holds at the beginning of the current iteration. In lines 8 and 9
of GrowTransversal, L�+1 is constructed. If GrowTransversal does not terminate and L�+1 is not
collapsible, then the claim follows for the beginning of the next iteration since none of the earlier
layers were modified in the current iteration.

If GrowTransversal does not terminate and L�+1 is collapsible, then let T := (L0, . . . , Lk) be the
alternating tree with respect toM that results from the loop of collapsing operations where k� �

(i.e. T is the alternating tree after lines 15–28 are completed). Unless the algorithm terminates,
k� 1 (lines 15–18).

Each time a collapse operation is performed (lines 20–23), the number of layers in T is reduced
(line 25). Also, if SuperposedBuild modifies T in line 27, the number of layers of T is reduced or
stays the same. Thus layers L0, . . . , Lk−1 are not changed by the loop of collapsing operations and
so remain unchanged throughout the current iteration. Layer Lk may be modified in lines 21, 22
and 27. However, Lk cannot be collapsible since it is the final layer in T after the loop of collapsing
operations terminates. Hence none of the layers in an alternating tree are collapsible at the end of
an iteration of the while loop in line 7 (unless the algorithm terminates during the iteration).

Since the claim holds for the first iteration of the while loop in line 7, the statement follows by
induction on the number of iterations of this loop in GrowTransversal. As Li is a layer for each
i ∈ {1, . . . , �}, Yi contains all blocking vertices of all vertices in Xi and every vertex in Yi is adjacent
to exactly one vertex in Xi by construction. Thus there are at most |Yi| vertices in Xi \ IM(Xi) and
at most μ|Xi| vertices in IM(Xi) for each layer i= 1, . . . , �. Hence |Xi|� |Yi| + μ|Xi| for each
i ∈ {1, . . . , �}.

Lemma 5.2. Let T = (L0, . . . , L�) andM be the alternating tree and partial independent transversal
at the beginning of some iteration of the while loop in line 7 of GrowTransversal. Then, for each
i ∈ {1, . . . , �},

(X′
i , Y

′
i) := BuildLayer((L0, . . . , Li−1), Xi, Yi)

satisfies |X′
i| < (1+ μ)|Xi|.

Proof. Consider layer Li at the beginning of the current iteration for some 1� i� �. During the
iteration that Li was constructed by either BuildLayer in line 8 or SuperposedBuild in line 27,
an (additional) application of SuperposedBuild could not increase the size of Xi (both functions
created Xi to be as large as possible with respect toM in that iteration).

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 791

Suppose no layer built during the iterations between when Li was constructed and the current
iteration is collapsible, that is, the condition of line 15 is not met between the construction of
iteration Li and the current iteration of GrowTransversal. Then, since M is not changed during
the intervening iterations, SuperposedBuild does not increase the size of Xi.

Now suppose some layer built during the intervening iterations was collapsible. Note that the
index of the collapsible layer must be greater than i as otherwise Li would be discarded (lines 25–
27). Thus, for each j� i+ 1 such that Lj is collapsible, SuperposedBuild tries to augment Xi by at
least a μ proportion of its size. However, since Li is a layer in T at the start of the current iteration,
SuperposedBuild does not succeed in changing Xi. Hence BuildLayer((L0, . . . , Li−1), Xi, Yi) does
not increase the number of vertices in Xi by μ|Xi|.

We are now ready to prove the main result of this section.

Lemma 5.3. Assume (μ,U, ρ) is feasible for (r, ε). Let T = (L0, . . . , L�) and M be the alternating
tree with root vertex A and partial independent transversal at the beginning of some iteration of the
while loop in line 7 of GrowTransversal. Then either

(1) when L�+1 is constructed in line 8 of GrowTransversal we have |X�+1| > ρ|Y��|, or
(2) GrowTransversal terminates in line 12, and there exists a subset B of the set B0 =A(Y��)

such that GB is dominated by a set D of vertices in G of size less than (2+ ε)(|B| − 1).
Moreover, K =G[X�� ∪ Y�� \ IM(X��)] is a constellation for B0 and D contains V(K),
where |D \V(K)| < ε(|B| − 1).

Proof. Suppose that after L�+1 is constructed in line 8, |X�+1|� ρ|Y��|. For each 1� i�
�, let (X′

i , Y ′
i)= BuildLayer((L0, . . . , Li−1), Xi, Yi). Define B algorithmically by performing the

following steps in order:

(i) B := B0 =A(Y��),
(ii) remove all vertex classes of B that contain U vertices in X��+1,
(iii) remove all vertex classes in

⋃�
i=1 A(X′

i \ Xi).

Clearly B ⊆ B0, and K is a constellation for B0 (as noted after Definition 3.4).

Claim 1. We have

|B| − 1�
[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
|Y��|.

Proof. The vertex classes in B include the vertex classes of T that do not contain U vertices in
X��+1 and do not contain any addable vertices for Xi, Yi and (L0, . . . , Li−1) for all 1� i� �. We
use these facts to bound |B| from below as follows.

Recall that |A(Y��)| = |Y��| + 1. The setAU of vertex classes inA(Y��) that containU vertices
in X��+1 has size at most U−1|X��+1|. By Lemma 5.2, |X′

i| < (1+ μ)|Xi| for each i ∈ {1, . . . , �}.
As Xi ⊆ X′

i , this implies that there are at most μ|Xi| vertices in X′
i \ Xi. Thus |A(X′

i \ Xi)|�μ|Xi|
for all 1� i� � and so

∑�
i=1 |A(X′

i \ Xi)|�μ|X��|. Also, by Lemma 5.1, |X��|� 1/(1− μ)|Y��|,
and by the assumption, |X�+1|� ρ|Y��|. Therefore

|B|� |A(Y��)| − |AU | −
∣∣∣∣

�⋃
i=1

A(X′
i \ Xi)

∣∣∣∣
� |A(Y��)| − 1

U
|X��+1| − μ|X��|

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

792 A. Graf and P. Haxell

= (|Y��| + 1)−
(
1
U

|X��| + 1
U

|X�+1| + μ|X��|
)

� |Y��| + 1−
[(

1
U

+ μ

)
|X��| + ρ

U
|Y��|

]

� |Y��| + 1−
[(

1
U

+ μ

)(
1

1− μ

)
|Y��| + ρ

U
|Y��|

]

= 1+
[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
|Y��|.

Let B denote the set of vertices in the vertex classes of B and let

W = X′
�� ∪ Y ′

�� ∪ X�+1 ∪ Y�+1.

Claim 2. The set W dominates G[B \ IM(W)].

Proof. Let u ∈ B \ IM(W). By (iii) we have that u /∈ X′
�� \ X��.

Suppose u ∈W \ IM(W). Then u ∈ (X��+1 ∪ Y ′
�� ∪ Y�+1) \ IM(W). If u ∈ Y ′

i for some i ∈
{1, . . . , �}, then the construction of (X′

i , Y ′
i) and (Xi, Yi) by BuildLayer implies that u has a neigh-

bour v in X′
i (lines 3–4 of BuildLayer). Hence v ∈W. Similarly, if u ∈ Y�+1, then u has a neighbour

v in X�+1 (lines 3–4 of BuildLayer). If u ∈ Xi for some i ∈ {1, . . . , � + 1}, then since u /∈ IM(W),
u has a neighbour v that blocks u. By the construction of (Xi, Yi) (lines 2–4 of BuildLayer),
v ∈ Yi and so v ∈W. Therefore every u ∈W \ IM(W) has a neighbour inW. Thus we may assume
u ∈ B \ (W ∪ IM(W)).

Note that each vertex class in B has at most one vertex in M and these vertices are in Y ′
��,

hence u /∈M. Since A(u) ∈ B, let Li be the layer of T′ = (L0, . . . , L�+1) such that A(u)∩ Yi−1
= ∅
for some 1� i� � + 1.

Suppose i< � + 1 and u has no neighbours in X′
�i ∪ Y ′

�i. By (ii), A(u) contains fewer than U
vertices in Xi. Also, by (iii), A(u) contains no vertices in X′

i \ Xi. Thus, by Definition 3.6, u is an
addable vertex for Xi, Yi and (L0, . . . , Li−1). Hence BuildLayer((L0, . . . , Li−1), Xi, Yi) would not
stop until either u is added to X′

i or u has a neighbour in X′
i ∪ Y ′

i . As u ∈ B \ (W ∪ IM(W)) and
X′
i ⊆W, we know that u /∈ X′

i . Therefore u has a neighbour in X′
i ∪ Y ′

i .
Now suppose i= � + 1 and u has no neighbours inW. Then, again by (ii) and (iii), A(u) con-

tains fewer thanU vertices inXi andA(u) contains no vertices inX′
i \ Xi. Thus, by Definition 3.6, u

is an addable vertex for X�+1, Y�+1 and (L0, . . . , L�). Hence BuildLayer((L0, . . . , L�), ∅, ∅) would
not stop until either u is added to X�+1 or u has a neighbour in X�+1 ∪ Y�+1. As u ∈ B \ (W ∪
IM(W)) and X�+1 ⊆W, we know that u /∈ X�+1. Therefore u has a neighbour in X�+1 ∪ Y�+1.

We therefore conclude thatW dominates G[B \ IM(W)].

Define S to be the set of all u ∈V(G) for which there exists v ∈ IM(W) such that u ∈N(v) and u
is the neighbour of v with the smallest index in the ordering.

Claim 3. The set S dominates IM(W) and

|S|� |IM(W)| < 2μ + ρ

1− μ
|Y��|.

Proof. As each v ∈ IM(W) has at least one neighbour in G, and the neighbour with the smallest
index in the ordering is in S, we have that S dominates IM(W) and |S|� |IM(W)|. By Lemma 5.2,
|X′

��| < (1+ μ)|X��| and so |X′
�� \ X��| < μ|X��|. Also, by definition, IM(W)⊆ X′

�� ∪ X�+1

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 793

(see Definition 3.2). Thus

|IM(W)| = |IM(X′
�� ∪ X�+1)|

= |IM(X′
��)| + |IM(X�+1)|

� |IM(X��)| + |IM(X′
�� \ X��)| + |X�+1|

< μ|X��| + μ|X��| + |X�+1|
= 2μ|X��| + |X�+1|.

Recall that

|X��|� 1
1− μ

|Y��|

by Lemma 5.1. Since conclusion (1) of Lemma 5.3 does not hold, we know that |X�+1|� ρ|Y��|,
and so we obtain

|IM(W)| < 2μ
1− μ

|Y��| + ρ|Y��|,

from which the claim follows.

Let D=W ∪ S. Then D contains V(K), and by Claim 2 and the choice of S we see that D
dominates GB .

To help us estimate the size of D, we first establish the following.

Claim 4. We have |Y ′
��

\ Y��| < μ(r − 1)|X��|.

Proof. Let v ∈ Y ′
�� \ Y��. Then by definition v ∈M, and hence v blocks its neighbours. If uv ∈

E(G) for any u ∈ Xi such that 1� i� �, v blocks u and so would be included in Yi (line 4 of
BuildLayer). This implies v ∈ Y��, which is a contradiction. Therefore v is not adjacent to any
u ∈ X��. However, v ∈ Y ′

i \ Yi for some 1� i� � and, by the construction of (X′
i , Y ′

i), v is adjacent
to exactly one u ∈ X′

i (lines 2–5). Thus v has a neighbour in X′
i \ Xi and so v has a neighbour in

X′
�� \ X��.
Note that Y ′

i is a set of independent vertices in distinct vertex classes. As G is r-claw-free, each
vertex of X′

i has at most r − 1 independent neighbours in different vertex classes. Since |X′
�� \

X��| < μ|X��|, we have
x|Y ′

�� \ Y��|� (r − 1)|X′
�� \ X��| < μ(r − 1)|X��|.

It remains to bound |D| and |D \V(K)|. To do this, we note that D= X�� ∪ Y�� ∪Q and
D \V(K)=Q∪ IM(X��) where

Q= (X′
�� \ X��)∪ (Y ′

�� \ Y��)∪ X�+1 ∪ Y�+1 ∪ S.

Claim 5. We have

|Q| < μ(r + 2)+ ρ(r + 1)
1− μ

|Y��|.

Proof. Since G is r-claw-free we know that |Y�+1|� (r − 1)|X�+1|. Since conclusion (1) of
Lemma 5.3 does not hold, we know that |X�+1|� ρ|Y��|, and therefore |Y�+1|� ρ(r − 1)|Y��|.
We bound each of the remaining three summands below using (respectively) Lemma 5.2, Claim 4
and Claim 3, to obtain

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

794 A. Graf and P. Haxell

|Q|� |X′
�� \ X��| + |Y ′

�� \ Y��| + |X�+1| + |Y�+1| + |S|
�μ|X��| + μ(r − 1)|X��| + ρ|Y��| + ρ(r − 1)|Y��| + 2μ + ρ

1− μ
|Y��|

= μr|X��| + ρr|Y��| + 2μ + ρ

1− μ
|Y��|

< μr|X��| + 2μ + ρ(r + 1)
1− μ

|Y��|.
Since

|X��|� 1
1− μ

|Y��|
by Lemma 5.1, we conclude

|Q| < μ(r + 2)+ ρ(r + 1)
1− μ

|Y��|
as required.

Now Claim 5 and Lemma 5.1 combine to give
|D| = |X�� ∪ Y�� ∪Q|

<

(
1

1− μ
+ 1+ μ(r + 2)+ ρ(r + 1)

1− μ

)
|Y��|

<

(
2+ μ(r + 2)+ ρ(r + 1)

1− μ

)
|Y��|.

Claim 1 and the fact that (μ,U, ρ) is feasible for (r, ε) (condition (1) in Definition 3.5) tell us
that

(2+ ε)(|B| − 1)� (2+ ε)
[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
|Y��|

>

(
2+ μ(r + 2)+ ρ(r + 1)

1− μ

)
|Y��|

> |D|.
To bound |D \V(K)| using Claim 5, we observe that IM(X��)⊆ IM(W), so wemay use Claim 3

to conclude that
|D \V(K)| = |Q∪ IM(X��)|

<
μ(r + 2)+ ρ(r + 1)

1− μ
|Y��| + 2μ + ρ

1− μ
|Y��|

= μ(r + 4)+ ρ(r + 2)
1− μ

|Y��|.
Using Claim 1 again, and condition (2) of Definition 3.5 of feasibility of (μ,U, ρ), we find that

ε(|B| − 1)� ε

[
1− 1

U

(
1+ μU
1− μ

+ ρ

)]
|Y��|

>
μ(r + 4)+ ρ(r + 2)

1− μ
|Y��|

> |D \V(K)|.
This completes the proof of Lemma 5.3.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 795

The length of the signature vectors defined in Definition 6.1 of the next section (which will be
our measure of the progress of GrowTransversal) depends on the number of layers of the alter-
nating trees T constructed by the algorithm. Our last result of this section gives an upper bound
on this quantity.

Lemma 5.4. Suppose (μ,U, ρ) is feasible for (r, ε). The number of layers in the alternating
tree T with respect to partial independent transversal M maintained during the execution of
GrowTransversal is always bounded by c log (m) where c= 1/log [1+ ρ(1− μ)].

Proof. Suppose T = (L0, . . . , L�) at the beginning of some iteration of the while loop in line 7
of GrowTransversal. Consider any Li where 1� i� �. By Lemma 5.1, |Yi| > (1− μ)|Xi|. Since
GrowTransversal did not terminate in the iteration in which Li was constructed, by Lemma 5.3 we
have

|Yi| > (1− μ)|Xi| > ρ(1− μ)|Y�i−1|.
Therefore, since |Y1|� 1, we find

m� |Y��| =
�∑

i=0
|Yi| > [1+ ρ(1− μ)]�.

Thus the number of layers � at any moment of the algorithm is bounded above
by logm/log [1+ ρ(1− μ)]. As μ and ρ are fixed constants, this is c log (m) for c=
1/log [1+ ρ(1− μ)].

6. Signatures
Recall from Section 4 that r and ε are fixed constants, and μ,U and ρ are fixed such that (μ,U, ρ)
is feasible for (r, ε). We begin this section by defining the signature vector of an alternating tree.
We then use these signature vectors to prove that GrowTransversal terminates after a polynomial
inm number of iterations, where the degree of the polynomial is a function of r and ε.

Definition 6.1. Let T = (L0, . . . , L�) be an alternating tree with respect to PIT M and vertex class
A. The signature of layer Li is defined to be

(s2i−1, s2i)=
(

−
⌊
logb

ρ−i

(1− μ)i−1 |Xi|
⌋
,
⌊
logb

ρ−i

(1− μ)i
|Yi|

⌋)

where b=U/(U − μρ). The signature vector of T is s= (s1, s2, . . . , s2�−1, s2�,∞).

The above definition for the signature of a layer Li is chosen so that the lexicographic value
of the signature vector decreases whenever |Xi| increases significantly (see Lemma 6.2, sub-
case 2.2) and decreases whenever |Yi| decreases significantly (Lemma 6.2 subcase 2.1). The factors
ρ−i/((1− μ)i−1) and ρ−i/((1− μ)i) are present to ensure that the coordinates of the signature
vector are non-decreasing in absolute value, which we will show in Lemma 6.3. These two prop-
erties, together with Lemma 5.4, combine to give the desired upper bound on the total number of
signature vectors (Lemma 6.4).

We begin by showing that the lexicographic value of the signature vector decreases during each
iteration of GrowTransversal.

Lemma 6.2. The lexicographic value of the signature vector reduces across each iteration of the loop
in line 7 of GrowTransversal unless the algorithm terminates during that iteration.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

796 A. Graf and P. Haxell

Proof. Let T = (L0, . . . , L�) andM be the alternating tree and PIT at the beginning of some itera-
tion of the while loop in line 7 of GrowTransversal. Let s= (s1, . . . , s2�,∞) be the signature vector
of T. There are two cases.

Case 1. No collapse operation occurs in this iteration, i.e. |IM(X�+1)|�μ|X�+1|.

The only modification to T in this iteration is that a new layer L�+1 is added to T (lines 8–10).
The new signature vector for T is therefore s′ = (s′1, . . . , s′2�+2,∞), where s′i = si for all 1� i� 2�
and (s′2�+1, s

′
2�+2) is the signature of layer L�+1. Hence the lexicographic value is reduced.

Case 2. At least one collapse operation occurs in this iteration, i.e. |IM(X�+1)| > μ|X�+1|.

Consider the alternating tree T∗ returned by SuperposedBuild during the last iteration of
the loop of collapses (lines 15–28) in this iteration of GrowTransversal. Either SuperposedBuild
returns the same tree as its input T′ or SuperposedBuild modifies a layer of T and removes all later
layers (i.e. T∗ = (L0, . . . , Lk) for some k� � where Lk = (X′

k, Y
′
k)).

Subcase 2.1. SuperposedBuild returns its input T′ as T∗.

Let t be the index of the layer of T satisfying |IM(Xt)| > μ|Xt| in the final iteration of the loop
of collapses. If t = 1, a vertex in IM(X1) is added to M and the algorithm terminates. Otherwise,
t > 1 and T′ = (L′

0, . . . , L
′
t−1), where L

′
i = Li for all 0� i< t − 1 and L′

t−1 is modified from Lt−1
as lines 20–23 describe.

The signature vector of T′ is therefore s′ = (s′1, . . . , s′2t−2,∞), where s′i = si for all 1� i� 2t − 4
and

(s′2t−3, s
′
2t−2)=

(
−

⌊
logb

ρ−(t−1)

(1− μ)t−2 |X′
t−1|

⌋
,
⌊
logb

ρ−(t−1)

(1− μ)t−1 |Y ′
t−1|

⌋)
.

Since lines 20–23 do not modify X� in GrowTransversal, Xt−1 is not modified and so X′
t−1 = Xt−1.

Note that each vertex class containing a vertex in IM(Xt) must contain a vertex in Yt−1. Thus,
since a vertex class contains at most U vertices in Xt , there are at least (μ/U)|Xt| blocking vertices
in Yt−1 that are not in T′ because of the replacements in lines 20–23. By Lemma 5.3 we have
|Xt| > ρ|Y�t−1|� ρ|Yt−1|, and so

|Y ′
t−1|� |Yt−1| − μ

U
|Xt| <

(
1− μρ

U

)
|Yt−1|.

Therefore

logb
ρ−(t−1)

(1− μ)t−1 |Y ′
t−1| < logb

ρ−(t−1)

(1− μ)t−1

(
1− μρ

U

)
|Yt−1|

� logb

(
1− μρ

U

)
+ logb

ρ−(t−1)

(1− μ)t−1 |Yt−1|

� logb

(
U − μρ

U

)
+ logb

ρ−(t−1)

(1− μ)t−1 |Yt−1|

= −1+ logb
ρ−(t−1)

(1− μ)t−1 |Yt−1|.

Hence s′2t−3 = s2t−3 and s′2t−2 < s2t−2, so the lexicographic value of the signature vector is reduced.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 797

Subcase 2.2. SuperposedBuild returns an alternating tree T∗ different from its input T′.

Let t be the index of the layer of T satisfying |IM(Xt)| > μ|Xt| in the final iteration of the loop
of collapses. Let q be the index of the last layer in the alternating tree returned by SuperposedBuild
in the final iteration of the loop of collapses. Hence |X′

q|� (1+ μ)|Xq|.
As (μ,U, ρ) is feasible, ρ �U − μρ. Hence

U
U − μρ

= 1+ μρ

U − μρ
� 1+ μ.

Thus

logb
ρ−q

(1− μ)q−1 |X′
q|� logb

ρ−q

(1− μ)q−1 (1+ μ)|Xq|

= logb (1+ μ)+ logb
ρ−q

(1− μ)q−1 |Xq|

� 1+ logb
ρ−q

(1− μ)q−1 |Xq|

and so s′2q−1 < s2q−1. Since SuperposedBuild and the loop of collapses do not modify layers
L0, . . . , Lq−1, we see that s′i = si for all 1� i� 2q− 2. Hence the signature vector of T∗ returned
by SuperposedBuild is (s′1, . . . , s′2q−1, s

′
2q,∞). Thus the lexicographic value of the signature vector

is reduced.

Lemma 6.3. The coordinates of the signature vector are non-decreasing in absolute value at the
beginning of each iteration of the while loop in line 7 of GrowTransversal.

Proof. Let T = (L0, . . . , L�) andM be the alternating tree and PIT at the beginning of some iter-
ation of the while loop in line 7 of GrowTransversal. Consider layer Li for some 1� i� �. Since
|Yi|� (1− μ)|Xi| by Lemma 5.1,

|s2i−1| =
⌊
logb

ρ−i

(1− μ)i−1 |Xi|
⌋
�

⌊
logb

ρ−i

(1− μ)i
|Yi|

⌋
= |s2i|.

Hence the coordinates of the signature vector for a layer of T are non-decreasing in absolute value.
Now consider layers Li and Li+1 for some 0� i� � − 1. Lemma 5.3 implies |Xi|� ρ|Yi−1| and so

|s2i| =
⌊
logb

ρ−i

(1− μ)i
|Yi|

⌋
�

⌊
logb

ρ−(i+1)

(1− μ)i
|Xi+1|

⌋
= |s2i+1|.

Thus consecutive coordinates of the signature vector for coordinates of different layers of T are
also non-decreasing in absolute value. Hence the coordinates of the signature vector of T are
non-decreasing in absolute value.

We may now use Lemmas 6.2 and 6.3 to bound the total number of possible signature vectors.

Lemma 6.4. Let T = (L0, . . . , L�) andM be the alternating tree and partial independent transversal
at the beginning of some iteration of the while loop in line 7 of GrowTransversal. The number of
possible signature vectors for T is bounded by a polynomial in m of degree k where k depends only
on r and ε.

Proof. For each layer of T, the signature vector of T contains two coordinates. Thus,
by Lemma 5.4, the signature vector of T has at most 2c logm coordinates where c=
1/log [1+ ρ(1− μ)]. Also, by Lemma 6.3, the coordinates are non-decreasing in absolute value

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

798 A. Graf and P. Haxell

and so the absolute value of the final (finite) coordinate is an upper bound on the absolute value
of each coordinate in the signature vector. By Definition 6.1, the final coordinate is⌊

logb

([
ρ−�

(1− μ)�

]
|Y�|

)⌋
.

As �� c log (m) (by Lemma 5.4) and |Y�|�m, the absolute value of each coordinate of the
signature vector is bounded above by

logb

[
ρ−c log (m)

(1− μ)c log (m)m
]

= logb m+ logb ρ−c log (m) − logb (1− μ)c log (m)

= logb m− c[logb (ρ)] log (m)− c[logb (1− μ)] log (m)

=
[

1
log (b)

− c[logb (ρ)]− c[logb (1− μ)]
]
log (m).

Let

R=
[

1
log (b)

− c[logb (ρ)]− c[logb (1− μ)]
]
,

and note that R is a fixed constant that depends only on r and ε (since b and c depend only on μ,
U and ρ, which in turn depend only on r and ε).

Now to each signature vector s= (s1, s2, . . . , s2�−1, s2�,∞) we associate the vector s+ = (s1 −
1, s2 + 2, . . . , s2�−1 − (2� − 1), s2� + 2�,∞). Then the final coordinate of s+ is at most R logm+
2�� (R+ 2c) logm. Since the coordinates of s are non-decreasing in absolute value (and consid-
ering the sign pattern), the coordinates of s+ are strictly increasing in absolute value. Thus each
vector s+ corresponds to a distinct subset of the set {1, . . . , �(R+ 2c) logm�}. Hence the total
number of vectors s+ (and hence the total number of signature vectors) is at most 2(R+2c) logm.
This completes the proof.

(We remark that the idea of the last paragraph was suggested by a referee of [16]; see [15, 16].)
We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Let FindITorBD be the following algorithm.
1: function FINDITORBD(G;V1, . . . ,Vm)
2: M := ∅
3: for i= 1, . . . ,m do
4: Choose an A ∈ {V1, . . . ,Vm} such that A∩M = ∅
5: (M, T, x) :=GrowTransversal(M,A)
6: if x= 1 then
7: B :=A(Y��)
8: for j= 1, . . . , � do
9: (X′

j , Y ′
j) := BuildLayer((L0, . . . , Lj−1), Xj, Yj)

10: end for
11: B := B \AU

12: B := B \ (⋃�
i=1 A(X′

i \ Xi)
)

13: D := X′
�� ∪ Y ′

�� ∪ X�+1 ∪ Y�+1 ∪ S as in Lemma 5.3
14: return B, D and ‘GB is dominated by D’ and terminate
15: end if
16: M :=M returned by GrowTransversal
17: end for
18: returnM and ‘M is an independent transversal of G’
19: end function

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 799

By Lemma 6.2, every iteration of GrowTransversal reduces the lexicographic value of the
signature vector of an alternating tree T with respect to a PIT M. Furthermore, Lemma 6.4
implies that the number of such signature vectors is bounded by mf , where f depends only on r
and ε. Thus GrowTransversal terminates after at most mf iterations. It can be easily verified (see
[29]) that each iteration of GrowTransversal can be implemented to run in time O(|V(G)|4).
Since GrowTransversal is implemented at most m times in FindITorBD, and the other steps of
FindITorBD are easily implemented in O(|V(G)|4) operations, the running time of FindITorBD
is O(|V(G)|4mf+1) and thus is polynomial in |V(G)| because r and ε are fixed constants.

It remains to show that FindITorBD returns one of the two stated outcomes. FindITorBD starts
withM = ∅ and runs GrowTransversal at mostm times. Note that because of the augmentation in
line 17 of GrowTransversal, the PIT M at the end of an iteration of GrowTransversal covers one
more vertex class than the PIT covered at the start of the iteration. Also, the PIT at the end of one
iteration of GrowTransversal is the initial PIT of the next iteration.

Suppose FindITorBD terminates during iteration i of GrowTransversal, so that
GrowTransversal terminates before completing the mth iteration. Then the ith iteration of
GrowTransversal returned (M, T, 1) for some alternating tree T and PIT M. Since the sets B
and D are defined identically to how they are defined in the proof of Lemma 5.3, we then have
that D dominates GB , and (as stated in Lemma 5.3) B and D have the properties stated in the
conclusions of Theorem 1.4.

Suppose FindITorBD does not terminate before completing all m iterations of
GrowTransversal. Then all m vertex classes contain a vertex in the final ‘partial’ IT M.
HenceM is an IT of G. Therefore FindITorBD returns an IT in G.

7. Applications
In this section we briefly discuss some applications of Theorem 1.4. In particular, we discuss
applications to hypergraph matching (Section 7.1), circular chromatic index (Section 7.2), strong
colouring (Section 7.3) and hitting sets for maximum cliques (Section 7.4). Precise details of these
applications, as well as others, appear in [29].

7.1 Hypergraphmatchings
Here we consider a hypergraph version of Hall’s theorem for bipartite graphs. An r-uniform bipar-
tite hypergraph H = (A, B, E) is a hypergraph on a vertex set that is partitioned into two sets A and
B such that |e∩A| = 1 and |e∩ B| = r − 1 for each edge e ∈ E. A perfect matching in H is a sub-
set M ⊆ E of pairwise disjoint edges of H that saturates A, in other words |M| = |A|. For a set
S⊆A, we write ES = {e ∈ E : |e∩ S| = 1} for the set of hyperedges in H incident to S. For a collec-
tion of edges F ⊆ E, we let τB(F) denote the smallest cardinality of a B-cover of F, that is, a subset
T ⊆ B such that |e∩ T|
= ∅ for each e ∈ F. The following generalization of Hall’s theorem from
[36] provides a condition under which H admits a perfect matching.

Theorem 7.1. Let H = (A, B, E) be an r-uniform bipartite hypergraph. If

τB(ES)> (2r − 3)(|S| − 1)

for all S⊆A, then H admits a perfect matching.

It was shown in [36] that Theorem 7.1 is best possible for every r. Note that when r = 2 it is
(the non-trivial direction of) Hall’s theorem.

In fact Theorem 7.1 is a special case of Theorem 1.2, as can be seen from the following argu-
ment. Given H = (A, B, E), construct an auxiliary graph GH with vertex set E, in which vertices e

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

800 A. Graf and P. Haxell

and f are adjacent if and only if e∩ f ∩ B
= ∅. Consider the vertex partition ofGH given by assign-
ing e and f to the same vertex class if and only if e∩ f ∩A
= ∅. Thus the vertex classes are indexed
by A. With these definitions, a set M ⊆ E is a perfect matching of H if and only if M ⊆V(GH) is
an IT of GH .

By Theorem 1.2 applied to GH (using also the comment before Definition 1.3), if H does not
have a perfect matching, then there exists a subset B of vertex classes (indexed by a set S(B)⊆A)
that is dominated by V(K) for a constellation K of B. Thus T = ⋃

e∈V(K) e∩ B is a set of vertices
of H forming a B-cover of ES(B). Then the following claim gives an immediate contradiction to
the assumption of Theorem 7.1, thus completing the proof.

Claim 6. Let B be a subset of the vertex classes of GH, and let K be constellation for B. Then∣∣∣∣ ⋃
e∈V(K)

e∩ B
∣∣∣∣� (2r − 3)(|S(B)| − 1).

Proof. Each component C of K corresponds to a set of edges of H, consisting of the centre eC of
the star C and a non-empty set LC of leaves, all of which intersect eC in B. Hence the total number
of vertices of B contained in {eC} ∪ LC is at most (r − 1)+ (r − 2)|LC|. By definition

⋃
C LC is

an IT of |B| − 1 classes of B, implying that K has at most |S(B)| − 1 components, and that∑
C |LC| = |S(B)| − 1. Therefore∣∣∣∣ ⋃

e∈V(K)
e∩ B

∣∣∣∣�∑
C

(r − 1+ (r − 2)|LC|)

� (r − 1)(|S(B)| − 1)+ (r − 2)(|S(B)| − 1)
= (2r − 3)(|S(B)| − 1),

where the sum is over all components C of K.

The following algorithmic version of Theorem 7.1 was proved by Annamalai in [14, 16].

Theorem 7.2. For every fixed choice of r� 2 and ε > 0, there exists an algorithm A that finds,
in time polynomial in the size of the input, a perfect matching in r-uniform bipartite hypergraphs
H = (A, B, E) satisfying

τB(ES)> (2r − 3+ ε)(|S| − 1)
for all S⊆A.

Here we show that Theorem 1.4 is a generalization of Theorem 7.2. First note that for every
r-uniform bipartite hypergraph H = (A, B, E), the graph GH is r-claw-free with respect to any
partition. Indeed, the neighbours of e forming any independent set inGH must all contain distinct
vertices of e∩ B, and |e∩ B| = r − 1. Thus, given r and ε, we may apply Theorem 1.4 with r and
ε′ = ε/(r − 1) to obtain a polynomial-time algorithm A that finds for each input H = (A, B, E)
either

(1) an IT in GH , which is a perfect matching in H, or
(2) a set B of vertex classes and a set D of vertices of GH such that D dominates GB in GH and

|D| < (2+ ε′)(|B| − 1). Moreover,D containsV(K) for a constellationK of someB0 ⊇ B,
where |D \V(K)| < ε′(|B| − 1).

If (1) is the outcome for every inputH, then A is the required algorithm, so suppose (2) holds for
some H. Then D is a set of edges of H such that every edge of ES(B) intersects T = ⋃

e∈D e∩ B.
For u= |D \V(K)| it is clear that

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 801

∣∣∣∣ ⋃
e∈D\V(K)

e∩ B
∣∣∣∣� u(r − 1).

Next we estimate | ⋃e∈V(K) e∩ B|. As in the proof of Claim 6, for each component C of the
constellation K, the number of vertices of B contained in {eC} ∪ LC is at most

(r − 1)+ (r − 2)|LC| = 1+ (r − 2)|V(C)|.
Each component of K has at least two vertices, so the number of components is at most
|V(K)|/2= (|D| − u)/2. Since |D| < (2+ ε′)(|B| − 1) we find∣∣∣∣ ⋃

e∈V(K)
e∩ B

∣∣∣∣�∑
C

(1+ (r − 2)|V(C)|)

� |V(K)|/2+ (r − 2)|V(K)|
= (2r − 3)|V(K)|/2
= (2r − 3)(|D| − u)/2
< (2r − 3)(1+ ε′/2)(|B| − 1)− u(r − 3/2),

where again the sum is over all components C of K. Therefore

|T| < u(r − 1)+ (2r − 3)(1+ ε′/2)(|B| − 1)− u(r − 3/2)
= u/2+ (2r − 3+ ε′(r − 3/2))(|B| − 1)
< (2r − 3+ ε′(r − 1))(|B| − 1)
= (2r − 3+ ε)(|B| − 1),

where in the last line we used that u< ε′(|B| − 1) and ε′ = ε/(r − 1). But then this contradicts
the assumption τB(ES)> (2r − 3+ ε)(|S| − 1) for S= S(B), thus proving Theorem 7.2.

7.2 Circular chromatic index
A proper circular p/q-edge-colouring of a graph G is a colouring of the edges of G with colours in
{0, . . . , p− 1} such that the difference modulo p of the colours assigned to two adjacent edges is
not in {−(q− 1),−(q− 2), . . . , q− 1}. The smallest ratio p/q for which there is a proper circular
p/q-edge-colouring of G is called the circular chromatic index of G.

Kaiser, Král and Škrekovski [45] proved the following result using Theorem 1.2.

Theorem 7.3. Let p ∈N with p� 2 and G be a cubic bridgeless graph with girth

g =
{
2(2p)2p−2 if p� 2 is even,
2(2p)2p if p� 3 is odd.

Then G admits a proper circular (3p+ 1)/p-edge-colouring.

To prove Theorem 7.3, Kaiser, Král and Škrekovski proved the existence of an IT in a cer-
tain auxiliary graph G′ constructed using G, p and a fixed 1-factor F of G. The vertices of G′
are partitioned into m classes Vi, one for each odd cycle Ci of G− F, where |Vi| = |V(Ci)|. The
maximum degree of G′ is at most (2p)2(p−1) if p is even, and at most (2p)2p if p is odd. Hence
by Theorem 1.1 there exists an IT in G′ provided |Vi|� 2(2p)2(p−1) (respectively |Vi|� 2(2p)2p)
for each i. Given such an IT in G′, the authors explicitly provide the required proper circular
(3p+ 1)/p-edge-colouring of G.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

802 A. Graf and P. Haxell

We may apply Corollary 1.5 (the algorithmic version of Theorem 1.1) to obtain an algorithmic
version of Theorem 7.3, and in fact in this case no weakening of the result at all is necessary.
This is because the sizes of the vertex classes Vi are exactly the lengths of the odd cycles in G− F,
and hence girth g � 2(2p)2(p−1) (respectively g � 2(2p)2p) is enough to ensure the extra one in the
lower bounds on the |Vi| required by Corollary 1.5. Note also that the numberm of odd cycles in
G− F is clearly less than |V(G)|.

Corollary 7.4. Let p ∈N with p� 2 be given. Then there exists an algorithm that takes as input any
cubic bridgeless graph G with girth

g =
{
2(2p)2p−2 if p� 2 is even,
2(2p)2p if p� 3 is odd,

and finds, in time polynomial in |V(G)|, a proper circular (3p+ 1)/p-edge-colouring of G.

7.3 Strong colouring
Let k and n be positive integers. Let G be a graph with n vertices and let (V1, . . . ,Vm) be a vertex
partition of V(G) such that |Vi|� k for all i. A graph G is strongly k-colourable with respect to
(V1, . . . ,Vm) if there is a colouring of G with k colours so that for each vertex class, each colour
is assigned to at most one vertex of the class. If G is strongly k-colourable with respect to every
vertex partition of V(G) into classes of size at most k, we say G is strongly k-colourable. The strong
chromatic number of a graph G, denoted sχ(G), is the minimum k such that G is strongly k-
colourable. This notion was introduced independently by Alon [7, 9] and Fellows [27].

The best known general bound for the strong chromatic number of graphs G in terms of their
maximum degree �(G) is sχ(G)� 3�(G)− 1, proved in [39]. (See also [40] for an asymptotically
better bound.) Aharoni, Berger and Ziv [4] gave a nice simplification of the proof in [39], that gives
the bound sχ(G)� 3�(G). Their argument uses a slight strengthening of Theorem 1.1, which
states that if G is a graph with maximum degree �, and if |Vi|� 2� for each i, then for each
vertex v there exists an IT of G containing v. This follows immediately from Theorem 1.2 applied
to G with the partition ({v},V2, . . . ,Vm), assuming without loss of generality that v ∈V1. (See the
note after the statement of Theorem 1.2 in the Introduction.)

To make the argument of [4] algorithmic, we just apply Theorem 1.4 instead of Theorem 1.2
in the previous paragraph. This gives the following slightly strengthened version of Corollary 1.5.

Corollary 7.5. Let � ∈N be given. Then there exists an algorithm A that takes as input any graph
G with maximum degree � and vertex partition (V1, . . . ,Vm) such that |Vi|� 2� + 1 for each i,
and any v ∈V(G), and finds, in time polynomial in |V(G)|, an independent transversal in G that
contains v.

The proof in [4] begins with a partial strong 3�-colouring c of a graph G with respect to a
vertex partition (V1, . . . ,Vm), an uncoloured vertex v and a colour α not used by c on the vertex
class of v. A new graphG′ is obtained by removing from eachVi the vertices whose colour appears
on the neighbourhood of the vertex wi in Vi coloured α (if it exists). This reduces the size of each
class by at most �. Then the strengthened version of Theorem 1.1 is used to find an IT Y of G′
containing v. As shown in [4], the modification of c obtained by giving each yi ∈ Y ∩Vi colour
α, and each wi colour c(yi), is a partial strong 3�-colouring that colours more vertices than c did
(in particular it colours v). Hence in at most |V(G)| such steps a suitable colouring is constructed.
This argument therefore gives the following corollary of Corollary 7.5.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 803

Corollary 7.6. Let� be a positive integer. There exists an algorithmA that takes as input any graph
G with maximum degree � and vertex partition (V1, . . . ,Vm) where |Vi|� 3� + 1 for each i, and
finds, in time polynomial in |V(G)|, a strong (3� + 1)-colouring of G with respect to (V1, . . . ,Vm).

7.4 Hitting sets for maximum cliques
It was first shown by Rabern [56], and later (with a best possible bound) by King [47], that when
the maximum degree and clique number of a graph are close enough, the graph contains an inde-
pendent set meeting all maximum cliques. Finding such a set is important for various colouring
problems (see e.g. [47, 57]). King’s result is as follows, where ω(G) denotes the clique number of
the graph G.

Theorem 7.7. Let G be a graph of maximum degree� such thatω(G)> 2
3 (� + 1). Then G contains

an independent set meeting every maximum clique.

As shown in [47], if ω(G)> 2
3 (� + 1) then the set of all maximum cliques in G can be parti-

tioned into classes such that for each class Ci we have | ∩C∈Ci V(C)|� (� + 1)/3. Thus for each
class Ci there exists a ‘core’ Vi of at least (� + 1)/3 vertices that is contained in every clique in Ci.
Moreover, the Vi are all disjoint. Thus an IT of the subgraph of G induced by the union of all the
coresVi (where theVi are the vertex classes) provides a suitable independent hitting set. By follow-
ing the argument in [47] (and being slightly more careful with divisibility), it can be shown that it
suffices to establish the following modification of Theorem 1.2 with the value k= �(� + 1)/3�.

Lemma 7.8. Let k be a positive integer and let G be a graph with vertex partition (V1, . . . ,Vm).
If, for every i and every v ∈Vi, the vertex v has at most min{k− 1, |Vi| − k} neighbours outside Vi,
then G has an IT.

In [47] the slightly stronger statement with min{k− 1, |Vi| − k} replaced by min{k, |Vi| − k} is
established and used, but the proof is not algorithmic. The advantage of Lemma 7.8 is that we can
use Theorem 1.4 to give an algorithmic proof, as follows.

Proof. As before, we may assume each Vi is independent. Since each vertex has at most k− 1
neighbours, we have that G is k-claw-free. Let ε = 1/(k− 1). We apply the algorithm FindITorBD
toG and (V1, . . . ,Vm). Since k is fixed, the running time is polynomial in |V(G)|, where the degree
of the polynomial depends only on k. We obtain either

(1) an IT of G, or
(2) a set B of vertex classes and a set D of vertices of G such that D dominates GB in G and

|D| < (2+ ε)(|B| − 1). Moreover, D contains V(K) for a constellation K of some B0 ⊇ B,
where |D \V(K)| < ε(|B| − 1).

If (1) is the output for every input G then we have the required algorithm, so suppose (2) holds
for some G. Recall from Definition 1.3 that the set of leaves in the constellation K forms an IT of
|B0| − 1 vertex classes of B0, and hence in particular D contains an IT Y of a set B′ of |B| − 1
vertex classes of B.

Since D dominates GB , we know that∑
v∈D

d(v)�
∑
Vi∈B

|Vi|�
∑
Vi∈B′

|Vi|.

Since Y is an IT of B′, we have that |Y|� |B| − 1 and so |D \ Y| < (1+ ε)(|B| − 1). For any
vertex u ∈D \ Y , we know d(u)� k− 1 and for any vertex v ∈ Y , we have d(v)� |Vi| − k where

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

804 A. Graf and P. Haxell

v ∈Vi. Hence ∑
v∈D

d(v)�
∑
v∈Y

d(v)+ (k− 1)|D \ Y|

<
∑
Vi∈B′

(|Vi| − k)+ (k− 1)(1+ ε)(|B| − 1)

�
∑
Vi∈B′

|Vi| − (|B| − 1)+ ε(k− 1)(|B| − 1)

=
∑
Vi∈B′

|Vi|.

This is a contradiction and so outcome (2) never occurs. This completes the proof.

When � is fixed, the sets Vi can be found algorithmically in time polynomial in |V(G)|. Thus
we have the following.

Theorem 7.9.

(1) Let k be a positive integer. There exists an algorithm A that finds an IT in any graph G with
vertex partition (V1, . . . ,Vm) with the property that, for each i and each v ∈Vi, the vertex v
has at mostmin{k− 1, |Vi| − k} neighbours outside Vi. The running time ofA is polynomial
in |V(G)|.

(2) Let � be a positive integer. There exists an algorithm A ′ that finds, in time polynomial in
|V(G)|, an independent set meeting every maximum clique in any graph G with maximum
degree � and ω(G)> 2(� + 1)/3.

8. Concluding remarks
As noted in the Introduction, the running time of the algorithm in Theorem 1.4 is polynomial in
|V(G)|, where the degree of the polynomial depends on the input parameters ε and r. (Similarly in
Corollary 1.5 it depends on �.) While the dependence on ε seems unavoidable, we are not certain
of the nature (or even the necessity) of the dependence on r. If this could be avoided, or even if the
condition of being r-claw-free could be substantially weakened, then algorithmic versions of many
more applications of Theorems 1.1 and 1.2 would follow. The r-claw-free condition was required
by our choice of signature vector, and used in the bounds in Lemma 5.3. We consider it an inter-
esting open question as to whether this condition is essential. Recently, a randomized algorithm
(that uses FindITorBD as a subroutine) was developed in [30] that overcomes the exponential
dependence on � in Corollary 1.5.

See [29] for full details on the applications outlined in Section 7 as well as others (e.g. special
graph partitions as in [12], and more specific results on circular chromatic index as in [45]), and
more discussion of other applications of Theorems 1.1 and 1.2.

We close by pointing out that Theorems 1.1 and 1.2 have both a combinatorial proof [36] and
a topological proof [5, 38, 51], using the notion of topological connectedness (see e.g. [3]). The
algorithms presented in this paper, and also that of [14, 15, 16], are based on the combinato-
rial proofs of these results. There are other criteria guaranteeing the existence of independent
transversals for which only a topological proof is known, for example [3, 6], which also have many
applications. Thus algorithmic versions of these results would also be very interesting and useful,
but currently seem out of reach. One simply stated example concerns 3-partite 3-uniform hyper-
graphs, in which the vertex set has a partition into 3 parts A, B and C, and each edge contains
exactly one vertex from each part. (Thus a 3-partite 3-uniform hypergraph is also bipartite in the

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

Combinatorics, Probability and Computing 805

sense of Section 7.1.) The following is a slight reformulation of the main result of [2], which is a
direct application of [6].

Theorem 8.1. Let H be a 3-partite 3-uniform hypergraph and let k be a non-negative integer. Then
H contains either a set of k disjoint edges, or a set W of vertices such that |W|� 2(k− 1) and W ∩
e
= ∅ for every edge e of H.

If the requirement |W|� 2(k− 1) is relaxed to |W|� 3(k− 1) then a simple greedy matching
procedure gives an algorithmic proof. The best known algorithmic result for this problem is given
by the proof in [37], which is also combinatorial, and provides a suitable algorithm for |W|�
5(k− 1)/2.

Acknowledgements
The authors are indebted to ChidambaramAnnamalai for very helpful discussions and correspon-
dence. They would also like to thank Nikhil Bansal and David Harris for helpful comments.

References
[1] Achlioptas, D. and Iliopoulos, F. (2016) Random walks that find perfect objects and the Lovász Local Lemma. J. Assoc.

Comput. Mach. 63 22.
[2] Aharoni, R. (2001) Ryser’s conjecture for tripartite 3-graphs. Combinatorica 21 1–4.
[3] Aharoni, R. and Berger, E. (2006) The intersection of a matroid and a simplicial complex. Trans. Amer. Math. Soc. 358

4895–4917.
[4] Aharoni, R., Berger, E. and Ziv, R. (2007) Independent systems of representatives in weighted graphs. Combinatorica 27

253–267.
[5] Aharoni, R., Chudnovsky, M. and Kotlov, A. (2002) Triangulated spheres and colored cliques. Discrete Comput. Geom.

28 223–229.
[6] Aharoni, R. and Haxell, P. (2000) Hall’s theorem for hypergraphs. J. Graph Theory 35 83–88.
[7] Alon, N. (1988) The linear arboricity of graphs. Israel J. Math. 62 311–325.
[8] Alon, N. (1991) A parallel algorithmic version of the local lemma. In Thirty-Second Annual Symposium on Foundations

of Computer Science, pp. 586–593, IEEE.
[9] Alon, N. (1992) The strong chromatic number of a graph. Random Struct. Algorithms 3 1–7.
[10] Alon, N. (2003) Problems and results in extremal combinatorics I. Discrete Math. 273 31–53.
[11] Alon, N. and Asodi, V. (2007) Edge colouring with delays. Combin. Probab. Comput. 16 173–191.
[12] Alon, N., Ding, G., Oporowski, B. and Vertigan, D. (2003) Partitioning into graphs with only small components.

J. Combin. Theory Ser. B 87 231–243.
[13] Alon, N. and Spencer, J. (2008) The Probabilistic Method, third edition, Wiley.
[14] Annamalai, C. (2016) Finding perfect matchings in bipartite hypergraphs. In Twenty-Seventh Annual ACM–SIAM

Symposium on Discrete Algorithms, pp. 1814–1823.
[15] Annamalai, C. (2017) Algorithmic advances in allocation and scheduling. PhD dissertation, ETH Zurich.
[16] Annamalai, C. (2018) Finding perfect matchings in bipartite hypergraphs. Combinatorica 38 1285–1307.
[17] Asadpour, A., Feige, U. and Saberi, A. (2008) Santa Clausmeets hypergraphmatchings. InAPPROX 2008 and RANDOM

2008 (A. Goel et al., eds), Vol. 5171 of Lecture Notes in Computer Science, pp. 10–20, Springer.
[18] Asadpour, A., Feige, U. and Saberi, A. (2012) Santa Claus meets hypergraph matchings. ACM Trans. Algorithms 8 24.
[19] Beck, J. (1991) An algorithmic approach to the Lovász Local Lemma. Random Struct. Algorithms 2 343–365.
[20] Bissacot, R., Fernández, R., Procacci, A. and Scoppola, B. (2011) An improvement of the Lovász local lemma via cluster

expansion. Combin. Probab. Comput. 20 709–719.
[21] Bollobás, B., Erdős, P. and Szemerédi, E. (1975) On complete subgraphs of r-chromatic graphs. Discrete Math. 13 97–

107.
[22] Britnell, J., Evseev, A., Guralnick, R., Holmes, P. and Maróti, A. (2008) Sets of elements that pairwise generate a linear

group. J. Combin. Theory Ser. A 115 442–465.
[23] Chandrasekaran, K., Goyal, N. and Haeupler, B. (2013) Deterministic algorithms for the Lovász local lemma. SIAM J.

Comput. 42 2132–2155.
[24] Christofides, D., Edwards, K. and King, A. (2013) A note on hitting maximum and maximal cliques with a stable set.

J. Graph Theory 73 354–360.

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000127

806 A. Graf and P. Haxell

[25] Czumaj, A. and Scheideler, C. (2000) Coloring non-uniform hypergraphs: a new algorithmic approach to the general
Lovász local lemma. In Eleventh Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 30–39.

[26] Erdős, P. and Lovász, L. (1975) Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite
and Finite Sets (Keszthely, Hungary 1973), Vol. 10 of Colloquia Mathematica Societatis János Bolyai, pp. 609–627.

[27] Fellows, M. (1990) Transversals of vertex partitions in graphs. SIAM J. Discrete Math. 3 206–215.
[28] Fischer, M. and Ghaffari, M. (2017) Subalgorithmic distributed algorithms for Lovász local lemma and the complex-

ity hierarchy. In Thirty-First International Symposium on Distributed Computing, Vol. 91 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 18:1–18.16, Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[29] Graf, A. (2019) Finding independent transversals efficiently. PhD dissertation, University of Waterloo.
[30] Graf, A., Harris, D. and Haxell, P. Algorithms for weighted independent transversals and strong colouring, submitted
[31] Harris, D. (2016) Lopsidependency in the Moser–Tardos framework: beyond the lopsided local lemma. ACM Trans.

Algorithms 13 17.
[32] Harris, D. (2018) Derandomizing the Lovász local lemma via log-space statistical tests. arXiv:1807.06672
[33] Harris, D. and Srinivasan, A. (2013) TheMoser–Tardos framework with partial resampling. In IEEE Fifty-Fourth Annual

Symposium on Foundations of Computer Science, pp. 469–478.
[34] Harris, D. and Srinivasan, A. (2014) A constructive algorithm for the Lovász local lemma on permutations. In Twenty-

Fifth Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 907–925.
[35] Harris, D. and Srinivasan, A. (2017) A constructive Lovász local lemma for permutations. Theory Comput. 13 1–41.
[36] Haxell, P. (1995) A condition for matchability in hypergraphs. Graphs Combin. 11 245–248.
[37] Haxell, P. (1995) A note on a conjecture of Ryser. Periodica Math. Hungar. 30 73–79.
[38] Haxell, P. (2001) A note on vertex list colouring. Combin. Probab. Comput. 10 345–347.
[39] Haxell, P. (2004) On the strong chromatic number. Combin. Probab. Comput. 13 857–865.
[40] Haxell, P. (2008) An improved bound for the strong chromatic number. J. Graph Theory 58 148–158.
[41] Haxell, P. (2011) On forming committees. Amer. Math. Monthly 118 777–788.
[42] Haxell, P. and Szabó, T. (2006) Odd independent transversals are odd. Combin. Probab. Comput. 15 193–211, .
[43] Haxell, P., Szabó, T. and Tardos, G. (2003) Bounded size components: partitions and transversals. J. Combin. Theory

Ser. B 88 281–297.
[44] Jin, G. (1992) Complete subgraphs of r-partite graphs. Combin. Probab. Comput. 1 241–250.
[45] Kaiser, T., Král, D. and Škrekovski, R. (2004) A revival of the girth conjecture. J. Combin. Theory Ser. B 92 41–53.
[46] Kaiser, T., Král, D., Škrekovski, R. and Zhu, X. (2007) The circular chromatic index of graphs of high girth. J. Combin.

Theory Ser. B 97 1–13.
[47] King, A. (2011) Hitting all maximum cliques with a stable set using lopsided independent transversals J. Graph Theory

67 300–305.
[48] Kolipaka, K. and Szegedy, M. (2011)Moser and Tardos meet Lovász. In Forty-Third Annual ACM Symposium on Theory

of Computing, pp. 235–244.
[49] Kolipaka, K., Szegedy, M. and Xu, Y. (2012) A sharper local lemma with improved applications. In Approximation,

Randomization, and Combinatorial Optimization, Vol. 7408 of Lecture Notes in Computer Science, pp. 603–614,
Springer.

[50] Krivelevich, M. (1997) Almost perfect matchings in random uniform hypergraphs. Discrete Math. 170 259–263.
[51] Meshulam, R. (2001) The clique complex and hypergraph matching. Combinatorica 21 89–94.
[52] Molloy, M. and Reed, B. (1998) Further algorithmic aspects of the local lemma. In Thirtieth Annual ACM Symposium

on Theory of Computing, pp. 524–529.
[53] Moser, R. (2009) A constructive proof of the Lovász Local Lemma. In Forty-First Annual ACM Symposium on Theory of

Computing, pp. 343–350.
[54] Moser, R. and Tardos, G. (2010) A constructive proof of the general Lovász Local Lemma. J. Assoc. Comput. Mach. 57 11.
[55] Pegden, W. (2014) An extension of the Moser–Tardos algorithmic local lemma, SIAM J. Discrete Math. 28 911–917.
[56] Rabern, L. (2011) On hitting all maximum cliques with an independent set. J. Graph Theory 66 32–37.
[57] Reed, B. (2001) Perfect Graphs, Wiley.
[58] Srinivasan, A. (2008) Improved algorithmic versions of the Lovász local lemma. In Nineteenth Annual ACM–SIAM

Symposium on Discrete Algorithms, pp. 611–620.
[59] Szabó, T. and Tardos, G. (2006) Extremal problems for transversals in graphs with bounded degree. Combinatorica 26

333–351.
[60] Yuster, R. (1997) Independent transversals in r-partite graphs. Discrete Math. 176 255–261.

Cite this article: Graf A and Haxell P (2020). Finding independent transversals efficiently. Combinatorics, Probability and
Computing 29, 780–806. https://doi.org/10.1017/S0963548320000127

https://doi.org/10.1017/S0963548320000127 Published online by Cambridge University Press

https://arXiv.org/abs/1807.06672
https://doi.org/10.1017/S0963548320000127
https://doi.org/10.1017/S0963548320000127

	Finding independent transversals efficiently
	Introduction
	Set-up and overview
	Preliminaries
	Algorithms
	BuildLayer
	SuperposedBuild
	GrowTransversal

	Analysis
	Signatures
	Applications
	Hypergraph matchings
	Circular chromatic index
	Strong colouring
	Hitting sets for maximum cliques

	Concluding remarks

