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In 1960 Rényi, in his Michigan State University lectures, asked for the number of random queries
necessary to recover a hidden bijective labelling of n distinct objects. In each query one selects a
random subset of labels and asks, which objects have these labels? We consider here an asymmetric
version of the problem in which in every query an object is chosen with probability p > 1/2 and
we ignore ‘inconclusive’ queries. We study the number of queries needed to recover the labelling
in its entirety (Hn), before at least one element is recovered (Fn), and to recover a randomly chosen
element (Dn). This problem exhibits several remarkable behaviours: Dn converges in probability
but not almost surely; Hn and Fn exhibit phase transitions with respect to p in the second term. We
prove that for p > 1/2 with high probability we need

Hn = log1/p n+ 1
2 logp/(1−p) logn+o(loglogn)

queries to recover the entire bijection. This should be compared to its symmetric (p = 1/2)
counterpart established by Pittel and Rubin, who proved that in this case one requires

Hn = log2 n+
√

2log2 n+o(
√

logn)

queries. As a bonus, our analysis implies novel results for random PATRICIA tries, as the problem
is probabilistically equivalent to that of the height, fillup level, and typical depth of a PATRICIA
trie built from n independent binary sequences generated by a biased(p) memoryless source.
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1. Introduction

In his lectures in the summer of 1960 at Michigan State University, Alfred Rényi discussed
several problems related to random sets [21]. Among them there was a problem regarding recov-
ering a labelling of a set X of n distinct objects by asking random subset questions of the form
‘Which objects correspond to the labels in the (random) set B?’ For a given method of randomly
selecting queries, Rényi’s original problem asks for the typical behaviour of the number of
queries necessary to recover the hidden labelling.

Formally, the unknown labelling of the set X is a bijection φ from X to a set A of labels
(necessarily with equal cardinality n), and a query takes the form of a subset B ⊆ A. The response
to a query B is φ−1(B) ⊆ X .

Our contribution in this paper is a precise analysis of several parameters of Rényi’s problem for
a particular natural probabilistic model on the query sequence. In order to formulate this model
precisely, it is convenient to first state a view of the process that elucidates its tree-like structure.
In particular, a sequence of queries corresponds to a refinement of partitions of the set of objects,
where two objects are in different partition elements if they have been distinguished by some
sequence of queries. More precisely, the refinement works as follows. Before any questions are
asked, we have a trivial partition P0 = X consisting of a single class (all objects). Inductively, if
P j−1 corresponds to the partition induced by the first j −1 queries, then P j is constructed from
P j−1 by splitting each element of P j−1 into at most two disjoint subsets: those objects that are
contained in the pre-image of the jth query set Bj and those that are not. The hidden labelling is
recovered precisely when the partition of X consists only of singleton elements. An instance of
this process may be viewed as a rooted binary tree (which we call the partition refinement tree)
in which the jth level, for j � 0, corresponds to the partition resulting from j queries; a node in
a given level corresponds to an element of the partition associated with that level. A right child
corresponds to a subset of a parent partition element that is included in the subsequent query, and
a left child corresponds to a subset that is not included. See Example 1 for an illustration.

Example 1 (demonstration of partition refinement). Consider an instance of the problem
where X = [5] = {1, . . . ,5}, with labels (d,e,a,c,b) respectively (so A = {a,b,c,d,e}). Consider
the following sequence of queries:

1 B1 = {b,d} �→ {1,5}
2 B2 = {a,b,d} �→ {1,3,5},
3 B3 = {a,c,d} �→ {1,3,4},

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

{1, 5}

5 1

Each level j � 0 of the tree depicts the partition P j, where a right child node corresponds to the
subset of objects in the parent set which are contained in the response to the jth query. Singletons
are only explicitly depicted in the first level in which they appear. We can determine the labels of
all objects using the tree and the sequence of queries. For example, to determine the label of the
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object 3, we traverse the tree until we reach the leaf corresponding to 3. This indicates that the
label corresponding to 3 is in the singleton set

¬B1 ∩B2 = {a,c,e}∩{a,b,d} = {a}.
Note that leaves of the tree always correspond to singleton sets.

In this work we consider a version of the problem in which, in every query, each label is in-
cluded independently with probability p> 1/2 (the asymmetric case) and we ignore inconclusive
queries. In particular, if a candidate query is not such that it splits every non-trivial element of
the previous partition, we modify the query by deciding again independently, for each unsplit
partition element, whether or not to include each label of that partition element with probability
p. We perform this modification until the resulting query splits every element of the previous
partition non trivially. See Example 2.

Example 2 (ignoring inconclusive queries). Continuing Example 1, the query B2 fails to split
the partition element {1,5}, so it is an example of an inconclusive query and would be modified
in our model to, say, B′

2 = φ({1,3}). The resulting refinement of partitions is depicted as a tree
here. Note that the tree now does not contain non-branching paths and that B2 is ignored in the
final query sequence.

1 B1 = {b,d} �→ {1,5}
2 B′

2 = {a,d} �→ {1,3}
3 B3 = {a,c,d} �→ {1,3,4}.

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

5 1

We study three parameters of this random process: Hn, the number of such queries needed to
recover the entire labelling; Fn, the number needed before at least one element is recovered; and
Dn, the number needed to recover an element selected uniformly at random. Our objective is to
present precise probabilistic estimates of these parameters.

The symmetric version (i.e. p = 1/2) of the problem (with a variation) was discussed by
Pittel and Rubin in [20], where they analysed the typical value of Hn. In their model, a query
is constructed by deciding whether or not to include each label from A independently with
probability p = 1/2. To make the problem more interesting, they added a constraint similar
to ours: namely, a query is, as in our model, admissible if and only if it splits every non-
trivial element of the current partition. In contrast to our model, however, Pittel and Rubin
completely discard inconclusive queries (rather than modifying their inconclusive subsets as we
do). Despite this difference, the model considered in [20] is probabilistically equivalent to ours
for the symmetric case. Our primary contribution is the analysis of the problem in the asymmetric
case (p > 1/2), but our methods of proof allow us to recover the results of Pittel and Rubin.

The question asked by Rényi brings some surprises. For the symmetric model (p = 1/2) Pittel
and Rubin [20] were able to prove that the number of necessary queries is with high probability
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(see Theorem 2.1)

Hn = log2 n+
√

2log2 n+o(
√

logn). (1.1)

In this paper, we develop a different method that could be used to re-establish this result and
prove that for p > 1/2 the number of queries grows with high probability as

Hn = log1/p n+
1
2

logp/q logn+o(log logn), (1.2)

where q := 1 − p. Note a phase transition in the second term. Moreover, this result is perhaps
interesting in the sense that, for p > 1/2, Hn exhibits the second-order behaviour that Pittel
and Rubin stated that they fully expected but did not find in the p = 1/2 case [20]. We show
that another phase transition, also in the second term, occurs in the asymptotics for Fn (see
Theorem 2.2):

Fn =

{
log1/q n− log1/q log logn+o(log loglogn) p > q,

log2 n− log2 logn+o(log logn) p = q = 1/2.
(1.3)

In Theorem 2.3 we also state some interesting probabilistic behaviour of Dn. We have Dn/ logn →
1/h(p) (in probability) where h(p) := −p log p−q logq, but we do not have almost sure conver-
gence.

We establish these results in a novel way by considering first the external profile Bn,k, whose
analysis was, until recently, an open problem of its own (the second and third authors gave a
precise analysis of the external profile in an important range of parameters in [15, 17], but the
present paper requires really non-trivial extensions). The external profile at level k is the number
of bijection elements revealed by the kth query (one may also define the internal profile at level
k as the number of non-singleton elements of the partition immediately after the kth query). Its
study is motivated by the fact that many other parameters, including all of those that we mention
here, can be written in terms of it. Indeed,

P[Dn = k] = E[Bn,k]/n, Hn = max{k : Bn,k > 0} and Fn = min{k : Bn,k > 0}−1.

We now discuss our new results concerning the probabilistic behaviour of the external profile.
We establish in [15, 17] precise asymptotic expressions for the expected value and variance of
Bn,k in the central range, that is, with k ∼ α logn, where, for any fixed ε > 0, α ∈ (1/ log(1/q)+
ε ,1/ log(1/p)− ε) (the left and right endpoints of this interval as ε → 0 are associated with Fn

and Hn, respectively). Specifically, it was shown that both the mean and the variance are of the
same (explicit) polynomial order of growth (with respect to n). More precisely, expected value
and variance grow for k ∼ α logn as

H(ρ(α), logp/q(pkn))
nβ (α)

√
C logn

,

where β (α) � 1 and ρ(α) are complicated functions of α , C is an explicit constant, and H(ρ ,x)
is a function that is periodic in x. The oscillations come from infinitely many regularly spaced
saddle points that we observe when inverting the Mellin transform of the Poisson generating
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function of E[Bn,k]. Finally, in [17] we prove a central limit theorem; that is,

(Bn,k −E[Bn,k])/
√

Var[Bn,k] → N (0,1),

where N (0,1) represents the standard normal distribution.
In order to establish the most interesting results claimed in the present paper for Hn and Fn,

the analysis sketched above does not suffice: we need to estimate the mean and the variance of
the external profile beyond the range α ∈ (1/ log(1/q)+ε ,1/ log(1/p)−ε); in particular, for Fn

and Hn we need expansions at the left and right side (for ε → 0), respectively, of this range.
Having described most of our main results, we mention an important equivalence pointed out

by Pittel and Rubin [20]. They observed that their version of the Rényi process resembles the
construction of a digital tree known as a PATRICIA trie† [14, 23]. In fact, the authors of [20]
show that Hn is probabilistically equivalent to the height (longest path) of a PATRICIA trie built
from n binary strings generated independently by a memoryless source with bias p = 1/2 (that
is, with a ‘1’ generated with probability p; this is often called the Bernoulli model with bias p);
the equivalence is true more generally, for p � 1/2. It is easy to see that Fn is equivalent to the
fillup level (depth of the deepest full level), Dn to the typical depth (depth of a randomly chosen
leaf), and Bn,k to the external profile of the tree (the number of leaves at level k; the internal
profile at level k is similarly defined as the number of non-leaf nodes at that level). We spell out
this equivalence in the following simple claim.

Lemma 1.1 (equivalence of the Rényi problem with those of PATRICIA tries). Any para-
meter (in particular, Hn,Fn,Dn, and Bn,k) of the Rényi process with bias p that is a function of the
partition refinement tree is equal in distribution to the same function of a random PATRICIA trie
generated by n independent infinite binary strings from a memoryless source with bias p � 1/2.

Proof. In a nutshell, we couple a random PATRICIA trie and the sequence of queries from the
Rényi process by constructing both from the same sequence of binary strings from a memoryless
source. We do this in such a way that the resulting PATRICIA trie and the partition refinement
tree are isomorphic with probability 1 (in fact, always isomorphic), so that parameters defined in
terms of either tree structure are equal in distribution.

More precisely, we start with n independent infinite binary strings S1, . . . ,Sn generated accord-
ing to a memoryless source with bias p, where each string corresponds, in a way to be made
precise below, to a unique element of the set of labels (for simplicity, we assume that A = [n],
and S j is associated to the object j, for j ∈ [n]; intuitively, S j encodes the decision, for each
query, of whether or not to include j). These induce a PATRICIA trie T , and our goal is to show
that we can simulate a Rényi process using these strings, such that the corresponding tree TR is
isomorphic to T as a rooted plane– oriented tree (see Example 2). The basic idea is as follows: we
maintain for each string S j an index k j, initially set to 1. Whenever the Rényi process demands
that we make a decision about whether or not to include label j in a query, we include it if and
only if S j,k j = 1, and then increment k j by 1.

† We recall that a trie is a binary digital tree, where data that are represented by binary strings are stored at leaves of the
tree according to finite prefixes of the corresponding binary strings in a minimal way such that all appearing prefixes
are different. A PATRICIA trie is a trie in which non-branching paths are compressed; that is, there are no unary paths.
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Clearly, this scheme induces the correct distribution on queries. Furthermore, the resulting
partition refinement tree (ignoring inconclusive queries) is easily seen to be isomorphic to T .
Since the trees are isomorphic, the parameters of interest are equal in each case.

Thus, our results on these parameters for the Rényi problem directly lead to novel results on
PATRICIA tries, and vice versa. In addition to their use as data structures, PATRICIA tries also
arise as combinatorial structures which capture the behaviour of various processes of interest in
computer science and information theory (e.g. in leader election processes without trivial splits
[12] and in the solution to Rényi’s problem which we study here [2, 20]).

Similarly, the version of the Rényi problem that allows inconclusive queries corresponds to
results on tries built on n binary strings from a memoryless source. We thus discuss them in the
literature survey below.

Now we briefly review relevant facts about PATRICIA tries and other digital trees when
built over n independent strings generated by a memoryless source. Profiles of tries in both
the asymmetric and symmetric cases were studied extensively in [18]. The expected profiles
of digital search trees in both cases were analysed in [8], and the variance for the asymmetric
case was treated in [13]. Some aspects of trie and PATRICIA trie profiles (in particular, the
concentration of their distributions) were studied using probabilistic methods in [3, 4]. The depth
in PATRICIA for the symmetric model was analysed in [2, 14] while for the asymmetric model
in [22]. The leading asymptotics for the PATRICIA height for the symmetric Bernoulli model
was first analysed by Pittel [19] (see also [23] for suffix trees). The two-term expression for the
height of PATRICIA for the symmetric model was first presented in [20] as discussed above (see
also [2]). To our knowledge, precise asymptotics beyond the leading term for the height have
not been given in the asymmetric case for either tries or digital search trees. Finally, in [15, 17],
the second two authors of the present paper presented a precise analysis of the external profile
(including its mean, variance, and limiting distribution) in the asymmetric case, for the range in
which the profile grows polynomially. The present work relies on this previous analysis, but the
analyses for Hn and Fn involve a significant extension, since they rely on precise asymptotics for
the external profile outside this central range.

Regarding methodology, the basic framework (which we use here) for analysis of digital
tree recurrences for profiles by applying the Poisson transform to derive a functional equation,
converting this to an algebraic equation using the Mellin transform, and then inverting using
the saddle point method/singularity analysis followed by depoissonization, was worked out in
[18] and followed in [8]. While this basic chain is common, the challenges of applying it vary
dramatically between the different digital trees, and this is the case here. As we discuss later (see
(2.5) and the surrounding text), this variation starts with the quite different forms of the Poisson
functional equations, which lead to unique analytic challenges.

The plan for the paper is as follows. In the next section we formulate our problem more
precisely and present our main results regarding Bn,k, Hn, Fn and Dn, along with sketches of
the derivations. Complete proofs for Hn (and a roadmap for the proof for Fn) are provided in
Section 3. Section 4 provides some background on the depoissonization step. Finally, Section 5
details a surprising series identity which arises in the analysis of Hn, leading to significant
complications.
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2. Main results

In this section, we formulate precisely Rényi’s problem and present our main results. Our goal
is to provide precise asymptotics for three natural parameters of the Rényi problem on n objects
with each label in a given query being included with probability p � 1/2: the number Fn of
queries needed before at least a single element of the bijection can be identified, the number Hn

needed to recover the bijection in its entirety, and the number Dn needed to recover an element
of the bijection chosen uniformly at random from the n objects. If one wishes to determine
the label for a particular object, these quantities correspond to the best, worst and average case
performance, respectively, of the random subset strategy proposed by Rényi.

We recall that we can express Fn, Hn and Dn in terms of the profile Bn,k (defined as the number
of bijection elements revealed by the kth query)

Fn = min{k : Bn,k > 0}−1, Hn = max{k : Bn,k > 0}, P[Dn = k] =
E[Bn,k]

n
. (2.1)

Using the first and second moment methods, we can then obtain upper and lower bounds on Hn

and Fn in terms of the moments of Bn,k:

P[Hn > k] � ∑
j>k

E[Bn, j], P[Hn < k] � Var[Bn,k]
E[Bn,k]2

, (2.2)

and

P[Fn > k] � Var[Bn,k]
E[Bn,k]2

, P[Fn < k] � E[Bn,k]. (2.3)

The analysis of the distribution of Dn reduces simply to that of E[Bn,k], as in (2.1).
Having reduced the analyses of Fn, Hn and Dn to that of the moments of Bn,k, we now explain

our approach to the latter analysis, starting in Section 2.1 with a review of the work done in [15].
We will then show in Section 2.2 how the present paper requires extensions far beyond [15, 17]
to give new results on the quantities of interest in the Rényi problem.

2.1. Basic facts for the analysis of Bn,k

Here we recall some facts, worked out in detail in [15], which will form the starting point of
the analysis in the present paper. In order to derive our main results, we need proper asymptotic
information about E[Bn,k] and Var[Bn,k] at the boundaries of this region.

We start by deriving a recurrence for the average profile, which we denote by μn,k := E[Bn,k].
It satisfies

μn,k = (pn +qn)μn,k +
n−1

∑
j=1

(
n
j

)
p jqn− j(μ j,k−1 + μn− j,k−1) (2.4)

for n � 2 and k � 1, with some initial/boundary conditions; most importantly, μn,k = 0 for k � n
and any n. Moreover, μn,k � n for all n and k owing to the elimination of inconclusive queries.
This recurrence arises from conditioning on the number j of objects that are included in the
first query. If 1 � j � n − 1 objects are included, then the conditional expectation is a sum of
contributions from those objects that are included and those that are not. If, on the other hand,
all objects are included or all are excluded from the first potential query (which happens with
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probability pn + qn), then the partition element splitting constraint on the queries applies, the
potential query is ignored as inconclusive, and the contribution is μn,k.

The tools that we use to solve this recurrence (for details see [15, 17]) are similar to those
of the analyses for digital trees [23] such as tries and digital search trees (though the analytical
details differ significantly). We first derive a functional equation for the Poisson transform

G̃k(z) = ∑
m�0

μm,k
zm

m!
e−z of μn,k,

which gives

G̃k(z) = G̃k−1(pz)+ G̃k−1(qz)+ e−pz(G̃k − G̃k−1)(qz)+ e−qz(G̃k − G̃k−1)(pz).

This we write as

G̃k(z) = G̃k−1(pz)+ G̃k−1(qz)+W̃k,G(z), (2.5)

and at this point the goal is to determine asymptotics for G̃k(z) as z → ∞ in a cone around the
positive real axis. When solving (2.5), W̃k,G(z) significantly complicates the analysis because it
has no closed-form Mellin transform (see below). Finally, depoissonization [23] will allow us
to directly transfer the asymptotic expansion for G̃k(z) back to one for μn,k since μn,k is well
approximated by G̃k(n).

To convert (2.5) to an equation that is easier to handle, we use the Mellin transform [9], which
for a function f : R → R is given by

f ∗(s) =
∫ ∞

0
zs−1 f (z) dz.

Using the Mellin transform identities and defining T (s) = p−s +q−s, we end up with an expres-
sion for the Mellin transform G∗

k(s) of G̃k(z) of the form

G∗
k(s) = Γ(s+1)Ak(s)(p−s +q−s)k = Γ(s+1)Ak(s)T (s)k,

where Ak(s) is an infinite series arising from the contributions coming from the function W̃k,G(z),
and the fundamental strip of G̃k(z) contains (−k − 1,∞). It involves unknown μm, j − μm, j−1 for
various m and j (see [15, 16]), that is,

Ak(s) =
k

∑
j=0

T (s)− j ∑
m� j

T (−m)(μm, j − μm, j−1)
Γ(m+ s)

Γ(s+1)Γ(m+1)
. (2.6)

Locating and characterizing the singularities of G∗
k(s) then becomes important. In [17] it is shown

that for any k, Ak(s) is entire, with zeros at s ∈ Z∩ [−k,−1], so that G∗
k(s) is meromorphic, with

possible simple poles at the negative integers less than −k. The fundamental strip of G̃k(z) then
contains (−k −1,∞).

We must then asymptotically invert the Mellin transform to recover G̃k(z). The Mellin inver-
sion formula for G∗

k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗

k(s) ds =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+1)Ak(s)T (s)k ds, (2.7)

where ρ is any real number inside the fundamental strip associated with G̃k(z).
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2.2. Main results via extension of the analysis of Bn,k

Having explained the relevant functional equations and the integral representation (2.7) for G̃k(z),
we now move on to describe the main results of this paper. For Theorem 2.1 and 2.2 we start with
a sketch of the derivation whereas the proof of Theorem 2.3 is given immediately. The complete
proof of Theorem 2.1 and a roadmap for Theorem 2.2, both for the case p > q, is given in
Section 3.

2.2.1. Result on Hn. Our first aim is to derive two-term expansions for the typical values of Hn

and Fn. To do this for Hn, for example, we define, for p � q,

k∗ = log1/p n+ψ∗(n),

where ψ∗(n) = o(logn) is a function to be determined. We also define

ψL(n) = (1− ε)ψ∗(n)kL = log1/p n+ψL(n), (2.8)

ψU(n) = (1+ ε)ψ∗(n)kU = log1/p n+ψU(n), (2.9)

for arbitrarily small ε > 0. We require that ψ∗(n) be such that

E[Bn,kL ] → ∞,E[Bn,kU ] → 0, (2.10)

and a proper upper bound for Var[Bn,kL ] (see Lemma 3.4). However, in order to make the follow-
ing pre-analysis more transparent we will not dwell on the variance.

To determine a candidate for ψ∗(n), we start with the inverse Mellin integral representation
for G̃k∗(n):

G̃k∗(n) =
1

2πi

∫ ρ+i∞

ρ−i∞
Jk∗(n,s) ds, (2.11)

where we define

Jk(n,s) = n−sT (s)kΓ(s+1)Ak(s)

=
k

∑
j=0

n−sT (s)k− j ∑
m� j

T (−m)(μm, j − μm, j−1)
Γ(m+ s)
Γ(m+1)

. (2.12)

Note that by depoissonization (see Section 4 and [11]) we have

μn,k∗ = G̃k∗(n)− n
2

G̃′′
k∗(n)+O(n−1+ε).

Indeed, because of the exponential decay of Ak(s)Γ(s+1) along vertical lines, the entire integral
is at most of the same order as the integrand on the real axis (we justify this more carefully in
Section 3.1). Furthermore, since the second derivative has an additional factor s(s+1)n−2 in the
integrand we will get a similar bound for (n/2)G̃′′

k∗(n), which is just ρ2/n times the corresponding
bound for G̃k∗(n), and thus negligible in comparison to G̃k∗(n).

In this proof roadmap we focus on estimating the integrand Jk∗(n,ρ), ρ ∈ R, as precisely as
possible. Using Lemma 3.1, we find (see (3.7) in Section 3.1) that the jth term in the representa-
tion (2.12) of Jk∗(n,ρ) is of order

n−ρ T (ρ)k∗− j p j2/2+O( j log j), (2.13)
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where ρ < 0 and T (ρ) = p−ρ +q−ρ . Hence, by setting j0 = − log1/p T (ρ) we have

Jk∗(n,ρ) = O(n−ρ T (ρ)k∗ p− j2
0/2+O( j0 log j0)). (2.14)

Next we have to choose ρ ∈ R− that minimizes this upper bound. Here we distinguish between
the symmetric case p = q = 1/2 and the case p > q.

In the symmetric case we have T (ρ) = 2ρ+1 and j0 = −ρ −1 and thus

Jk∗(n,ρ) = O(n−ρ 2(ρ+1)(log2 n+ψ∗(n))+ρ2/2+O(|ρ| log |ρ|)).

Consequently, by disregarding the error term O(|ρ | log |ρ |) the optimal choice of ρ is ρ =
−ψ∗(n), which gives the upper bound

Jk∗(n,ρ) = O(2log2 n−ψ∗(n)2/2+O(|ψ∗(n)| log |ψ∗(n)|)).

Hence, the threshold for this upper bound is ψ∗(n) =
√

2log2 n. In particular it also follows that

JkU (n,ρ) = O(2−(2ε+ε2) log2 n+O(
√

logn log logn)),

where

kU = log1/p n+(1+ ε)
√

2log2 n.

We also note that we get the same bound if ρ = −ψ∗(n)+O(1).
In the case p > q we have to be slightly more careful. Nevertheless we can start with the upper

bound (2.14) and obtain

Jk∗(n,ρ) = O(p(ρ−log1/p T (ρ)) log1/p n−ψ∗(n) log1/p T (ρ)−(log1/p T (ρ))2/2+O( j0 log j0)).

From the representation T (ρ) = p−ρ(1+(p/q)ρ) we obtain

log1/p T (ρ) = ρ +
(p/q)ρ

log(1/p)
+O((p/q)2ρ).

It is clear that we have to choose ρ < 0 that tends to −∞ if n → ∞. Hence, log1/p T (ρ) = ρ +o(1)
and consequently a proper choice for ρ is the solution of the equation

∂
∂ρ

(
− (p/q)ρ

log(1/p)
log1/p n−ψ∗(n)ρ − ρ2

2

)
=

(p/q)ρ log(p/q)
log(1/p)

log1/p n−ψ∗(n)−ρ = 0.

In fact this gives ρ < −ψ∗(n) and thus

ρ = − logp/q logn+O(log log logn).

With this choice the upper bound for Jk∗(n,ρ) can be written as

Jk∗(n,ρ) = O(p(ψ∗(n)+ρ)/ log(p/q)−ψ∗(n)ρ−(ρ2/2)+O( j0 log j0)) = O(p−ψ∗(n)ρ−(ρ2/2)+O( j0 log j0)). (2.15)

This implies that the threshold for this upper bound is given by

ψ∗(n) = −ρ
2

=
1
2

logp/q logn+O(log log logn).

In particular, if we replace ψ∗(n) with ψU(n) = 1
2 (1+ ε) logp/q logn, we obtain

JkU (n,ρ) = O(pε(logp/q logn)2/2+O(log logn log log logn)), (2.16)
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and for ψL(n) = (1− ε) 1
2 logp/q logn,

JkL(n,ρ) = O(p−ε(logp/q logn)2/2+O(log logn log log logn)). (2.17)

The above pre-analysis suggests asymptotic estimates for G̃k(n) and thus by depoissonization
estimates for μn,k, which imply a two-term expansion for Hn. The complete proof of this result is
given in Section 3.1. In summary, we formulate below our first main result.

Theorem 2.1 (asymptotics for Hn). With high probability,

Hn =

⎧⎪⎨
⎪⎩

log1/p n+
1
2

logp/q logn+o(log logn) p > q,

log2 n+
√

2log2 n+o(
√

logn) p = q,

for large n.

2.2.2. Result on Fn. We take a similar approach for the derivation of Fn, with some differences.
We set

k∗ = log1/q n+φ∗(n)

with

φL(n) = (1+ ε)φ∗(n),φU(n) = (1− ε)φ∗(n),

and kL and kU , respectively, defined with φL (respectively, φU ) in place of φ∗. The derivation of
an estimate for the jth term of Jk∗(n,ρ), ρ ∈ R, is similar to that in Section 2.2.1, except now the
asymptotics of Γ(ρ +1) play a role (this is reflected in the proof, where Γ(ρ +1) determines the
location of the saddle points of the integrand). We find that the jth term is at most qλ j(n,ρ), where

λ j(n,ρ) = ρ( j −φ∗(n))+( j −φ∗(n)− log1/q n) log1/q(1+(q/p)ρ)−ρ log1/q ρ +O(ρ).
(2.18)

Optimizing over j gives j = 0. The behaviour with respect to ρ depends on whether or not p = q,
because log1/q(1 +(q/p)ρ) = 1 when p = q and is dependent on ρ otherwise. Taking this into
account and minimizing over all ρ gives an optimal value of

ρ =

{
2−φ∗(n)−1/ log2 p = q = 1/2,

logp/q logn p > 1/2.

Note that this corresponds to the real part of the saddle points in the proof. Plugging this into
(2.18), setting the resulting expression equal to 0, and solving for φ∗(n) gives

φ∗(n) =

{
− log2 logn+O(1) p = q = 1/2,

− log1/q log logn p > 1/2.

This heuristic derivation suggests that the following theorem holds. More details are given in
Section 3.2.
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Theorem 2.2 (asymptotics for Fn). With high probability,

Fn =

{
log1/q n− log1/q log logn+o(log log logn) p > q,

log2 n− log2 logn+o(log logn) p = q,

for large n.

2.3. Result on Dn

We move to our results concerning Dn. To state them, we first need to observe that there is a
natural way to define the sequence {Dn}n�0 on a single probability space, so that we may ask
whether or not Dn, properly normalized, converges almost surely, and to what limiting value.
This common space is defined by appealing to the correspondence between the sequence of
Rényi problem queries and the growth of a random PATRICIA trie. For each n � 0, we define a
tree Tn which is a PATRICIA trie constructed on n strings (equivalently, a terminating sequence
of Rényi queries recovering a bijection between two sets of n elements): T0 is an empty tree, and
Tn+1 is constructed from Tn by generating an independent string of i.i.d. Bernoulli(p) random
variables and inserting this string into Tn. Then, for each n, Dn is the depth of a leaf chosen
uniformly at random (and independent of everything else) from the leaves of Tn.

With this construction in mind, we have the following result about the convergence of Dn. Its
proof combines known facts about the profile with the new ones proved here, as well as a proof
technique that was used before in [19], for example.

Theorem 2.3 (asymptotics of Dn). For p > 1/2, the normalized depth Dn/ logn converges in
probability to 1/h(p) where h(p) := −p log p − q logq is the entropy of a Bernoulli(p) random
variable, but not almost surely. In fact,

liminf
n→∞

Dn/ logn = 1/ log(1/q), limsup
n→∞

Dn/ logn = 1/ log(1/p) (2.19)

almost surely.

Proof. The fact that Dn/ logn converges in probability to 1/h(p) follows directly from the
central limit theorem for Dn given in [23].

Next we show that (2.19) holds. Clearly Fn � Dn � Hn. Now let us consider the following
sequences of events: An is the event that Dn = Fn +1, and A′

n is the event that Dn = Hn. We note
that all elements of the sequences are independent, and P[An] � 1/n, P[A′

n] � 1/n. This implies
that

∞

∑
n=1

P[An] =
∞

∑
n=1

P[A′
n] = ∞,

so the Borel–Cantelli lemma tells us that both An and A′
n occur infinitely often almost surely.

In the next step we show that, almost surely,

Fn/ logn → 1/ log(1/q) and Hn/ logn → 1/ log(1/p).

Then (2.19) is proved. We cannot apply the Borel–Cantelli lemmas directly, because the relevant
sums do not converge. Instead, we apply the following trick: we observe that both (Fn) and (Hn)
are non-decreasing sequences. Next, we show that, on some appropriately chosen subsequence,
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both of these sequences, when divided by logn, converge almost surely to their respective limits.
Combining this with the observed monotonicity yields the claimed almost sure convergence, and
hence the equalities in (2.19).

We illustrate this idea more precisely for Hn. By our analysis above, we know that

P[|Hn/ logn−1/ log(1/p)| > ε] = O(e−Θ(log logn)2
).

Then we fix t, and we define nr,t = 2t222r
. On this subsequence, by the probability bound just

stated, we can apply the Borel–Cantelli lemma to conclude that Hnr,t/ log(nr,t) → 1/ log(1/p) ·
(t +1)2/t2 almost surely. Moreover, for every n, we can choose r such that nr,t � n � nr,t+1. Then

Hn/ logn � Hnr,t+1/ lognr,t ,

which implies

limsup
n→∞

Hn

logn
� limsup

r→∞

Hnr,t+1

lognr,t+1

lognr,t+1

lognr,t
=

1
log(1/p)

· (t +1)2

t2
.

Taking t → ∞, this becomes 1/ log(1/p), as desired. The argument for the liminf is similar, and
this establishes the almost sure convergence of Hn. The derivation is entirely similar for Fn.

3. Proof of Theorems 2.1 and 2.2

We give a detailed proof of Theorem 2.1 and indicate the main lines of the proof of Theorem 2.2.
We also concentrate just on the case p > q. The proof of the symmetric case can be done by the
same techniques (properly adapted) but it just re-proves the result by Pittel and Rubin [20].

3.1. Proof of Theorem 2.1
3.1.1. A priori bounds for μn,k. For the analysis of the profile around the height level, we need
precise information about μn,k with n → ∞ when k close to n. This is captured in the following
lemma, which first appeared in a similar form in [16].

We consider μn,k where k is close to n, so we set k = n− � and represent it as

μn,k = μn,n−� = n!C∗(p)p(n−�)(n−�+1)2/2qn−�ξ�(n),

where

C∗(p) =
∞

∏
j=2

(1− p j −q j)−1 · (1+(q/p) j−2),

ξ1(1) = 1/C∗(p) and for n > � � 1

ξ�(n)(1− pn −qn) =
�

∑
J=1

ξ�+1−J(n− J)
J!

q−1 p�−n(pn−JqJ + pJqn−J). (3.1)

Note that ξ�(n) = 0 for n � �. The above formulas first appeared in [16].

Lemma 3.1 (asymptotics for μn,k, k → ∞ and n near k). Let p � q.

(i) Precise estimate. For every fixed � � 1 and n → ∞,

μn,n−� ∼ n!C∗(p)p(n−�)2/2+(n−�)/2qn−�ξ�,
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where the sequence ξ�, � � 1 satisfies the recurrence

ξ� = q−1 p�
�

∑
J=1

ξ�+1−J

J!
(q/p)J (3.2)

with ξ1 = 1. Furthermore we have (for some positive constant C)

|ξ�+1−J(n− J)−ξ�+1−J| � C(pn−�−1 +(q/p)n−�−1)/(�− J)!. (3.3)

(ii) Upper bound. We have ξ�(n) � C1/(�− 1)! for some constant C1, and thus for 1 � k < n,
(and some constant C),

μn,k � C
n!

(n− k −1)!
p(k2+k)/2qk. (3.4)

Proof. From the recurrence (3.1) it follows easily that for each �� 1 the limit ξ� = limn→∞ ξ�(n)
exists by (3.4), and in particular for � = 1 we have ξ1 = 1. Clearly these limits satisfy the
recurrence (3.2).

Next we show by induction a uniform upper bound of the form ξ�(n) � C1/(�− 1)! The
induction step for n > � > �1 runs as follows (where C1 and �1 are appropriately chosen such
that the upper bound is true for � � �1 and that 2/(q�1(1− p�1 −q�1) � 1):

ξ�(n) � C1

1− pn −qn

( �

∑
J=1

p�−JqJ−1

J!(�− J)!
+

�

∑
J=1

p�+J−nqn−J−1

J!(�− J)!

)

� C1

�!(1− pn −qn)

(
1
q

�

∑
J=0

(
�

J

)
p�−JqJ +

(q/p)n−�

q

�+1

∑
J=0

(
�

J

)
pJq�−J

)

� C1

(�−1)!
1

�1(1− p�1 −q�1)
2
q

� C1

(�−1)!
.

In a similar way we obtain the approximation estimate (3.3). We leave the details to the arXiv
version [7].

3.1.2. Upper bound on Hn. Now we set

k = kU = log1/p n+ψU(n) = log1/p n+
1
2
(1+ ε) logp/q logn (3.5)

just as in (2.9). We will first estimate the value of Jk(n,s) (which is defined in (2.12)) for s =
ρ ′ = −2ψ(n)+O(1) ∈ Z

− −1/2 (i.e. the set {−3/2,−5/2, . . .}), as hinted at in Section 2.

Lemma 3.2. Suppose that p > q, that ε > 0, that kU is given by (3.5), and that ρ ′ = �ρ
+1/2,
where ρ = − logp/q logn+O(log log logn) is the solution of the equation

(p/q)ρ log(p/q)
log(1/p)

log1/p n+ψU(n)+ρ = 0.

Then we have for k � kU

Jk(n,ρ ′) = O(T (ρ ′)k−kU pε(logp/q logn)2/2+O(log logn·log log logn)). (3.6)
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Proof. First we observe that the assumption ρ ′ ∈ Z
− − 1/2 with |ρ ′| → ∞ assures that for all

m � 0 we have |Γ(m + ρ ′)/Γ(m + 1)| � 1. Next, by (3.4) of Lemma 3.1 we have
μm, j = O(mj+1 p j2/2+O( j)), which implies that

∑
m� j

T (−m)μm, j = O(p j2/2+O( j log j)).

Hence, the jth term in the representation (2.12) of Jk(n,ρ ′) can be estimated by∣∣∣∣n−ρ ′
T (ρ ′)k− j ∑

m� j

T (−m)(μm, j − μm, j−1)
Γ(m+ρ ′)
Γ(m+1)

∣∣∣∣ (3.7)

� n−ρ ′
T (ρ ′)k− j ∑

m� j

T (−m)(μm, j + μm, j−1) = O(n−ρ ′
T (ρ ′)k− j p j2/2+O( j log j)).

Thus, we have shown (2.14) which implies (3.6) for k = kU (see (2.16)). However, it is easy to
extend it to larger k (since equation (2.15) holds for generic k∗ = k and the given choice of ρ). In
fact uniformly for k � kU we obtain

Jk(n,ρ ′) = O(T (ρ ′)k−kU pε(logp/q logn)2/2+O(log logn log log logn))

for large n.

Our next goal is to evaluate the integral (2.11) and to obtain a bound for μn,k.

Lemma 3.3. Suppose that p > q, that ε > 0, and that kU and ρ ′ are given as in Lemma 3.2.
Then we have (for some δ > 0)

μn,k = O(T (ρ ′)k−kU pε(logp/q logn)2/2+O((log logn)1−δ ))+O(n−1+ε) (3.8)

uniformly for k � kU .

Proof. Letting C denote the vertical line ℜ(s) = ρ ′, we evaluate the integral (2.11) by splitting
it into an inner region CI and outer tails CO:

CI = {ρ ′ + it : |t| � e(log logn)2−δ }, CO = {ρ ′ + it : |t| > e(log logn)2−δ },
where 0 < δ < 1 is some fixed real number. The inner region we evaluate by showing that it is
of the same order as the integrand on the real axis, and the outer tails are shown to be negligible
by the exponential decay of the Γ function.

It is easily checked that

|n−sT (s)k− jΓ(m+ s)| � n−ρ ′
T (ρ ′)k− j|Γ(m+ρ ′)|

when ℜ(s) = ρ ′ (and any value for ℑ(s)). Thus,

|Jk(n,s)| � T (ρ ′)k−kU

k

∑
j=0

n−ρ ′
T (ρ ′)kU − j ∑

m� j

T (−m)|μm, j − μm, j−1| |Γ(m+ρ ′)|
Γ(m+1)

,

which can be upper-bounded as in the proof of Lemma 3.2. Multiplying by the length of the
contour, we find ∣∣∣∣

∫
CI

Jk(n,s) ds

∣∣∣∣ = O(T (ρ ′)k−kU pε(logp/q logn)2/2+O((log logn)2−δ )).
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We use the following standard bound on the Γ function: for s = ρ ′ + it, provided that |Arg(s)|
is less than and bounded away from π and |s| is sufficiently large, we have

|Γ(s)| � C|t|ρ ′−1/2e−π|t|/2.

This is applicable on CO, and we again use the fact that |T (s)| � T (ρ ′) and |μm, j − μm, j−1| � m,
which yields an upper bound of the form∣∣∣∣∑

m� j

T (−m)(μm, j − μm, j−1)
Γ(m+ s)
Γ(m+1)

∣∣∣∣ = O

(
∑
m� j

T (−m)m
|t|m+ρ ′−1/2e−π|t|/2)

Γ(m+1)

)

= O(p|t|ρ ′+1/2e−π|t|/2ep|t|),

where we have used the inequality

|t|ρ ′−1/2e−π|t|/2 ∑
m� j

m(p|t|)m

m!
� p|t|ρ ′+1/2e−π|t|/2ep|t| = e−Θ(|t|),

uniformly in j, by our choice of |t|.
Furthermore, since T (ρ ′) < 1 we have

k

∑
j=0

n−ρ ′
T (ρ ′)k− j = O(n−ρ ′

) = eO(logn log logn).

Hence, integrating this on CO gives∣∣∣∣
∫
CO

Jk(n,s) ds

∣∣∣∣ = O(T (ρ ′)k−kU eO(logn log logn)e−Θ(e(log logn)2−δ
))

= O(T (ρ ′)k−kU e−Θ(e(loglogn)2−δ
)).

Adding these together gives

G̃k(n) �
∣∣∣∣
∫
CI

JkU (n,s) ds+
∫
CO

JkU (n,s) ds

∣∣∣∣
= O(T (ρ ′)k−kU pε(logp/q logn)2/2+O((log logn)2−δ )).

Similarly we get a bound for G̃′′
k(n):

G̃′′
k(n) = O(ρ ′2T (ρ ′)k−kU pε(logp/q logn)2/2+O((log logn)2−δ )).

Hence by depoissonization (see (4.5) from Section 4) we get

μn,k = O(T (ρ ′)k−kU pε(logp/q logn)2/2+O((log logn)2−δ ))+O(n−1+ε)

as needed.

Our original goal was to bound the tail P[Hn > kU ] by the following sum, which we split into
two parts:

P[Hn > kU ] � ∑
k�kU

μn,k =
�(logn)2�

∑
k=kU

μn,k +
n

∑
k=�(logn)2�+1

μn,k.
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The initial part can be bounded using (3.8), and the final part we handle using (3.4) in Lemma 3.1.
Indeed, since T (ρ ′) < 1 the first sum can be bounded by

�(logn)2�
∑

k=kU

μn,k � e−Θ(ε(log logn)2).

The second sum is at most
n

∑
k=�(logn)2�+1

μn,k � ne−Θ((logn)4) = e−Θ((logn)4).

Adding these upper bounds together shows that P[Hn > kU ] = e−Θ(ε(log logn)2) → 0, as desired.

3.1.3. Upper bound on the variance of the profile. We consider now the case

k = kL = log1/p n+ψL(n) = log1/p n+ψ(n), ψ(n) =
1
2
(1− ε) logp/q logn (3.9)

and start with an upper bound for the variance of the profile Var[Bn,k].

Lemma 3.4. Suppose that p > q, that ε > 0, and that kL is given by (3.9). Then we have

Var[Bn,k] = O(p−ε(logp/q logn)2/2+O((log logn)2−δ )). (3.10)

Proof. The proof technique here is the same as for the proof of the upper bound on μn,k. Our
goal is to upper-bound the expression

Ṽk(n) = ∑
n�0

E[B2
n,k]

nn

n!
e−n − G̃k(n)2 =

1
2πi

∫ ρ ′+i∞

ρ ′−i∞
J(V )

k (n,s) ds,

where

J(V )
k (n,s) = n−sT (s)kΓ(s+1)Bk(s),

and

Bk(s) = 1− (s+1)2−(s+2) +
k

∑
j=1

T (s)− j W ∗
j,V (s)

Γ(s+1)
,

with [15]

W ∗
j,V (s) = ∑

m� j

Γ(m+ s)
m!

[
T (−m)(cm, j − cm, j−1 + μm, j − μm, j−1)

+T (s)2−(s+m)
m

∑
�=0

μ�, j−1μm−�, j−1

+2
m

∑
�=0

μ�, j−1μm−�, j−1 p�qm−� −2−(m+s)
m

∑
�=0

μ�, jμm−�, j

]
.

As above, we need a bound on the moments of Bm, j for m sufficiently close to j: for μm, j =
E[Bm, j], this is (3.4) in Lemma 3.1. It turns out that cm, j = E[Bm, j(Bm, j − 1)] satisfies a similar
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recurrence to μm, j (see [17]) and also similar inequality: for j → ∞ and m > j,

cm, j � m!
(m− j −1)!

p j2/2+O( j).

The proof is by induction and follows the same lines as that of the upper bound in Lemma 3.1.
Using this, we can upper-bound the inverse Mellin integral as in the upper bound for G̃k(n). In
particular it follows that

ṼkL(n) = O(p−ε(logp/q logn)2/2+O((log logn)2−δ )),

and similarly we have

Ṽ ′′
kL

(n) = O(ρ ′2n−2 p−ε(logp/q logn)2+O((log logn)2−δ )),

where ρ ′ = − logp/q logn + O(log log logn). With the help of depoissonization (see (4.6)), we
thus obtain (3.10).

3.1.4. Lower bound on Hn. The most difficult part of the proof of Theorem 2.1 is to prove a
lower bound for the expected profile.

Lemma 3.5. Suppose that p > q, that ε > 0, and that kL is given by (3.9). Then we have

μn,kL = Ω(p−ε(logp/q logn)2/2+O(log logn log log logn)). (3.11)

By combining Lemmas 3.4 and 3.5 it immediately follows that

P[Hn < kL] �
Var[Bn,kL ]

μ2
n,kL

→ 0,

which proves the lower bound on Hn.
The plan to prove Lemma 3.5 is as follows. We evaluate the inverse Mellin integral exactly by

a residue computation. This results in a nested summation, which we simplify using the binomial
theorem and the series of the exponential function. From this representation we will then detect
several terms that contribute to the leading term in the asymptotic expansion.

Lemma 3.6. Suppose that ρ < 0 but not an integer. Then we have

G̃k(n) =
k

∑
j=0

∑
m� j

κm, j(μm, j − μm, j−1), (3.12)

where

κm, j =
T (−m)nm

m!

∞

∑
�=(−�m+ρ�+1) ∨ 0

(−n)�

�!
T (−m− �)k− j (3.13)

and x ∨ y denotes the maximum of x and y.

Proof. By shifting the line of integration and collecting residues we have

1
2πi

∫ ρ+i∞

ρ−i∞
n−sT (s)k− jΓ(m+ s)ds = ∑

��max{0,−m−ρ}

nm+�(−1)�

�!
T (−�−m)k− j,
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where the remaining integral after shifting by any finite amount becomes 0 in the limit as a result
of the super-exponential decay of the Γ function on the points 1/2 − j for positive integer j.
Hence the lemma follows.

We now choose ρ as ρ = − j∗ −1 and set j0 = � j∗ +1/2
, where j∗ is the root of the equation

(q/p) j∗(kL − j∗) =
log(1/p)
log(p/q)

( j∗ −ψL(n)), (3.14)

where ψL(n) = 1
2 (1− ε) logp/q logn.

In particular, let us define

r0 := (q/p) j0(kL − j0),r1 :=
log(1/p)
log(p/q)

( j0 −ψL(n)). (3.15)

Then it follows that √
q/pr1 � r0 �

√
p/qr1. (3.16)

If j > j0 and m � j then we certainly have (−�m+ρ�+1) ∨ 0 = 0, whereas for j = j0 we have
(−� j0 +ρ�+1) ∨ 0 = 1.

Asymptotically we have

j∗ = logp/q logn− logp/q log logn+O(1).

Hence we also have

j0 = logp/q logn− logp/q log logn+O(1) and ρ = − logp/q logn− logp/q log logn+O(1).

In what follows we will encounter several different asymptotic behaviours. In particular we
will show that

G̃k(n) = D(p)C∗(p)p j0( j0+1)/2q j0−1n j0 p j0(k− j0)er0 Φ
(

r1 − r0√
r0

)
(3.17)

+C∗(p)p j0( j0+1)/2q j0−1n j0 p j0(k− j0) r0
r1

Γ(r1 +1)
(C(p,r0/r1,〈r〉)+o(1))

where 〈x〉 = x−�x
 denotes the fractional part of a real number x, and

D(p) = ∑
L,M�0

ξL+1
(−1)M

M!
p((L+M)2+L−M)/2q−L−M (3.18)

and C(p,u,v) is a certain function in p,u,v that is strictly positive (see below). Here and else-
where, Φ denotes the distribution function of the normal distribution.

Since r0
r1/Γ(r1 +1) = O(er0/

√
r0), the first term seems to be the asymptotically leading one.

However, it turns out that D(p) ≡ 0 (as we will prove in Section 5) so it follows that

G̃k(n) � C(p)p j0( j0+1)/2q j0−1n j0 p j0(k− j0) r0
r1

Γ(r1 +1)
(3.19)

for some constant C(p) > 0. Note also that this lower bound implies (3.11) since by definition√
q/pr0 � r1 �

√
p/qr0 so that e−r0 r0

r1/Γ(r1 +1) = eΩ(log logn).
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The calculations for proving (3.17) are quite involved, in particular the proof of positivity of
C(p,u,v). So we will only present a part of the calculations and refer for a full proof to the
extended arXiv version [7] of the paper.

In what follows we will have some error terms that are smaller by a factor pj0 or (q/p) j0

compared to the asymptotic leading term. However, it is easy to check that for 1/2 < p < 1
we have pj0 = o(E) and (q/p) j0 = o(E), where E := e−r0 r0

r1/Γ(r1 +1) so that they will not
influence the asymptotic leading term.

For j � j0 and j � m � j0 we have

κm, j =
T (−m)nm

m!

k− j

∑
r=0

(
k − j

r

)
pm(k− j−r)qmr

(
e−npk− j−rqr − ∑

�� j0−m

(−n)�

�!
(pk− j−rqr)�

)

and otherwise

κm, j =
T (−m)nm

m!

k− j0

∑
r=0

(
k − j

r

)
pm(k− j−r)qmr)e−npk− j−rqr

.

In view of the above discussion we can thus replace the term T (−m) (in κm, j) with pm; the
resulting sum will be denoted by κm, j. We can also replace μm, j − μm, j−1 with

νm, j := −C∗(p)m!p j( j−1)/2q j−1ξm− j+1.

By a careful look we thus obtain

G̃k(n) =
k

∑
j=0

∑
m� j

κm, jνm, j +O(n j0 T (− j0)k− j0 p j0( j0+1)/2q j0(p j0 +(q/p) j0)). (3.20)

In order to analyse the sum representation (3.20) we split it into several parts:

T1 := ∑
j> j0

∑
m� j

κm, jνm, j, T2 := ∑
j� j0

∑
m> j0

κm, jνm, j, T3 := ∑
j� j0

j0

∑
m= j

κm, jνm, j.

Note that the exponential function e−npk− j−rqr
= e−(q/p)r−r1( j)

behaves completely differently for
r � r1( j) and for r > r1( j) where

r1( j) = ( j −ψ(n))
log(1/p)
log(p/q)

.

Hence it is convenient to split T3 into three parts T30 +T31 +T32, where T30 and T31 correspond to
the terms with r � r1( j) and T32 corresponds to those with r > r1( j). T30 involves the exponential
function e−npk− j−rqr

whereas T31 takes care of the polynomial sum

∑
�� j0−m

(−n)�

�!
(pk− j−rqr)�.

For notational convenience we set

F0 := p j0( j0+1)2q j0−1n j0 p j0(k− j0) rr1
0

Γ(r1 +1)
. (3.21)

We recall that

T1 = −C∗(p) ∑
j> j0

∑
m� j

p j( j−1)/2q j−1ξm− j+1 pmnm
k− j

∑
r=0

(
k − j

r

)
pm(k− j−r)qmre−npk− j−rqr

.
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We now use the substitutions j = j0 + J and m = j + L = j0 + J + L, where J > 0 and L � 0.
Furthermore, by using the approximation(

k − j
r

)
∼ (k − j)r/r! ∼ (k − j0)r/r!

we obtain

T1 ∼ −C∗(p)p j0( j0+1)2q j0−1n j0 p j0(k− j0) ∑
J>0

∑
L�0

pJ(J+1)/2qJξL+1 pL

×∑
r

r0
r

r!
(q/p)(L+J)(r−r1( j))e−(q/p)r−r1( j)

∼ −C∗(p)F0 · ∑
J>0

pJ(J+1)/2qJ

(
r0

r1

)J log(1/p)
log(p/q)

∑
L�0

ξL+1 pL

×∑
r

(q/p)(L+J)(r−r1( j))
(

r0

r1

)r−r j( j)

e−(q/p)r−r1( j)
,

where F0 is given in (3.21). Thus, if we define (with the implicit notation q = 1− p)

C1(p,u,v) = ∑
J>0

pJ(J+1)/2qJuJ log(1/p)
log(p/q) ∑

L�0

ξL+1 pL (3.22)

× ∑
R∈Z

((q/p)(L+J)u)R−v−J log(1/p)
log(p/q) exp

(
−(q/p)R−v−J log(1/p)

log(p/q)

)
,

we obtain

T1 ∼ −C∗(p)F0 C1

(
p,

r0

r1
,〈r1〉

)
.

Note that we have substituted r − r1( j) with

r − r1( j) = (r −�r1
)−〈r1〉+(r1 − r1( j))

= R− v− J
log(1/p)
log(p/q)

.

Similarly we obtain T2 ∼ −C∗(p)F0 C2(p,r0/r1,〈r1〉), where

C2(p,u,v) = ∑
J�0

pJ(J+1)/2qJuJ log(1/p)
log(p/q) ∑

L>−J

ξL+1 pL (3.23)

× ∑
R∈Z

((q/p)(L+J)u)R−v−J log(1/p)
log(p/q) exp

(
−(q/p)R−v−J log(1/p)

log(p/q)

)
,

T30 ∼ −C∗(p)F0 C30(p,r0/r1,〈r1〉), where

C30(p,u,v) = ∑
J�0

pJ(J+1)/2qJuJ log(1/p)
log(p/q)

−J

∑
L=0

ξL+1 pL (3.24)

× ∑
R∈Z,R−v−J log(1/p)

log(p/q) �0

((q/p)(L+J)u)R−v−J log(1/p)
log(p/q) exp

(
−(q/p)R−v−J log(1/p)

log(p/q)

)
,
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and T32 ∼ −C∗(p)F0 C32(p,r0/r1,〈r1〉), where

C32(p,u,v) = ∑
J�0

pJ(J+1)/2qJuJ log(1/p)
log(p/q)

−J

∑
L=0

ξL+1 pL

× ∑
R∈Z,R−v−J log(1/p)

log(p/q)>0

((q/p)(L+J)u)R−v−J log(1/p)
log(p/q) (3.25)

×
(

exp

(
−(q/p)R−v−J log(1/p)

log(p/q)

)
−

−J−L

∑
�=0

(−1)�

�!
(q/p)(R−v−J log(1/p)

log(p/q) )�
)
.

Finally we deal with T31. First of all we regroup the summation by setting m = j0 − M, j =
j0 −M −L and � = M −K, which gives

T31 = C∗(p)p j0( j0+1)/2q j0−1n j0 p j0(k− j0) ∑
K�0

(
q
p

)Kr1

× ∑
L�0,M�K

ξL+1
(−1)M−K

(M −K)!
p((L+M)2+L−M)/2−K(L+M)q−L−M

× ∑
r�r1( j0−M−L)

(
k − j0 +M +L

r

)(
q
p

)( j0−K)r

.

We single out the case K = 0 (and consider only the sum over K,M,r), which we write as

D(p)C∗(p) ∑
r�r1

(
k − j0 +L+M

r

)(
q
p

) j0r

+S0,

where D(p) is given by (3.18) and

S0 := −C∗(p) ∑
L,M�0

ξL+1
(−1)M

M!
p((L+M)2+L−M)/2q−L−M

× ∑
r1( j0−M−L)<r�r1

(
k − j0 +L+M

r

)(
q
p

) j0r

.

Note that

∑
r�r1

(
k − j0 +L+M

r

)(
q
p

) j0r

= er0 Φ
(

r1 − r0√
r0

)(
1+O

(
log logn

logn
(L+M)

))
,

where Φ denotes the distribution function of the normal distribution.
Thus, if we set

SK = C∗(p)p j0( j0+1)2q j0−1n j0 p j0(k− j0)
(

q
p

)Kr1

× ∑
L�0,M�K

ξL+1
(−1)M−K

(M −K)!
p((L+M)2+L−M)/2−K(L+M)q−L−M

× ∑
r�r1( j0−M−L)

(
k − j0 +M +L

r

)(
q
p

)( j0−K)r

.
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then we have

T31 = D(p)C∗(p)er0 Φ
(

r1 − r0√
r0

)
(1+o(1))−S0 + ∑

K�1

SK .

In the same way as above, we obtain S0 ∼ −C∗(p)F0 C31,0(p,r0/r1,〈r1〉), where

C31,0(p,u,v) = ∑
L,M�0

ξL+1
(−1)M

M!
p((L+M)2+L−M)/2q−L−M (3.26)

× ∑
−(M+L) log(1/p)

log(p/q) +v�R�0

uR−v.

It is also convenient to rewrite this also as a sum over J = −M −L � 0 and 0 � L � −J:

C31,0(p,u,v) = ∑
J�0

−J

∑
L=0

ξL+1
(−1)−J−L

(−J −L)!
pJ(J+1)/2+LqJ (3.27)

× ∑
J log(1/p)

log(p/q) +v�R�0

uR−v.

For K � 1 the terms SK can be approximated by SK ∼ C∗(p)F0 C31,K(p,r0/r1,〈r1〉), where

C31,K(p,u,v) = ∑
J�−K

−J−K

∑
L=0

ξL+1
(−1)−J−L−K

(−J −L−K)!
pJ(J+1)/2+L+JKqJ

× ∑
R�v+J log(1/p)

log(p/q)

(
u

(
q
p

)−K)R−v

. (3.28)

Summing up, if we set

C(p,u,v) = −C1(p,u,v)−C2(p,u,v)−C30(p,u,v)−C32(p,u,v)−C31,0(p,u,v)

+ ∑
K�1

C31,K(p,u,v)

and by observing that D(p) = 0 (see Section 5), we have the following result.

Lemma 3.7. With the notation from above we have

G̃k(n) = C∗(p)p j0( j0+1)/2q j0−1n j0 p j0(k− j0) r0
r1

Γ(r1 +1)
(C(p,r0/r1,〈r〉)+o(1)).

It remains to show that C(p,u,v) is strictly positive for 1/2 < p < 1,
√

q/p � u �
√

p/q,
0 � v < 1. Since the representation of C(p,u,v) is quite involved we will use the following
strategy. We do an asymptotic analysis for p → 1/2 and p → 1 and fill out the remaining interval,
0.51 � p � 0.97, via numerical analysis (together with upper bounds for the derivatives). Due to
space limitations we present here only a short version of the (very involved) considerations. A
full version can be found in the arXiv version of this paper [7].

We start with the behaviour for p → 1/2.

M. Drmota, A. Magner and W. Szpankowski564

https://doi.org/10.1017/S0963548318000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000329


Lemma 3.8. Set p/q = eη and ũ = (1/η) logu. Then for η → 0+ (which is equivalent to p →
1/2) we have uniformly for ũ ∈ [−1/2,1/2] and v ∈ [0,1)

C(p,u,v) ∼ 1
η

h(ũ), (3.29)

where h(ũ) is a continuous and positive function.
In particular we have C(p,u,v) > 0 for 1/2 < p � 0.51.

Proof. We single out the function C1(p,u,v) and start with the sum over R. The first observation
is that for η → 0 we can replace the sum with an integral, that is, we have for fixed integers L,J,
as η → 0,

∑
R∈Z

((q/p)(L+J)u)R−v−J log(1/p)
log(p/q) exp

(
−(q/p)R−v−J log(1/p)

log(p/q)

)

∼
∫ ∞

−∞
((q/p)(L+J)u)t e−(q/p)t

dt =
1
η

∫ ∞

−∞
e−(M−ũ)t e−e−t

dt.

This also implies that the leading asymptotic term does not depend on v. Further, note that

M̃ = M − 1
η

logu = L+ J − ũ � 1
2
,

so the integral converges, and by using the substitution w = e−t we obtain∫ ∞

−∞
e−M̃te−e−t

dt =
∫ ∞

0
wM̃−1e−w dw = Γ(M̃).

This finally shows that, as p → 1/2 (or equivalently as η = log(p/q) → 0),

C1(p,u,v) ∼ 1
η ∑

J>0

2−J(J+1)/2−J+Jũ ∑
L�0

ξL+1(1/2)2−L Γ(J +L− ũ). (3.30)

Similarly we can handle the other terms and obtain the asymptotic representation (3.29). Since
the function h(ũ) is explicit (as a series expansion) and continuously differentiable in ũ we can
use a simple numerical analysis (together with upper bounds for the derivative h′(ũ)) in order to
show that h(ũ) > 0 for ũ ∈ [−1/2,1/2].

Finally, by also taking care of error terms (which were neglected in the above analysis), it also
follows that C(p,u,v) > 0 for 1/2 < p � 0.51.

The situation for p → 1 is more delicate in the analysis; however, positivity then follows
immediately.

Lemma 3.9. Set c(v) = max{v − v2/2,(1 − v2)/2}. Then we have, as p → 1 uniformly for√
q/p � u �

√
p/q, 0 � v < 1,

C(p,u,v) � exp

(
c(v)

log2(1− p)
log1/p

(1+o(1))
)
. (3.31)

In particular we have C(p,u,v) > 0 for 0.97 � p < 1.
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Proof. We only consider the most interesting case, namely the sum ∑K�1 C31,K(p,u,v), and
assume for a moment that v > 0. We set

I0 :=
[
−v

(
logq
log p

−1

)
,0

)
∩Z,

and for M � 1

IM :=
[
−(v+M)

(
logq
log p

−1

)
,−(v+M −1)

(
logq
log p

−1

))
∩Z.

If J ∈ IM we have, as p → 1,

∑
R�v+J log(1/p)

log(p/q)

(u(q/p)−K)R−v ∼ (u(q/p)−K)−M−v.

Since

−J−K

∑
L=0

ξL+1 pL (−1)−J−K−L

(−J −K −L)!
= [z−J−K ]∏

j�0

eqp jz −1
qp jz

e−z = [z−J−K ]ez/2+O(qz2)−z,

we get

C31,K,M := ∑
J∈IM ,J�−K

pJ(J+1)/2+JKqJ ∑
R�v+J log(1/p)

log(p/q)

(
u

(
q
p

)−K)R−v

×
−J−K

∑
L=0

ξL+1 pL (−1)−J−L−K

(−J −L−K)!

∼ ∑
J∈IM ,J�−K

pJ(J+1)/2+JKqJ

(
u

(
q
p

)−K)−M−v

[z−J−K ]ez/2+O(qz2)−z

and consequently, if we sum over K � 1,

∑
K�1

C31,K,M ∼ u−M−v ∑
J∈IM

pJ(J+1)/2qJ
−J

∑
K=1

pJK(q/p)K(M+v)[z−J−K ]ez/2+O(qz2)−z

= u−M−v ∑
J∈IM

pJ(J+1)/2qJ
−J

∑
K=1

pJK(q/p)M(1+v)[z−J−K ]ez/2+O(qz2)−z.

We observe that (for J ∈ IM)

−J

∑
K=1

pJK(q/p)K(M+v)[z−J−K ]ez/2+O(qz2)−z = [z−J]
pJ(q/p)M+vz

1− pJ(q/p)M+vz
ez/2+O(qz2)−z

∼ p−J2
(q/p)−J(M+v)ezM/2+O(qz2

M)−zM ,

where zM = p−J(q/p)−M−v. Note that zM varies between 1 and 1/q if J ∈ IM . However, it will
turn out that the asymptotic leading terms will come from J close to

−(v+M)
logq
log p

,
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which means that zM is asymptotically 1 and thus the last exponential term is asymptotically
e−1/2. The reason is that the term

pJ(J+1)/2qJ p−J2
(q/p)−J(M+v) = p−J2/2qJ(1−M−v) pJ(1/2+M+v)

has its absolute minimum for J close to

−(v+M −1)
logq
log p

,

and for J ∈ IM it becomes maximal for J close to

−(v+M)
logq
log p

,

in particular if

J = Jv,M := −
⌊
(M + v)

(
logq
log p

−1

)⌋
.

Thus we obtain

∑
K�1

C31,K,M ∼ e−1/2u−M−v p−J2
v,M/2qJv,M(1−M−v) pJv,M(1/2+M+v)

= exp

(
log2 q

q
(M + v− 1

2
(M + v)2)+O(log2 q)

)
.

Since (M + v)− 1
2 (M + v)2 � 0 for M � 2 (and 0 � v < 1) it is clear that only the first two terms

corresponding to M = 0 and M = 1 are relevant. Hence we obtain

∑
K�1

C31,K ∼ exp

(
log2(1− p)
log(1/p)

(v− 1
2

v2)+O(log2(1− p))
)

+ exp

(
log2(1− p)
log(1/p)

1
2
(1− v2)+O(log2(1− p))

)
.

In fact this kind of representation also holds for v = 0.
The other terms can be handled in a similar way. In fact C1,C2,C32,C31,0 are of smaller order,

whereas C30 has (almost) a comparable order of magnitude.
Finally, by taking error terms into account it follows that C(p,u,v) is positive for 0.97 �

p < 1.

Thus, it remains to consider C(p,u,v) for 0.51 � p � 0.97. As mentioned above, we use
numerical analysis. For example, we obtain Table 1.

A more detailed analysis can be found in the arXiv version of the paper [7].

3.2. Proof of Theorem 2.2
The analysis of Fn runs along the same lines as for Hn. As already mentioned, we will give only
a roadmap of the proof since it is actually much easier than that of Hn.
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Table 1. C(p,u,v) for various values of p,u,v. Note that
C(p,u,v) remains positive and bounded away from 0.

p u v C(p,u,v)

0.51 1.00 0.20 17.6603002053593
0.51 1.00 0.40 17.6630153331822
0.51 1.00 0.60 17.6610407898646
0.51 1.00 0.80 17.6856832509155
0.60 0.90 0.60 1.49524800151569
0.60 1.00 0.20 1.08391296918222
0.60 1.00 0.60 1.08391297098683
0.60 1.00 0.80 1.08391297046200
0.60 1.10 0.20 0.834656789094941
0.60 1.20 0.60 0.673917281982084
0.70 1.00 0.60 0.232497954955319
0.80 1.00 0.60 0.0287161523336721
0.85 1.00 0.60 0.00237172764900606
0.93 1.00 0.60 1.87317294616045×1015

0.97 0.50 0.60 9.17733198126610×1072

0.97 1.00 0.60 6.05478107453485×1072

0.97 5.00 0.60 2.30524156812013×1072

3.2.1. Lower bound on Fn. The lower bound on Fn can be proved in two different ways. We
can use the inverse Mellin transform integral for G̃k(n),

k = kL = log1/q logn− (1+ ε) log1/q log logn,

evaluated at ρ = logp/q logn. This leads to Pr[Fn < k] � μn,k → 0.
Alternatively we can use the correspondence between the Rényi process and the random

PATRICIA trie construction, along with the relationship between PATRICIA tries and standard
tries. Because of the path compression step in the construction of a PATRICIA trie from a trie, the
fillup level for a PATRICIA trie is always greater than or equal to the fillup level for the associated
trie. Furthermore, it is known (see [18]) that the fillup level in random tries for p > 1/2 is, with
high probability,

log1/q n− log1/q log logn+o(log log logn).

Thus, with high probability, this is also a lower bound for the Fn that we study.

3.2.2. Upper bound on Fn. The upper bound proof for Fn follows along similar lines to the
lower bound for Hn. We set

k = kU = log1/q n− (1− ε) log1/q log logn,

and our goal is to show that Var[Bn,k] = o(E[Bn,k]2). First we get an upper bound for Var[Bn,k]
in the same way as in the case of Hn (via inverse Mellin transform and depoissonization) of the
form

Var[Bn,k] = O(q−ε logp/q logn·log1/q log logn(1+o(1))).

M. Drmota, A. Magner and W. Szpankowski568

https://doi.org/10.1017/S0963548318000329 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000329


In order to obtain a corresponding lower bound for μn,k = E[Bn,k] we again use the explicit
representation

G̃k(n) =
k

∑
j=0

∑
m� j

κm, j(μm, j − μm, j−1), (3.32)

where

κm, j =
T (−m)nm

m!

∞

∑
�=0

(−n)�

�!
T (−m− �)k− j

=
T (−m)

m!

k− j

∑
r=0

(
k − j

r

)
(nprqk− j−r)m exp(−nprqk− j−r). (3.33)

We note that because ρ > 0, there are no contributions from poles, so that the �-sum begins with
0, in contrast to (3.13) which leads to the simplified form (3.33).

Our derivation suggests that the main contribution to (3.32) comes from the terms j = O(1)
and m = ρ · p/q + O(1). In this range, the difference μm, j − μm, j−1 can be estimated via the
following lemma from [16] (see part (i) of Theorem 2.2 of that paper).

Lemma 3.10 (precise asymptotics for μm, j when j = O(1) and m → ∞). For p > q, m → ∞
and j = O(1), we have

μm, j ∼ mqj(1−q j)m−1.

Note in particular that μm, j − μm, j−1 is strictly positive in this range. Applying this lemma,
some algebra is required to show that the contribution of the (m, j)th term, with m = ρ · p/q +
O(1) and j = O(1), is

q−ε logp/q logn·log1/q log logn(1+o(1)). (3.34)

To complete the necessary lower bound on the entire sum (3.32), we also consider the following
sums:

j′

∑
j=0

m′

∑
m= j

κm, j(μm, j − μm, j−1) and ∑
j> j′

∑
m� j

κm, j(μm, j − μm, j−1), (3.35)

where j′ and m′ are sufficiently large fixed positive numbers. We note that the terms that are not
covered by any of these sums may be disregarded, since by Lemma 3.10 they are non-negative.

It may be shown that both sums are smaller than the dominant term (3.34) by a factor of e−Θ(ρ),
both by upper-bounding terms in absolute value and using the trivial bound |μm, j −μm, j−1| � 2m.

We thus arrive at

μn,k � q−ε logp/q logn·log1/q log logn(1+o(1). (3.36)

Since this tends to ∞ with n, combining this with the upper bound for the variance yields the
desired upper bound on P[Fn > k], which establishes the upper bound on Fn.
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4. Depoissonization

4.1. Analytic depoissonization
The Poisson transform G̃(z) of a sequence gn is defined by

G̃(z) = ∑
n�0

gn
zn

n!
e−z.

If the sequence gn is smooth enough then we usually have gn ∼ G̃(n) (as n → ∞) which we call
depoissonization. In [11] a theory for analytic depoissonization is developed. For example, the
basic theorem (Theorem 1) says that if

|G̃(z)| � B|z|β (4.1)

for |z| > R and |arg(z)| � θ (for some B > 0, R > 0 and 0 < θ < π/2) and

|G̃(z)ez| � Aeα|z| (4.2)

for |z| > R and θ < |arg(z)| � π (for some A > 0 and α < 1), then

gn = G̃(n)+O(nβ−1). (4.3)

In fact this expansion can be made more precise by taking into account derivatives of G̃(z). For
example, we have

gn = G̃(n)− n
2

G̃′′(n)+O(nβ−2). (4.4)

In [17, Lemmas 1 and 18] it is shown that

G̃k(z) = ∑
n�0

μn,k
zn

n!
e−z

satisfies (4.1) with β = 1 + ε for any ε > 0 and (4.2) for some α < 1 uniformly for all k � 0.
Thus, it follows uniformly for all k � 0 that

μn,k = G̃k(n)− n
2

G̃′′
k (n)+O(nε−1). (4.5)

The estimate (4.3) is not sufficient for our purposes (it only works if μn,k grows at least poly-
nomially as in the central range). For the boundary region, where k ∼ log1/p n or k ∼ log1/q n, we
have to use (4.5), which means that we have to deal with derivatives of G̃k(z) as well.

4.2. Poisson variance
Next we discuss how the variance of a random variable can be handled with the help of the
Poisson transform. First we assume that G̃(z) is the Poisson transform of the expected values
μn = E[Xn] or a sequence of random variables. Furthermore, we set

Ṽ (z) = ∑
n�0

E[X2
n ]

zn

n!
e−z − G̃(z)2,

which we denote the Poisson variance. This is not the Poisson transform of the variance. How-
ever, since we usually have E[X2

n ] ∼V (n)+G(n)2 and E[Xn] ∼ G(n) it is expected that Var[Xn] ∼
V (n). In fact this can be made precise with the help of (4.4). Suppose that G̃(z) and Ṽ (z) satisfy
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property (4.1) and G̃(z) and Ṽ (z)+ G̃(z)2 satisfy property (4.2). Then it follows that

E[Xn] = G̃(n)− n
2

G̃′′(n)+O(nβ−2)

and

E[X2
n ] = Ṽ (n)+ G̃(n)2 − n

2
Ṽ ′′(n)−n(G̃′(n))2 −nG̃(n)G̃′′(n)+O(nβ−2),

from which it follows that

Var[Xn] = Ṽ (n)− n
2

Ṽ ′′(n)−n(G̃′(n))2 +
1
4

n2(G̃′′(n))2

+O(n2β−4)+O(nβ−2G̃(n))+O(nβ G̃′′(n)). (4.6)

In particular, in our case we know that the Poisson transform G̃k(z) (of the sequence μn,k =
E[Bn,k]) and the corresponding Poisson variance Ṽk(z) satisfy the assumptions for β = 1+ ε (for
every fixed ε > 0), see [17]. Thus we also obtain (4.6) in the present context.

5. An unexpected identity

In this final section we prove that D(p) = 0, which seems to be a new (and unexpected) identity.‡

Lemma 5.1. Suppose that |p| < 1 and q = 1− p and set

D(p) = ∑
L,M�0

ξL+1
(−1)M

M!
p((L+M)2+L−M)/2q−L−M, (5.1)

where ξ� = ξ�(p) is recursively defined by ξ1 = 1 and

ξ� = q−1 p�
�

∑
J=1

ξ�+1−J

J!
(q/p)J . (5.2)

Then

D(p) = 0. (5.3)

Proof. By setting L+M = n, we can rewrite D(p) as

D(p) = ∑
n�0

p(n
2)

n

∑
L=0

ξL+1(p/q)L (−1)(n−L)

(n−L)!
q−(n−L).

Since the recurrence (5.2) for ξ� can be rewritten as

X(z) = ∑
L�0

ξL+1zL = ∏
j�0

eqp jz −1
qp jz

,

we thus obtain

D(p) = ∑
n�0

p(n
2)[zn]X((p/q)z)e−z/q = ∑

n�0

p(n
2)[zn]∏

j�0

e(p−1)p jz − e−p jz

p j+1z
.

‡ The following simple proof is due to Gleb Pogudin (University of Linz) [5].
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Hence, if we set

f (z) =
1
pz

(e(p−1)z − e−z), F(z) = f (z) f (pz) f (p2z) · · · and Fn = [zn]F(z),

then D(p) = 0 is equivalent to

∑
n�0

Fn p(n
2) = 0.

We next set g(z) = e−z, h(z) = (ez − 1)/z and q(z) = (1 − e−z)/z. Then we have f (z) =
g(z)h(pz) and q(z) = g(z)h(z), which implies the representation

F(z) = ∏
j�0

g(p jz)h(p j+1z) = g(z)∏
j�1

g(p jz)h(p jz) = g(z)∏
j�1

q(p jz).

Hence, if we set Q(z) = q(z)q(pz)q(p2z) · · · , and Qn = [zn]Q(z), then we also have

F(z) = g(z)Q(pz) = (1− zq(z))Q(pz) = Q(pz)− zQ(z) = ∑
n�0

Qn(pnz− zn+1).

So, finally, if we use the substitution zn �→ p(n
2) and the property

(n+1
2

)
=
(n

2

)
+n, we immediately

see that every summand vanishes. This proves D(p) = 0.
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