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Abstract
We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation
group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or
twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if
it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only
used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism.
We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that
the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine
(partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to check-
ing dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial
ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps
found byWilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph
yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that
do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and
Poulton.

Keywords: Embedded graph; ribbon graph; duality; Petrie duality; triality; twuality; regular map; Wilson group; twist;
partial dual
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1. Introduction
Surface duality and Petrie duality of cellularly embedded graphs have a long history, for both plane
graphs and those embedded in other surfaces, as finding and characterising embedded graphs that
are self-dual, self-petrial or self-trial is central to the study of graph symmetry. In [26], Wilson
examined the action on regular maps generated by surface duality and Petrie duality, and Lins
[15, 16] considered maps in general. Duality and Petrie duality are operations of order two that do
not commute, and hence yield an action of S3 on regular maps, with the action of the elements of
order three called triality.1 Subsequently, surface and Petrie dualites were refined to the individual
edges of general embedded graphs, first with Chmutov’s partial duality in [2], and then the twisted
duals of [7, 8], which apply all six of the Wilson group operations to individual edges. We refer to
these full and partial dualities and trialities that arise from twisted duality in aggregate as twuals,

1The triality defined here is distinct from the triality or trinity defined by Tutte in [27, 28].
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speaking of self-twualities, twualising a graph, etc., thus coining a word that captures a sense of
both ‘twist’ and ‘dual’, as well as ‘duality’ and ‘triality’, while having the necessary grammatical
forms analogous to those of the word ‘dual’

Here we situate the various forms of embedded graph twuality in a new, more finely grained,
setting, presenting a algebraic framework for determining various forms of self-twuality for cellu-
larly embedded graphs, including not only the surface duals, Petrie duals and trials (all the direct
derivatives of Wilson [26]) but also any application of partial duals and twists. Critically, this
new ribbon group action encompasses the more common natural twuality, which allows any iso-
morphism between an embedded graph and its twual, and not only the canonical twuality of prior
ribbon group actions given for example in [7], where twuality was restricted to the canonical iden-
tification of edges between an embedded graph and its twual. We then leverage this framework to
show that all forms of self-twuality may be completely captured through the orbits of orientable
embedded bouquets (OEBs), i.e. single-vertex orientable embedded graphs.

The ribbon group action defined here provides theoretical tools applicable to the many cur-
rent directions in partial twuality. In one direction, there has been interest in the forms of partial
duals of general embedded graphs, particularly their genus(es) as well as when the partial duals
are Eulerian or bipartite. For instance, Ellingham and Zha investigate when a partial dual has the
property that every face is bounded by a cycle [6], Huggett and Moffatt characterise when par-
tial duals of plane graphs are bipartite [11], and Metsidik and Jin characterise when partial duals
of plane graphs are Eulerian [17]. In another direction, research has focused on full self-twuals
for regular maps and when they are self-dual, self-petrial or self-wilsonial, [5, 12, 22]. In some
sense, halfway between these areas is the work of Orbanić, Pellicer and Weiss; they use Wilson’s
operations to generate examples of k-orbit maps, a slight loosening of regularity [21].

In particular, to illustrate the power of the techniques we are introducing here, we show how
manipulating OEBs with the ribbon group action leads to a systematic way of generating graphs
with any desired form of self-twuality, for all ribbon graphs and not just regular maps. The tech-
niques here also apply to discovering graphs with desired self-twuality properties in the orbits of
highly symmetric graphs, which have rich automorphism groups. Indeed, regular maps are a cen-
tral example of such graphs, which illuminates why regular maps have been a natural search space
in the past for self-twual maps of various kinds.

Previous studies such as [12, 22, 24–26] of self-dual, self-petrial and self-trial graphs have
largely focused on either plane graphs or regular maps. One benefit of the approach presented
here is that it provides a method of generating and studying self-dual, self-petrial, and in particu-
lar self-trial, graphs in arbitrary surfaces with no assumption of any form of regularity at all. For
example, it was originally conjectured by Wilson that there are no Class III regular maps, that
is, regular maps that are self-trial without also being self-dual or self-petrial. Wilson [26] subse-
quently found a non-orientable dual pair of type {9, 9}9 on 126 edges with characteristic −70;
Jones and Poulton [12], leveraging a computer search of Conder (referenced in [12]), proved
that these have the greatest possible Euler characteristic, while the lowest possible genus in the
orientable case, corresponding to a regular map of type {16, 16}16, is 193. They also give con-
structions such as coverings and parallel connections that yield some infinite families of Class III
regular maps, but ask for families that do not arise in this way. Here, we produce such examples
by reducing the search space to OEBs. This facilitates an exhaustive computer search for Class III
examples among general graphs, and we find that there are in fact a large number of small, low
genus, self-trial graphs that are not also self-dual or self-petrial. We also find an infinite family of
Class III graphs that do not arise as covers or parallel connections of regular maps, thus answering
the question posed by Jones and Poulton.

For an embedded graph G, let G∗ and G× denote its surface dual and Petrie dual, respectively.
At the heart of our constructions is the very simple classical result that if a graph G is self-petrial,
that is if G× =G, then H = (G∗)× is self-dual. In particular, new self-dualities arise from old
through conjugation in Wilson’s group action, as noted at the beginning of Section 5. Here we
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use special kinds of conjugations (Proposition 5.2), or ‘near-conjugations’ (Theorem 5.4), within
the ribbon group action to discover new self-twual graphs in the orbit of a given graph with some
form of self-twuality, thus generating new highly structured graphs. To do this, however, we must
first devise a manageable search for the initial graphs with known self-twuality properties. OEBs
serve in this role, since they can be encoded by chord diagrams and hence can be systematically
generated. Furthermore, checking for isomorphism between OEBs involves considering only the
dihedral group action on the chord diagrams, a much more manageable process than general
ribbon graph isomorphism.

In Sections 2 and 3, we review the basics of ribbon graphs and twuality. We then define our
main algebraic object in Section 4; the key idea is that we fully develop the ribbon group construc-
tion of [7, 8] by labelling edges and incorporating edge permutations into the group action. With
this, the algebraic framework then encompasses the most natural understanding of self-twuality
– e.g. that a ribbon graph is considered self-dual if there exists any isomorphism between itself
and its dual. This is in contrast to the original ribbon group action given by [7, 8] which restricts
self-twuality to the canonical bijection of edges between a ribbon graph and its twual. Definitions
4.2 and 4.3 identify within this framework the various notions of self-twuality underpinning our
main applications. From our algebraic perspective, the study of self-twuality becomes the study of
stabilisers of the ribbon group action.

Ourmain results, Theorems 5.3, 5.4, and 5.5, show that self-twuality, in its various forms, prop-
agates throughout the orbits of the ribbon group action. In Section 6, we prove that that every
orbit contains an OEB, which provides essential leverage for the examples of Section 7. In partic-
ular, Figure 9 lists, up to isomorphism, all self-trial non-self-dual ribbon graphs on up to 7 edges,
and Proposition 7.1 shows how Theorem 5.6 can be used to generate an infinite class of self-trial
non-self-dual ribbon graphs.

Section 8 discusses the implementation of the computation reported in Figure 9, after which
Section 9 closes the paper with a selection of the many further research directions arising from
this algebraic framework for exploring ribbon graph twualities.

2. Ribbon graphs and arrow presentations
There are multiple representations of graphs cellularly embedded in surfaces, and each has its
expository and computational advantages. We will use several of these different representations
for different purposes in the following sections. Thus, we provide here a very brief reminder of
some of the various ways to represent a graph embedded in a surface. A more detailed treatment
may be found in [8].

We begin with ribbon graphs as we will mainly use this representation in the figures.
A ribbon graph G= (V(G), E(G)) is a surface with boundary presented as the union of two sets

of discs, a set V(G) of vertices and a set E(G) of edges, satisfying the following conditions:

1. The vertices and edges intersect in disjoint line segments.
2. Each such line segment lies on the boundary of precisely one vertex and precisely one edge.
3. Every edge contains exactly two such line segments.

A cellular embedding of a graph G on a closed compact surface � is a drawing of G on � such
that edges intersect only at their endpoints and each component of � −G is homeomorphic to a
disc. Two cellularly embedded graphs in the same surface are considered equivalent if there is a
homeomorphism of the surface taking one to the other, and two cellularly embedded graphs are
isomorphic if there is a homeomorphism of the surfaces that induces a graph isomorphism when
restricted to the graphs embedded in the surfaces.

A cellularly embedded graph can be obtained from a ribbon graph by gluing discs into the
boundary components of the ribbon graph and and then retracting the ribbon graph in the
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Figure 1. Three ways of representing K4 on the projective plane.

resulting surface to get the embedding of the graph in the surface. See Figure 1. Two ribbon
graphs are isomorphic if they are isomorphic when represented as cellularly embedded graphs.

Arrow presentations, due to Chmutov [2], are a concise way of representing a ribbon graph.
We simply draw the vertices of the ribbon graph as circles and make small directed arcs where
the edges intersect the vertices (we do not draw the edges). The two arcs for a given edge are both
directed clockwise (or equivalently both directed counterclockwise) if the edge has no twist, and
directed as one clockwise and one counterclockwise if the edge is twisted. See Figure 1.

Arrow presentations are clearly equivalent to signed rotation systems, which encode cellularly
embedded graphs by specifying, for each vertex, a cyclic rotation of its incident edges, and for
each edge, a sign of + or −. Two signed rotation systems (and hence two arrow presentations)
are equivalent up to vertex flips, which are the result of reversing the cyclic order at a vertex and
toggling the sign of each of its incident edges. This corresponds to ‘flipping over’ a vertex disc in
an arrow presentation. See e.g. [18] for a good exposition of rotation systems.

Two embedded graphs G and H given by arrow presentations are isomorphic if there is a map
from the vertex discs of G (including the arrow markings) to any one of the arrow presentations
equivalent to the given arrow presentation of H that preserves edge incidences and agreement of
arrow directions (i.e. arrows corresponding to an edge in the arrow presentation given for G are
consistently oriented if and only if they are consistently oriented in the arrow presentation chosen
for H). We can thus also say that two ribbon graphs are isomorphic if they are isomorphic as
arrow presentations.

Because we allow loops and multiple edges and will use edge ordering to encode graph isomor-
phisms in the following sections, we will need the following formal definition of graph and graph
isomorphism. An abstract graph consists of a setV of vertices and a set E of edges, together with an
incidence map ψ taking E to unordered pairs of elements of V (elements may be repeated in the
pair in the case of loops). Two abstract graphs G= (VG, EG) and H = (VH , EH) are isomorphic
if there are bijections f : VG →VH and g : EG → EH such that ψG(e)= (u, v) ⇐⇒ ψH(g(e))=
(f (u), f (v)).

Since ribbon graphs are the relevant objects in the remainder of the paper, we simply use the
word graph to indicate a ribbon graph, with the adjective ‘ribbon’ or ‘embedded’ only for occa-
sional emphasis. We will use the term abstract graph for the usual definition of a graph given only
in terms of its vertices and edges and their incidences.

3. Dualities and the Wilson group action
Two operations on an embedded graph, forming its geometric dual and forming its Petrie dual,
are the foundation of the ribbon group action central to this paper.

The geometric dual of a cellularly embedded graph is formed by placing a vertex in the center
of each face, and drawing an edge in the surface between two of these vertices whenever there is an
edge shared by the faces that contain them. The geometric dual is contained in the same surface
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Figure 2. The twist operation τ and partial dual operation δ given as arrow presentations.

Figure 3. The full action of δ and τ on a single edge (marked with a ∗ on the left). Note that the four graphs with loop edges
each have three vertices, shown in yellow.

as the original graph. The Petrie dual of a graph has the same vertices and edges as the original
graph, but the faces are given by ‘left-right’ paths, achieved by choosing an edge, following it to
one of its endpoints, and then turning either left or right to follow one of its incident faces in
the original embedding, and continuing in this way, alternating the choice of turning left or right
until the path closes. This process of building faces is repeated until every edge has been traversed
exactly twice. The Petrie dual is generally not embedded in the same surface as the original graph.

Since we will be working primarily in the setting of ribbon graphs, we recall the formation of
geometric and Petrie duals in that setting. To form the geometric dual of a ribbon graph, we sew
discs into the boundary components and remove the original vertex discs. The new discs become
the vertices of the dual, and the edges remain the same, although the intervals along which they
coincide with the new vertices are the complements of those that coincided with the vertices of
the original graph. The Petrie dual is formed for a ribbon graph by detaching one end of each
edge from one of its incident vertex discs, giving the edge a half-twist, and reattaching it to the
vertex disc.

Chmutov’s partial duality, and the partial Petrie duality given in [7], apply these notions of
duality to one edge at a time. If G is an embedded graph given by an arrow presentation and e
is an edge of G, then the partial dual with respect to e changes the arrow presentation as follows.
Suppose A and B are the two arrows labelled e in an arrow presentation of G. Draw a line segment
with an arrow on it directed from the the head of A to the tail of B, and a line segment with an
arrow on it directed from the head of B to the tail of A. Label both of these arrows e, then delete A
and B and the arcs containing them to complete taking the partial dual with respect to e. To take
the partial petrial with respect to e, simply reverse the direction of the arrow on exactly one of the
arrows labeled e. See Figure 2. A full orbit on a single edge is shown in Figure 3. Note that taking
the partial dual of an edge with distinct endpoints always reduces the number of vertices, while
taking the partial dual of a loop may or may not increase the number of vertices. Also note that
applying the partial dual operation to all edges gives the geometric dual, and applying the partial
petrial operation to all edges gives the Petrie dual.
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Table 1. Operators on embedded graphs or subsets of their edges

Generator(s) Order Applied to all edges Applied to a subset of edges

δ 2 Geometric dual Partial dual
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ 2 Petrie dual or petrial Partial petrial or twist
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τδτ 2 Wilson dual or wilsonial Partial wilsonial

(or opposite)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δτ or τδ 3 Triality Partial triality
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ and τ 6 A direct derivative Twisted dual

Wilson noticed that taking the geometric dual and taking the Petrie dual could be thought as
operators on embedded graphs (although his attention was mainly on regular maps), and that,
although each are of order two, together they generate a group isomorphic to S3, now known as
the Wilson group [26]. The ribbon group and restricted ribbon group action from [7, 8] extend
the Wilson group and the Wilson group action to account for partial dualities. Here, we take the
further step of incorporating ribbon-graph isomorphism.

We use the lexicon from [7, 8] given in Table 1.

4. A new algebraic framework for the ribbon group action
The ribbon group and ribbon group action were defined in [7, 8]. These constructs fully gener-
alise surface duality and the Wilson group, and thus provide new tools for understanding ribbon
graphs. For example, [7] shows that if G and H are graphs, then their medial graphs, Gm and Hm,
are isomorphic as abstract graphs if and only if G and H are twisted duals, while [2, 7–10] give
numerous results for topological graph polynomials arising from twisted duality and the ribbon
group action, and several authors have explored genus ranges of partial duals in various settings
[6, 19]. However, the ribbon group action of [7, 8] is limited in that self twuality properties under
it are restricted to only the case of canonical self-twuality, in which the canonical identification
of the edges of the graph and its twual yields an isomorphism. Here, we develop a new algebraic
framework incorporating the role of graph isomorphism in graph twualities, and thereby facili-
tate moving beyond canonical self-twuality to exposes also the more commonly occurring natural
self-twuality.

Since in the broader setting here the six twisted duality operations apply to individual edges,
the edge ordering formalism below keeps track of which operation applies to which edge. More
importantly however, the edge ordering enables recording of graph isomorphism following a dual-
ity operation. For example, in Figure 4, after a partial dual operation is applied to each edge, so that
the net result is the classical dual of the whole graph, the graph and its dual are isomorphic under
the map that takes e to e and f to f . However, in Figure 5, the isomorphism between the graph
and its dual maps e to f and f to e. We will distinguish between these two kinds of self-duality as
canonical and natural, respectively, formalising this in Definitions 4.2 and 4.3 below.

A vertex flip is accomplished by switching the twistedness/non-twistedness of all edges at a
single vertex. Because ribbon graphs are equivalence classes under vertex flips, twists on non-loop
edges may propagate through a ribbon graph. Note, therefore, that the graph in Figure 4 is also
canonically self-petrial, since in this case propagation of twists results in cancellation. Likewise,
if one edge of the digon is twisted, the resulting graph is canonically self-petrial under the map
that takes e to e and f to f , The graph in Figure 5 is self-dual, but not canonically self-dual, since
the isomorphism between the graph and its dual is not the canonical identification of edges. The
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Figure 4. A graph that is canonically self-petrial and also canonically self-dual.

Figure 5. A self-dual graph.

Figure 6. A self-petrial graph.

graph in Figure 5 is not self-petrial. Also, the join of two loops, one twisted and one not, as in
Figure 6, is self-petrial, but not canonically self-petrial, as a twist cannot move from one loop to
another.

Because of this distinction between canonical and natural self-duality, we will begin by working
with graphs with a linear ordering of the edges. Let G(n) denote the set of equivalence classes under
isomorphism of ribbon graphs with exactly n edges, and let

Gor(n):=
{
(G, �) |G ∈ G(n) and � is a linear ordering of the edges

}
be the set of equivalence classes of ribbon graphs with exactly n ordered edges.

In particular, we think of � explicitly as a bijection � : [n] �→ E(G), whose input is a position in
the ordering, and whose output is the edge in that position. Two elements (G, �G) and (H, �H) of
Gor(n) are isomorphic if there is an isomorphism of G andH as ribbon graphs so that the bijection
g : EG → EH agrees with the linear orderings in that �G(i)= e ⇐⇒ �H(i)= g(e).

The two operations, the twist τ and partial-dual δ, act on a specified edge ei of an embedded
graph as shown in Figures 2 and 3.

In [7] it was shown that, for each edge e, in (G, �), applying τ 2, δ2, or (τδ)3 acts as the identity.
Thus, the group

S:= 〈δ, τ | δ2, τ 2, (τδ)3〉,
which is isomorphic to the symmetric group of order six, acts on any fixed edge of a graph (G, �) ∈
Gor(n).

This action readily extends to a group action of Sn on Gor(n) by allowing the various group
elements to act on any subset of the edges independently and simultaneously, not just on a single
distinguished edge.

If γ̂ = (g1, g2, g3, . . . , gn) ∈Sn, then, for any (G, �) ∈ Gor(n), the action of γ̂ on (G, �) applies gi
to the edge ei in the ordering given by �. We will view the indexing as a map, i.e. think of γ̂ as
γ̂ : [n]→S, so that the action applies the element γ̂ (i)= gi to the edge �(i) of G.

Twisted dualities, in particular partial duals, can be specified for graphs without ordered edges
by partitioning the edges into six subsets according to which element ofS is applied. In particular,
Proposition 3.7 of [7] shows that every twisted dual of G admits a unique expression of the form

G
∏6

i=1 ξi(Ai), (1)
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where the Ai partition E(G), and where ξ1 = 1, ξ2 = τ , ξ3 = δ, ξ4 = τδ, ξ5 = δτ , and ξ6 = τδτ ∈
S. This may also be written in the expanded form

G
∏

e∈E(G) ξs(e)(e), (2)

where if e ∈Ai, then s(e)= i. Often, if only one element ofS is applied to some subset A⊆ E(G),
then the notation is simplified to Gξ (A) for ξ ∈S− {1}, e.g. writing Gδ(A) for the partial dual with
respect to A.

With the preceding, we can write the action of γ̂ on (G, �) as

γ̂ (G, �)=
(
G	(γ̂ ,�), �

)
, (3)

where 	(γ̂ , �)= ∏6
i=1 ξi(�γ̂−1(ξi))= ∏

e∈E(G)
[
γ̂ �−1(e)

]
(e). Here, 	(γ̂ , �) just sorts the edges of

E(G) into a 6-partition according to the operation applied to them by γ̂ , and then applies the
appropriate operation to each partition. Although the edge order � is used to determine 	(γ̂ , �),
note that �γ̂−1(ξi) is a set, so the result may be applied toG, which is unordered, without reference
to edge order.

We make the following observations that will be used to prove the compatibility condition in
Proposition 4.1 below. We first note that permuting the order of the edges translates simply to
permuting which element ofS applies to which edge.

	(γ̂ , �π−1)=
∏

e∈E(G)

[
γ̂ (�π−1)−1(e)

]
(e)=

∏
e∈E(G)

[
(γ̂ π)�−1(e)

]
(e)= 	(γ̂ π , �). (4)

Furthermore, note that composition of a group element with an edge permutation distributes over
the group operation ◦ inSn, so that

γ̂1π ◦ γ̂2π = (γ̂1 ◦ γ̂2)π , (5)

γ̂1 ◦ (γ̂2π)= (γ̂1π−1 ◦ γ̂2)π , (6)

and
(γ̂1π) ◦ γ̂2 = (γ̂1 ◦ γ̂2π−1)π ; (7)

also,
(γ̂ π)−1 = γ̂−1π , since

(
γ̂ π ◦ γ̂−1π

) = 1π = 1. (8)

Lastly, iterated applications of 	 are captured by the group operation ◦, in that

(G	(γ̂2,�))	(γ̂1,�) =G	(γ̂1γ̂2,�). (9)

Caution: Note that with this notation, (G×)∗ =G(∗×).
There is also a second group action on Gor(n). The symmetric group on n elements, Sn, acts on

Gor(n) by permuting the edge order, so π(G, �)= (G, �π−1), where �π−1 is just composition of the
functions � and π−1. Thus, applying π to (G, �) permutes the ordered list of edges. We write ι for
the identity in Sn.

We turn to a semidirect product of Sn and Sn for an action on Gor(n) that combines these
two actions in a compatible way. This will be the primary algebraic tool for manipulating ribbon
graphs, as its function is to apply specific elements of the ribbon group to specific edges, and
furthermore to keep track of isomorphisms between graphs via the edge orderings.

Proposition 4.1 Let φ : Sn →AutSn be defined by φ(π) �→ φπ , where φπ (γ̂ )= γ̂ π−1. Then
φ is a homomorphism, and the semidirect product Sn

�φ Sn acts on Gor(n) by (γ̂ , π)(G, �)=
γ̂ (G, �π−1)= (G	(γ̂ ,�π−1), �π−1)= (G	(γ̂ π ,�), �π−1).
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Proof. Showing that φ is a homomorphism is routine since φπ1π2 (γ̂ )= γ̂ (π1π2)−1 =
φπ1φπ2 (γ̂ ). Thus, we have a well-defined semidirect product Sn

�φ Sn with multiplication given
by (γ̂1, π1)(γ̂2, π2)= (γ̂1φπ1 (γ̂2), π1π2).

It remains to verify the compatibility condition that (γ̂1, π1) ·
[
(γ̂2, π2) · (G, �)

] =[
(γ̂1, π1)(γ̂2, π2)

] · (G, �).
We give two proofs of the compatibility condition for the action of Sn

�φ Sn on Gor(n), as
the first aligns more readily with topological intuition and the second is more fundamentally an
application of algebraic machinery. However, at the heart of both proofs is the observation that
first applying (γ̂2, π2) and then applying (γ̂1, π1), requires ‘undoing’ the edge ordering given by π1
so that the operations in γ̂2 apply to the correct edges. This exactly corresponds to the π−1

1 that
appears when first multiplying (γ̂1, π1)(γ̂2, π2) and only then applying the result to (G, �), rather
than applying the multiplicands iteratively to (G, �).

Proof 1. The first proof leverages the identities in equations (4) through (7). We compute as
follows:

(γ̂1, π1) ·
[
(γ̂2, π2) · (G, �)

] = (γ̂1, π1) ·
(
G	(γ̂2π2,�), �π−1

2

)

=
(
(G	(γ̂2π2,�))	(γ̂1π1,�π

−1
2 ), �π−1

2 π−1
1

)

=
(
(G	(γ̂2π2,�))	(γ̂1π1π2,�), �π−1

2 π−1
1

)

=
(
G	(γ̂1π1π2◦γ̂2π2,�), �π−1

2 π−1
1

)

=
(
G	((γ̂1◦γ̂2π−1

1 )π1π2,�), �π−1
2 π−1

1

)

=
(
γ̂1 ◦ γ̂2π−1

1 , π1π2
)

· (G, �)

= [
(γ̂1, π1)(γ̂2, π2)

] · (G, �).
Here the third equality follows from equation (4), the fourth from equation (7), and the fifth from
equation (5).

Proof 2. The second proof uses the following observations, which are reductions of operations
within the action of the semidirect product:

(γ̂ , ι) · [(1, π) · (G, �)] =
(
[G	(1,�π−1)]	(γ̂ ,�π−1), �π−1

)
=

(
G	(γ̂ ,�π−1), �π−1

)
= (γ̂ , π) · (G, �),

(10)

(1, π) · [(γ̂ π , ι) · (G, �)] =
(
[G	(γ̂ π ,�)]	(1,�π−1), �π−1

)
= (γ̂ , π) · (G, �),

(11)

(1, π1π2) · (G, �)=
(
G	(1,�π

−1
2 π−1

1 ), �π−1
2 π−1

1

)
= (1, π1) · [(1, π2) · (G, �)] , and (12)

(γ̂1γ̂2, ι) · (G, �)= (γ̂1, ι) ·
[
(γ̂2, ι) · (G, �)

]
. (13)

In fact, each of these is a particular instance when the compatibility condition of the action holds,
although we don’t need that observation per se.
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Now we have in general that
(γ̂1, π1) ·

[
(γ̂2, π2) · (G, �)

] = (γ̂1, π1) ·
[
(1, π2) ·

[
(γ̂2π2, ι) · (G, �)

]]
= (1, π1) ·

[
(γ̂1π1, ι) ·

[
(1, π2) ·

[
(γ̂2π2, ι) · (G, �)

]]]
= (1, π1) ·

[
(1, π2) ·

[
(γ̂1π1π2, ι) ·

[
(γ̂2π2, ι) · (G, �)

]]]
= (1, π1π2) ·

[
(γ̂1π1π2 ◦ γ̂2π2, ι) · (G, �)

]
= (γ̂1 ◦ γ̂2π−1

1 , π1π2) · (G, �)
= [

(γ̂1, π1)(γ̂2, π2)
] · (G, �). �

Recall that applying a permutation to an indexed set applies the inverse permutation to the
indices, so that φπ acts by permuting the indices of γ̂ , where if γ̂ = (g1, g2, g3, . . . , gn), then
φπ (γ̂ )= (gπ−1(1), gπ−1(2), gπ−1(3), . . . , gπ−1(n)).

Also note that (γ̂ , π)−1 = (γ̂−1π , π−1), applying equation (5) as needed.
We close this section by establishing some notation that will facilitate our exploration of the

orbits and stabilisers of the ribbon group action.
As usual Orb((G, �G))= {(H, �H) | (γ̂ , π)(G, �G)= (H, �H) for some (γ̂ , π) ∈Sn

�φ Sn},
although we will usually write Orb(G, �G) for Orb((G, �G)). In addition, we will often
focus particularly on the action of the subgroup Sn

�φ ι and will denote its orbit as
Orbι(G, �G)= {(H, �H) | (γ̂ , ι)(G, �G)= (H, �H) for some γ̂ ∈Sn}.

We will see that the various twualities a graph may exhibit may be revealed by examining
appropriate kinds of stabilisers.

Definition 4.2 We say that an embedded graph (G, �) is self -γ̂ if γ̂ is not the identity and
there exists π ∈ Sn such that (γ̂ , π)(G, �)= (G, �), and we say that (G, �) is canonically self -γ̂ if
(γ̂ , ι)(G, �)= (G, �).

In particular, (G, �) is self-γ̂ for some γ̂ different from the identity if it has a non-trivial
stabiliser inSn

� Sn, and canonically self-γ̂ if it has a non-trivial stabiliser inSn
� ι.

We will be most interested in the case that G is self-dual, self-petrial, self-trial, etc. in the
traditional sense. This corresponds to γ̂ being uniform, that is, every entry of γ̂ is the same.

Definition 4.3 We say that an embedded graph (G, �) is self-twual via π (or just self-twual) if there
is a uniform γ̂ ∈Sn and a π ∈ Sn such that (γ̂ , π)(G, �)= (G, �). We say that (G, �) is canonically
self-twual if (G, �) is self-twual via ι.

Thus, for example, a graph G is canonically self-dual if (δ, ι)(G, �)= (G, �).
Note that because Gor(n) is a set of equivalence classes, (γ̂ , π)(G, �)= (G, �) means that there

is an isomorphism between G	(γ̂ ,�π−1) and G, and the correspondence of edges under this
isomorphism is given by the mapping �π−1(i) �→ �(i).

Remark 4.4 A comparison with the ribbon group and ribbon group action on graphs with
ordered edges of [8, Definition 2.21] shows that this action is exactly the action of Sn

� ι. The
permutation group inSn

� Sn allows us to define natural self-twuality precisely as (γ̂ , π)(G, �)=
(G, �), with π specifying the isomorphism. The limitation of the canonical action of [8] is evident
in [8, Theorem 2.25] where the most that can be said is that two graphs have a given self-twuality
if they both belong to a particular set, with the isomorphism unspecified.

5. Propagation of twuality
We show here that if a graph H is self-γ̂ for some non-trivial γ̂ , then any graph G in its orbit is
also self-γ̂ ′ for some γ̂ ′. Thus, once any graph is found to have some twisted duality property, that
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property propagates through its whole orbit. Furthermore, as we will see later, it possible to search
the orbit efficiently for graphs with desired self-twuality properties.

Recall that in the classical setting, we get new self-twualities by conjugation, so that if G has
some self-twuality property and H is an element of the orbit of G under the Wilson group action,
then H will have a self-twuality that is conjugate to the self-twuality of G. For example, if G is
self-dual, with G=Gδ(E) and H =Gτ (E), then H is self-τδτ−1.

This same principle holds for any pair of elements in the Wilson group. Here we adapt this
principle to the more refined setting of the ribbon group action, which then allows us to study
twuality systematically in the subsequent sections.

We begin with a short technical lemma to verify the intuitively clear fact that ifH is self-γ̂ , then
this property is preserved if the edge order and the entries of γ̂ are permuted simultaneously by
the same permutation.

Lemma 5.1 If (H, �) is self-γ̂ via μ, then for any permutation π , (H, �π−1) is self-γ̂ π−1 via
πμπ−1.

Proof. It suffices to verify the commutativity of the following diagram:

By the compatibility condition of the action, this follows from the following calculation inSn
�φ

Sn.

(γ̂ π−1, πμπ−1)(1, π) = (γ̂ π−1 · 1πμ−1π−1, πμ)

= (γ̂ π−1 · 1, πμ)
= (1 · γ̂ π−1, πμ)

= (1, π)(γ̂ ,μ).

The following proposition gives our main result in the simplest setting, where there are no
permutations of the edges to keep track of, and hence the principle of the proof is easier to see.

Proposition 5.2 Suppose (H, �H) is canonically self-γ̂ , and (G, �G) ∈Orbι(H, �H) with
(α̂, ι)(H, �H)= (G, �G). Then G is also canonically self-γ̂ ′ where γ̂ ′ is the result of conjugation,
specifically γ̂ ′ = α̂γ̂ α̂−1.

Proof. The compatibility condition of the action and a simple calculation in Sn
�φ Sn verify

that the following diagram is commutative, which proves the result.

�
A consequence of Proposition 5.2, given in the following theorem, is that canonical self-

twuality propagates throughout the entire orbit of a graph.

Theorem 5.3 Let (F, �F) be a graph. Then the following are equivalent:

1. There is a graph (H, �H) ∈Orbι(F, �F) that is canonically self-twual, i.e. self-dual, -petrial,
or -wilsonial (respectively, self-trial);
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Table 2.Conjugacy Table (α labels the rows, γ the columns)

αγα−1 1 τ δ τδ δτ τδτ

1 1 τ δ τδ δτ τδτ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ 1 τ τδτ δτ τδ δ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 1 τδτ δ δτ τδ τ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τδ 1 δ τδτ τδ δτ τ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δτ 1 τδτ τ τδ δτ δ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τδτ 1 δ τ δτ τδ τδτ

2. Every graph (G, �G) in Orbι(F, �F) is canonically self-γ̂ ′ where every element of γ̂ ′ has order
2 (respectively, 3);

3. There exists a graph (G, �G) in Orbι(F, �F) that is canonically self-γ̂ ′ where every element of
γ̂ ′ has order 2 (respectively, 3).

Proof. The proof uses the conjugacies for S3 given in Table 2.
To see that Item 5.3.1 implies Item 5.3.2, suppose that (H, �H) is a canonically self-twual graph

via uniform γ̂ . Then by Theorem 5.2, every graph (G, �G) in Orbι(H, �H)=Orbι(F, �F) is canoni-
cally self-α̂γ̂ α̂−1 for some α̂. However, conjugation preserves order here, so by Table 2, if γ̂ is δ-,
τ -, or τδτ -uniform, then each element in α̂γ̂ α̂−1 is in {τ , δ, τδτ }. Similarly, if (G, �G) is canon-
ically self-trial, then every element of α̂γ̂ α̂−1 must be in {τδ, δτ }. Note that α̂ may be trivial, in
which case γ̂ = γ̂ ′ and still has every element of order 2 or 3.

That Item 5.3.2 implies Item 5.3.3 is immediate.
To show that Item 5.3.3 implies Item 5.3.1, assume (G, �G) is a graph in Orbι(F, �F) that

is canonically self-γ̂ ′ where every entry of γ̂ ′ is in {τ , δ, τδτ }. We may then use the con-
jugacy table to select elements of α̂ so that α̂γ̂ ′α̂−1 is δ-, τ -, or τδτ -uniform. With this,
(H, �H)= (α̂, ι)(G, �G) is the canonically self-dual, -petrial, or -wilsonial graph we seek, since if γ̂
is the desired twuality, then (γ̂ , ι)(H, �H)= (γ̂ , ι)(α̂, ι)(G, �G)= (α̂, ι)(γ̂ ′, ι)(α̂, ι)−1(α̂, ι)(G, �G)=
(α̂, ι)(γ̂ ′, ι)(G, �G)= (α̂, ι)(G, �G)= (H, �H). An analogous approach proves the self-trial case.

The general case where (G, �G) is any graph in the orbit of (H, �H) (that is, in Orb(H, �H),
not necessarily Orbι(H, �H)) and where (H, �H) is self-γ̂ but not necessarily canonically so, is
essentially the same, but involves keeping track of the permutations. Although the conjugation is
somewhat obfuscated by the appearance of the permutations, we are simply reordering to be sure
that the conjugation is applied to the correct edges at each step.

Theorem 5.4 Suppose (H, �H) is self-γ̂ via μ and that (G, �G) ∈Orb(H, �H) with (α̂, π)(H, �H)=
(G, �G). Then (G, �G) is self-γ̂ ′ via μ′ where γ̂ ′ is a ‘near-conjugate’ of γ̂ by α̂, with

γ̂ ′ = α̂ · γ̂ π−1 · α̂−1πμ−1π−1,
and μ′ = πμπ−1.

Proof. It suffices to verify the commutativity of the following diagram:
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By the compatibility condition of the action, this follows from the following calculation in
Sn

�φ Sn.(
α̂ · γ̂ π−1 · α̂−1πμ−1π−1, πμπ−1) (α̂, π)= (

α̂ · γ̂ π−1 · α̂−1πμ−1π−1 · α̂πμ−1π−1, πμπ−1)
= (α̂ · γ̂ π−1, πμ)
= (α̂, π)(γ̂ ,μ). �

Since S is not commutative, we write
∏1

i=m ξi in the following theorem statement to indicate
the product ξmξm−1 . . . ξ1. We also write ord(g) for the order of a group element inS.

Theorem 5.5 Let (F, �F) be a graph, g ∈S, and μ a permutation. Then the following are
equivalent:

1. There is a graph (H, �H) ∈Orb(F, �F) that is self-γ̂ = (g, g, . . . , g) via the permutationμ, i.e.
(H, �H) is self-dual, -petrial, -wilsonial, or -trial;

2. Every graph (G, �G) ∈Orb(F, �F) is self-γ̂ ′ = (ξ1, ξ2, . . . , ξn) via μ′, where μ′ = πμπ−1 for
some π , and where γ̂ ′ has the property that if C = (c1, c2, . . . , cm) is a cycle in the cycle
decomposition of μ′, then ord(

∏1
i=m ξci)= ord(gm);

3. There exists a graph (G, �G) ∈Orb(F, �F) that is self-γ̂ ′ = (ξ1, ξ2, . . . , ξn) via μ′, where μ′ =
πμπ−1 for some π , and where γ̂ ′ has the property that if C = (c1, c2, . . . , cm) is a cycle in
the cycle decomposition of μ′, then ord(

∏1
i=m ξci)= ord(gm).

Proof. To see that Item 5.5.1 implies Item 5.5.2, suppose that (H, �H) is a self-twual graph
via uniform γ̂ and permutation μ, and (G, �G) is a graph in Orb(H, �H)=Orb(F, �F). Then, by
Theorem 5.4, (G, �G) is self-γ̂ ′ = α̂ · γ̂ π−1 · α̂−1πμ−1π−1 via μ′ = πμπ−1 where α̂ and π satisfy
(α̂, π)(H, �H)= (G, �G). In particular, for this α̂ and π , we have that

(γ̂ ,μ) = (α̂, π)−1(γ̂ ′,μ′)(α̂, π) =
(
(α̂−1 · γ̂ ′ · α̂μ′−1)π , π−1μ′π

)
. (14)

Hence, (α̂−1 · γ̂ ′ · α̂μ′−1)π = γ̂ , and so (α̂−1 · γ̂ ′ · α̂μ′−1)= γ̂ π−1. However, γ̂ is uniform, so
γ̂ π−1 = π , and we have that

(α̂−1 · γ̂ ′ · α̂μ′−1)= γ̂ . (15)

We now write γ̂ ′ = (ξ1, ξ2, . . . , ξn) and also write α̂ = (α1, α2, . . . , αn), recalling that α̂μ′−1 =
(α
μ

′−1
(1)
, α
μ

′−1
(2)
, . . . , α

μ
′−1

(n)
). Considering each entry of equation (15) individually, this yields

that
α−1
i · ξi · α

μ
′−1

(i)
= g for all i. (16)

In particular, if C = (c1, c2, . . . , cm) is a cycle in the cycle decomposition of μ′ (we use the
convention that a cycle begins with its lowest number), then equation (16) becomes

α−1
ci · ξci · αci−1 = g for all i ∈ {1, 2, . . . ,m}, where we write c0 = cm. (17)

Thus, αcm−1 = ξ−1
cm · αcm · g, and αcm−2 = ξ−1

cm−1 · ξ−1
cm · αcm · g2, and in general

αcm−i =
⎛
⎝ m∏

j=m−i+1
ξ−1
cj

⎞
⎠ · αcm · gi. (18)

When i=m, it follows that αcm =
(∏m

j=1 ξ
−1
cj

)
· αcm · gm and hence

(∏1
j=m ξcj

)
= αcm · gm ·

α−1
cm . Since conjugation preserves order inS, this proves the implication.
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That Item 5.5.2 implies Item 5.5.3 is immediate.
To show that Item 5.5.3 implies Item 5.5.1, suppose (G, �G) ∈Orb(F, �F) is self-γ̂ ′ =

(ξ1, ξ2, . . . , ξn) via μ′ = πμπ−1 for some π , and that γ̂ ′ has the property that if C =
(c1, c2, . . . , cm) is a cycle in the cycle decomposition of μ′, then ord(

∏1
i=m ξci)= ord(gm).

We observe that we can assume μ′ =μ, i.e. that we can take π = ι. This follows from Lemma
5.1, which says that we can simply re-order the edges of (G, �G) so that G is self-γ̂ ′π via
μ=μ′. We then note that since in

∏1
i=m ξci the indices are from a cycle of μ′, it follows that

ord(
∏1

i=m ξμ′(ci)= ord(
∏1

i=m ξci+1 )= ord(
∏1

i=m ξci)= ord(gm).
Thus, Item 5.5.3 implies that there is some (G, �G) ∈Orb(F, �F) that is self-γ̂ ′ = (ξ1, ξ2, . . . , ξn)

via μ′ =μ, and that γ̂ ′ has the property that if C = (c1, c2, . . . , cm) is a cycle in the cycle
decomposition of μ′, then ord(

∏1
i=m ξci)= ord(gm).

We will construct α̂ ∈Sn as follows. Given a cycle C of lengthm in the cycle decomposition of
μ′, since ord(

∏1
j=m ξcj)= ord(gm), we may use the conjugacies in Table 2 to choose αcm such that

αcm ·
(∏1

j=m ξcj

)
· α−1

cm = gm. Then, for 1≤ i<m, recursively define αci = g−1 · αci+1 · ξi+1. Note

that we have αci = g−(m−1) · αcm ·
(∏i+1

j=m ξcj

)
for 1≤ i<m, and also that αc1 = g · αcm · ξ−1

1 .
Then, for all i, and reading indices of the ci’s modm, we find that

g = αci+1 · ξi+1 · α−1
μ

′−1
(ci+1)

. (19)

We repeat this, choosing some suitable αcm for each cycle of lengthm in μ′ for all lengthsm.
Since equation (19) holds for all entries and μ=μ′, it follows that (γ̂ ,μ)=

(α̂, ι)(γ̂ ′,μ′)(α̂, ι)−1.
With this, (H, �H)= (α̂, ι)(G, �G) is the desired self-dual, -petrial, -wilsonial,

or, respectively, self-trial graph, since then (γ̂ ,μ)(H, �H)= (γ̂ ,μ)(α̂, ι)(G, �G)=
(α̂, ι)(γ̂ ′,μ′)(α̂, ι)−1(α̂, ι)(G, �G)= (α̂, ι)(γ̂ ′,μ′)(G, �G)= (α̂, ι)(G, �G)= (H, �H). �

Observe that α̂, as constructed in the proof of Theorem 5.5 is not uniquely determined, as each
cycle of μ′ gives rise to several possibilities. Each of the resulting α̂’s can give a different self-twual
graph H, although some of them might possibly be isomorphic to one another.

Theorems 5.3 and 5.5 imply that if we find any graph G that is self-γ̂ via a permutation μ for
any γ̂ andμ, then we can quickly test for the existence of an α̂ so that γ̂ has the form α̂γ̂ ′(α̂−1μ−1)
for some uniform γ̂ ′, and thus identify self-twual graphs in the orbit ofG. We will see this in action
in the following sections, starting in Section 6 by identifying graphs for which it is reasonable to
test for being self-γ̂ for some γ̂ , and then in Section 8 giving a polynomial time algorithm to
determine the existence of such an α̂.

Note that in the special case that μ= ι, Theorems 5.4 and 5.5 reduce to Theorems 5.2 and 5.3,
respectively. In the case of Theorem 5.2, we have that γ̂ ′ is trivial if and only if γ̂ is. However, in
Theorem 5.4, if γ̂ = 1 but μ �= ι then H has a non-trivial automorphism group, with μ ∈Aut(H).
In this case, it is possible that γ̂ ′ is non-trivial, which leads to the following theorem and a new
strategy for generating self-twual graphs.

Theorem 5.6 Suppose the permutation μ corresponds to an element of the automorphism group of
H (as an embedded graph), that is, (1,μ)(H, �H)= (H, �H). Then for every ribbon group element
α̂ we have that (G, �G)= (α̂, ι)(H, �H) is self-γ̂ ′ via μ with γ̂ ′ = α̂ · α̂−1μ−1, and γ̂ ′ non-trivial
exactly when α̂ �= α̂μ−1.

Proof. This follows from Theorem 5.4 with γ̂ = 1 and π = ι, and the observation that
(α̂−1μ−1)−1 = α̂μ−1. �

Thus, if a graphH has a non-trivial automorphism group, as is the case for example with regular
maps, then there is potential for finding self-twual graphs in its orbit by seeking solutions to γ̂ ′ =
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Figure 7. A graph H (left) with non-trivial automorphism group, and a graph G (right) in its orbit that is self-trial but neither
self-dual nor self-petrial.

α̂ · α̂−1μ−1 for uniform γ̂ ′. We give a small example applying Theorem 5.6 in Example 5.7, and
use Theorem 5.6 to give an infinite family of graphs that are self-trial but neither self-dual nor
self-petrial in Subsection 7.2.

Example 5.7 Let H be the bouquet with six edges shown on the left of Figure 7. Let μ be the
automorphism that rotates H by 120◦. We solve α̂ · α̂−1μ−1 = {δτ , δτ , δτ , δτ , δτ , δτ } to get α̂ =
{1, 1, δτ , δτ , τδ, τδ}. With this, (G, �G)= (α̂, ι)(H, �H), shown on the right of Figure 7, is self-trial.
Since G has a single loop it cannot be self-petrial, and hence it also cannot be self-dual.

6. Single vertex orientable ribbon graphs
In this section, we show that the search for self-twual graphs may be reduced to studying the self-γ̂
properties of single-vertex orientable graphs, i.e. orientable embedded bouquets (OEBs). Since, by
the results of Section 5, any OEB encodes the twisted duality properties of every graph in its orbit,
this provides a new approach for searching for self-dual, self-petrial, self-trial, etc. graphs.

Our next step is to show that every graph has an OEB in its orbit. Thus, OEBs provide rep-
resentatives of the orbits under the ribbon group action that may be more readily analysed than
general graphs.

Proposition 6.1 If (G, �G) is a connected graph, then there is an OEB in its orbit.

Proof.We induct on the number of vertices ofG. Suppose that (G, �G) hasmore than one vertex.
Since G is connected, it has some non-loop edge, say �G(i). Define γ̂1 ∈Sn to have γ̂1(i)= δ and
γ̂1(j)= 1 for j �= i, and define (G1, �G)= (γ̂1, ι) · (G, �G). Note that G1 has one fewer vertex than
G does. Iterating this process, we obtain a bouquet (Gk, �G)= (γ̂k, ι) · . . . · (γ̂1, ι) · (G, �G) in the
orbit of (G, �G).

IfG is orientable then we are done. If not, then becauseG has only a single vertex we can unam-
biguously identify a subset S= {�(i1), . . . , �(ir)} of edges of (Gk, �G) which are twisted. Defining
γ̂ ′ ∈Sn to have γ̂ ′(i)= τ for �(i) ∈ S and γ̂ ′(i)= ι otherwise, we obtain an OEB (γ̂ ′, ι) · (Gk, �G)
in the orbit of (G, �G). �

We now set the stage for searching for self-twual graphs. We again begin with the special
case of being canonically self-γ̂ and canonically self-twual, as here results can be found simply
by checking a conjugation table.

Proposition 6.2 Suppose H is an OEB that is canonically self-γ̂ for some non-trivial γ̂ . Then every
graph in its orbit is also canonically self-γ̂ ′ where γ̂ ′ is a conjugate of γ̂ .

Proof. This follows immediately from Theorem 5.2 in the special case that H is an OEB. �
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The following Theorem 6.3 gives a practical application of Theorem 5.3 to generating all canon-
ically self-twual graphs by confirming that determining the canonically self-γ̂ properties of an
OEB indeed captures all possible canonically self-twual graphs in its orbit.

Theorem 6.3 Every canonically self-dual, -petrial, or -wilsonial (respectively, self-trial) graph G is
in the orbit of an OEB H that is canonically self-γ̂ ′ for some γ̂ ′ of order 2 (respectively, 3).

Proof. This follows from Theorem 5.3 by taking G= F, recalling that Orb(G)=Orb(H) for any
H ∈Orb(G), and from Proposition 6.1 that tells us that there is always an OEB H in Orb(G). �

The following two results are the analogs of Proposition 6.2 and Theorem 6.3 where the twual-
ity is not necessarily canonical. The proofs, which use Theorem 5.5 instead of Theorem 5.3, with
some attention to technical details since the ‘conjugation’ for the proof of Theorem 6.5 involves a
permutation, are left to the reader.

Proposition 6.4 Suppose H is an OEB that is self-γ̂ for some non-trivial γ̂ , via a permutation μ.
Then every graph in Orb(H) is also self-γ̂ ′ via μ′, where γ̂ ′ is the ‘near-conjugate’

γ̂ ′ = α̂ · γ̂ π−1 · α̂−1πμ−1π−1

of γ̂ , and μ′ = πμπ−1.

Theorem 6.5 Every self-dual, -petrial, or -wilsonial (respectively, self-trial) graph G is in the orbit
of an OEB H that is self-γ̂ ′ via μ′ for some γ̂ ′ with the property that if C = (c1, c2, . . . , cm) is a cycle
in the cycle decomposition of μ′, then ord(

∏1
i=m ξci)= ord(gm).

Thus, to search for self-twual graphs, we can generate OEBs and test for self-γ̂ properties. If
we find an OEB H that is self-γ̂ with the elements γ̂ having the required order properties, we
can then just look in the conjugacy table to generate the self-twual graphs in its orbit. If we have
exhaustively found all γ̂ such that H is self-γ̂ , then we will be able generate all of the self-twual
graphs in its orbit. This process and the algorithm for it are discussed further in Sections 7 and 8.

7. New graphs from old
Here we use the results of the previous sections and a computer search to determine all graphs on
up to 7 edges that are self-trial, but neither self-dual nor self petrial. We then apply Theorem 5.6
to generate a new infinite family of self-trial graphs that are neither self-dual nor self-petrial.

We represent a graph (G, �G) as a collection of cyclically ordered tuples [r1, r2, . . . , rn], each
tuple conveying the information for attaching ribbon-ends to one of the vertices of G. The entries
ri are integers whose absolute value |ri| is the label of a ribbon and such that ri < 0 exactly when
ribbon ri has a twist. Such representations are referred to in Section 8.2 as being in ‘end-label
form.’ Further details about the computer implementation are discussed in Section 8.

7.1. All small self-trial graphs
Figure 8 lists a few self-γ̂ OEBs. There are in fact many others for the indicated numbers of rib-
bons, but these are the ones needed for Figure 9. Figure 9 lists all examples, up to isomorphism,
of self-trial, non-self-dual (and hence also non-self-petrial, since δτ and τ generate S) graphs G
having n ribbons for 3≤ n≤ 7. In each case, these examples arose as (G, �G)= (α̂, ι)(H, �H) for
multiple self-(γ̂ , π) OEBs (H, �H), for various (γ̂ , π), but only one such OEB is listed. The graph
G itself is self-trial under the action of (δτ , σ ) for the given element σ . Computationally, the list in
Figure 9 was constructed by exhaustively running through all possible OEBs with the given num-
ber of ribbons, recording an example when it represented an isomorphism class not previously
encountered. As discussed in Section 8, by using a well-chosen data structure our setup allows for
rapid determination of isomorphism.
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Figure 8. Some self-γ̂ OEBs.

Figure 9. Up to isomorphism, all self-trial, non-self-dual graphs on n edges with 3≤ n≤ 7. In all cases, we have G= (δτ , σ )G.

7.2. Examples from Theorem 5.6
We now use Theorem 5.6 to generate an infinite family of graphs that are self-trial but neither
self-dual nor self-petrial. This family differs from the infinite family of such graphs given in [12]
which contains very large regular maps in that this family starts with quite small graphs and the
members are not generally regular maps.

Motivating the example below is the observation that twuality acts independently on the com-
ponents of a one-point join of two graphs. Thus, ifG is anOEB, then the one-point join of the three
graphs G, G(∗×), and G(×∗) will automatically be self-trial. The example below is more general, as
it is not a one-point join of graphs.

We begin with the OEB (Hk, �Hk) on 3k untwisted edges e1, . . . , e3k, where ei = �Hk(i), which
are attached according to the following (cyclic) pattern:

e2, e1, e3, e2, e4, e3, e5, e4, . . . , ei, ei−1, ei+1, ei, . . . , e3k, e3k−1, e1, e3k.

Defining α̂ to be the ribbon group element

α̂ = (
k times︷ ︸︸ ︷

1, 1, . . . , 1,
k times︷ ︸︸ ︷

δτ , δτ , . . . , δτ ,
k times︷ ︸︸ ︷

τδ, τδ, . . . , τδ ),

we obtain the graph (α̂, ι)(Hk, �Hk) depicted in Figure 10. Note the labelling of the edge-ends; we
will make heavy use of this labelling below.

Proposition 7.1 The graph (α̂, ι)(Hk, �Hk) depicted in Figure 10 is self-trial but not self-dual.
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Figure 10. The graph (α̂, ι)(Hk , �Hk ) as described in the text, depicted as an arrow presentation, with potentially multiple
vertex discs. For each i the ends of edge ei are labelled (i)a and (i)b, respectively.

Proof. Fix k and write (G, �G) for (α̂, ι)(Hk, �Hk) Clearly, the permutationμ given byμ(i)= i+ k
mod 3k gives an automorphism of (Hk, �Hk). With α̂ defined as above we have

α̂ · α̂−1μ−1 = (
3k times︷ ︸︸ ︷

δτ , δτ , . . . , δτ ).

Corollary 5.6 thus tells us that the graph (G, �G) is self-trial. To show that (G, �G) is not self-dual
it suffices to show that it is not self-petrial, since δτ and τ generateS.

The graph (G, �G) has one or more vertices, depicted in Figure 10 as one or more cyclic strings
of labeled arrows. We cut these at the tails of the arrows (k)b, (k+ 1)a, (2k)a, (3k− 1)a,(3k)a and
(3k)b and at the heads of the arrows (2k− 1)b and (2k)b, to obtain the following linear ‘strands’,
where we use (i)−1

x to indicate that the arrow is traversed backwards in the sequence of the
strand.

Sk+1,a:= (k+ 1)a (k+ 2)−1
b (k+ 4)a (k+ 5)−1

b (k+ 7)a · · ·
Sk+1,b:= (k+ 1)−1

b (k+ 3)a (k+ 4)−1
b (k+ 6)a (k+ 7)−1

b · · ·
Sk,b:= (k)b (k+ 2)a (k+ 3)−1

b (k+ 5)a (k+ 6)−1
b (k+ 8)a · · ·

S2k−1,b:= (2k− 1)−1
b (2k+ 1)a (2k+ 3)a (2k+ 5)a (2k+ 7)a · · ·

S2k,a:= (2k)a (2k+ 1)b (2k+ 2)b (2k+ 3)b (2k+ 4)b · · ·
S2k,b:= (2k)−1

b (2k+ 2)a (2k+ 4)a (2k+ 6)a (2k+ 8)a · · ·
S3k,a:= (3k)a (2)a (1)b (3)a (2)b (4)a · · · (k− 1)b

S3k,b:= (3k)b (1)−1
a (3k− 1)−1

a

By construction, these strands account for all edge ends, but the particular sequence of strands
found in (G, �G) depends on the value of k mod 6. In each case, we provide the simplest argument
we could find.

• Case k≡ 1 mod 6. There is one vertex, given by the cyclic concatenation

S3k,a Sk+1,a S2k,a S3k,b S−1
2k,b S

−1
k+1,b Sk,b S2k−1.b.

Since there are 3k loops and k is odd, it is not possible for (G, �G) to have the same number of
twisted loops as untwisted loops. Thus (G, �G) is not self petrial in this case.

• Case k≡ 5 mod 6. There is one vertex, given by the cyclic concatenation

S3k,a Sk+1,a S2k,b S−1
3k,b S

−1
2k,a S

−1
k,b Sk+1,b S2k−1,b.

As for the case k≡ 1, (G, �G) is not self-petrial in this case.
• Case k≡ 2 mod 6. There are two vertices, given by the cyclic concatenations

S3k,a Sk+1,a§2k,b
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and
Sk+1,b S2k−1,b S−1

3k,b S
−1
2k,a S

−1
k,b .

We have k= 6m+ 2 for somem> 0. Let v denote the vertex corresponding to the concatenation
S3k,aSk+1,a S2k,b and let w denote the other vertex. Note that the only loops on v, namely edges
2, 3, 4, . . . , k− 1, have both their ends in S3k,a, and these are all untwisted. This is a total of k− 2=
6m loops on v. In all, there are 3 additional edges (3k, 1, and k) attached in S3k,a, 2( k+1

3 ) attached
in Sk+1,a, and k−1

2 attached in S2k,b. Thus, the number of loops on w is

3k−
[
(k− 2)+ 3+ 2

(
k+ 1
3

)
+ k− 1

2

]
= 5m+ 1.

Since the petrial of (G, �G) has a vertex with 6m twisted loops whereas (G, �G) itself does not, we
see that (G, �G) is not self-petrial for any k≡ 2 mod 6.

• Case k≡ 3 mod 6. There are two vertices, given by the cyclic concatenations
S3k,a Sk+1,a S2k−1,b

and
Sk+1,b S2k,a S3k,b S−1

2k,bS
−1
k,b .

Let k= 6m+ 3 for some m≥ 0, let v denote the vertex corresponding to the concatenation
S3k,a Sk+1,a S2k−1,b and let w denote the other vertex. As in the case k≡ 2, the vertex v has k− 2
loops, all untwisted; in the case k≡ 3 this is 6m+ 1 untwisted loops. Also attached to v are addi-
tional edges as follows: (k− 2)+ 3 attached to S3k,a, 2 k

3 − 1 attached to Sk+1,a, and k+1
2 attached

to S2k−1,b. The number of loops on w is then

3k−
[
(k− 1)+ 3+ 2

k
3

− 1+ k+ 1
2

]
= 5m+ 2.

As in the case k≡ 2, we see that (G, �G) is not self-petrial for any k≡ 3 mod 6.
• Case k≡ 0 mod 6. There is one vertex, given by the cyclic concatenation

S3k,a Sk+1,a S2k−1,b S−1
3k,b S

−1
2k,a S

−1
k+1,b Sk,b S2k,b.

We will show that, along the single vertex, there is a sequence of length 2k− 2 of consecutive
untwisted edge-ends, whereas the longest sequence of consecutive twisted edge ends is at most of
length 4

3k− 1. This discrepancy guarantees that (G, �G) is not self-petrial.
To verify the claim, we proceed as follows. First, note that in strand S3k,a, in the sequence from

(2)a to (k− 1)b, we have both ends of the k− 2 untwisted loops 2, 3, 4, . . . , k− 1 as well as (1)b
and (k)a. The other end of loop 1 is in S−1

3k,b, and thus (1)b is an untwisted edge end, and the other
end of loop k is at the beginning of Sk,b, and thus (k)a is also an untwisted edge end. In all, then,
we have in S3k,a a total of 2(k− 2)+ 2= 2k− 2 consecutive untwisted edge ends.

We now bound the length of any sequence of consecutive twisted edge ends. From the discus-
sion above we know that edges 1, 2 and k− 1 are untwisted. It is also true that edge 2k is untwisted
since end (2k)−1

a in S−1
2k,a is paired with (2k)−1

b in S2k,b. We use the ends of these edges to break up
the cyclic sequence of all edge-ends into five subsequences we denote I, II, III, IV, V as follows:

(1)a I (2k)−1
a II (2k)−1

b III (2)a IV (k− 1)a V (1)a.
Of course, any sequence of consecutive twisted edge ends must lie entirely within one of the num-
bered subsequences other than IV, which has only untwisted edge ends. We can thus complete the
proof by determining the lengths of I, II, III and V, respectively, and observing that all are less than
2k− 2.
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I. The end (3k)−1
b in S−1

3k,b together with the k− 1 edge-ends of S−1
2k,a other than (2k)−1

a yield k
edge ends in I.

II. The 2
3k− 1 edge-ends from S−1

k+1,b together with the 2
3k edge-ends from Sk,b give 4

3k− 1
edge-ends in II.

III. There are a total of 1
2k edge-ends in III, namely, 12k− 1 edge-ends other than (2k)−1

b from
S2k,b, together with (3k)a in S3k,a.

IV. In V there are a total of 2
3k+ 1

2k edge-ends. These are the
2
3k− 1 edge-ends in Sk+1,a, the

1
2k edge-ends in S2k−1,b, and the edge-end (3k− 1)a in S−1

3k,b.

This completes the case when k≡ 0 mod 6.
• Case k≡ 4 mod 6. There is one vertex, given by the cyclic concatenation

S3k,a Sk+1,a S2k,a S3k,b S−1
2k−1,bS

−1
k,b Sk+1,b S2k,b.

In the case that k= 4, the single vertex is given by the cyclic sequence

(12)a (2)a (1)b (3)a (2)b (4)a (3)b (5)a (6)−1
b (8)a (9)b (10)b

+ + − + + − + − + − − +
(11)b (12)b (1)−1

a (11)−1
a (9)−1

a (7)b (6)−1
a (4)−1

b (5)−1
b (7)a (8)−1

b (10)a
− + − − − + + − − + − +

Here, we have indicated under each edge-end whether it belongs to an untwisted edge (+) or
a twisted edge (−). Note that there is exactly one all-“+” consecutive subsequence of length
three (on ends (10)a(12)a(2)a), and exactly one all-“ −” subsequence of length three (on ends
(1)−1

a (11)a)−1(9)−1
a ). Thus, any isomorphism of (G, �G) with its petrial necessarily maps either

of these length three subsequences to the other. Considering the surrounding edge-ends, how-
ever, even allowing for reversing the orientation, we see this is not possible. The subsequence
+ − + - - - + + − needs to map to − + − +++ − − +, whereas the subsequence actually
present is − + − +++ − + +.

We now address the cases where k≥ 10 by analysing the lengths of sequences of consecutive
twisted, or consecutive untwisted, edge ends.

• From (3)a to (k− 2)a in S3k,a is a length 2k− 6 sequence of consecutive untwisted edges ends.
• From (k)a in S3k,a to (2k)a in S2k,a is a sequence of edge ends alternating between twisted and
untwisted which both starts and ends with twisted edges.

• From (2k+ 1)b in S2,a to (3k)b in S3k,b is a sequence of edge ends alternating between twisted
and untwisted which starts with a twisted-edge end and ends with an untwisted-edge end.

• From (1)−1
a in S3k,b to (2k+ 1)−1

a in S−1
2k−1,b is a length

1
2k+ 2 sequence of twisted-edge ends.

• From (2k− 1)b in S−1
2k−1,b to (k+ 2)−1

a is a length 2
3 (k− 1) sequence of untwisted-edge ends.

• (k)−1
b in S−1

k,b is twisted, and then from (k+ 1)−1
b in Sk+1,b to (2k)−1

b in S2k,b is a sequence of
edge ends alternating between twisted and untwisted which starts and ends with a twisted-
edge end.

• from (2k+ 2)a in S2k,b to (3k)a in S3k,a is a length 1
2k sequence of untwisted-edge ends.

Since there is a length 2k− 6 sequence of consecutive untwisted edges ends but there is no
sequence of consecutive twisted edge ends of that length, we see that (G, �G) cannot be isomorphic
to its petrial. �
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8. Code discussion
In this section, we describe some of the more interesting points involved in developing a
computational implementation to make use of the theoretical framework discussed above.

8.1. Labeled graphs
Let (G, �) be a graph. In the implementation, where we do not have topological objects themselves
but their symbolic encodings, we treat the elements of {1, 2, . . . , n} as the names of the edges and
take � in all cases to be the identity function.

8.2. Single-vertex graphs as chord diagrams
An OEB can be represented as a signed chord diagram, with the outer circle representing the ver-
tex, the chords representing the ribbons, and a chord being signed positive or negative according
as the corresponding ribbon is untwisted or twisted. For implementation purposes, we linearise
the chord diagram by making an arbitrary choice of a designated point on the circle. Thus, to
work with chord diagrams as representations of OEBs, we need to consider orbits under a dihedral
action; this is discussed more below.

We use a 2k-tupleD to represent a chord diagramwith k chords in three different ways, as given
below. In all cases, a negative entry indicates the corresponding edge is twisted, and a positive entry
indicates it is not twisted.

• If D is in offset form then |D(i)| = j indicates that the ribbon with one end at spot i has its
other end at spot i+ jmod 2k. This representation has the benefit that a cyclic shift does not
change the values, so it is useful when considering equivalence modulo a dihedral action and,
more generally, isomorphism of unlabeled ribbon graphs.

• If D is in end-spot form then |D(i)| = j indicates that the ribbon with one end at spot i has its
other end at spot j. This representation has the benefit that it is easy to work with in terms of
splicing and concatenating.

• If D is in end-label form then |D(i)| = j indicates that the ribbon with label j has one end at
spot i. This representation works best with the (G, �) notation. Moreover, note that this is a
direct encoding of the arrow representation discussed above in Section 2.

Conversion between forms is a quick linear process.

8.3. Isomorphism of graphs using chord diagrams
Let (G, �) and (G′, �′) be OEBs, and let D̂, D̂′ be the chord diagrams in end-label form correspond-
ing to (G, �) and (G′, �′), respectively. If φ : (G, �)→ (G′, �′) is an isomorphism, then there is a
corresponding dihedral permutation σ ∈D2k such that the bijection on edges corresponding to φ
is �′(D̂′(σ (i))) �→ �(D̂(i)). Since we are viewing the OEBs from the perspective of the arrow repre-
sentation, the dihedral group action is readily seen to yield an isomorphism as defined in Section
2; the order-two “flip” action of D2k corresponds to vertex flipping, and the order 2k rotation
preserves cyclic orderings.

In our computations, we take � and �′ to be the identity map. Therefore, because φ preserves
labels, we have D̂′(σ (i))= D̂(i) for i= 1, 2, . . . , 2k. Of course, this framework accounts for the case
when D̂ and D̂′ are two different chord diagrams in end-label form for the same OEB (G, �).

Given (G, �) and (G′, �′) and an isomorphism φ : G→G′ of unlabelled underlying abstract
graphs, there is a permutation π ∈ Sk such that φ gives an isomorphism (G, �)→ (G′, �′π−1).
The necessity of π when working with the end-label form of linearised chord diagrams slows
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computation down considerably. Offset form is preferable for this purpose, but working with the
dihedral action in this case requires slightly more care. Let D2k = 〈ρ, τ 〉 where ρ represents the
order-k cyclic shift and τ represents the order-2 flip. For any size-2k linearized chord diagramD in
offset form, we write D to denote the size-2k linearised chord diagram given by D(i)= 2k−D(i).
We define a right-action of D2k as follows: If σ ∈ 〈ρ〉<D2k, then D · σ =D ◦ σ , whereas if σ ∈
τ 〈ρ〉, thenD · σ =D ◦ σ . Since 〈ρ〉 is an index-2 (hence normal) subgroup andD=D, this action
is well defined.

With the dihedral action set up this way, isomorphism of unlabelled graphs becomes computa-
tionally much easier. If D and D′ are the linearised chord diagrams in offset form corresponding
to (G, �) and (G′, �′), respectively, then G is isomorphic to G′ as an unlabelled abstract graph if
and only if there is σ ∈D2k such that D′ · σ =D. Given such a σ , we can recover the correspond-
ing permutation π as the unique permutation satisfying D̂′(σ (i))= πD̂(i) for all i= 1, 2, . . . , 2k,
where D̂′, D̂ are the linearised chord diagrams in end-label form corresponding to (G, �), (G′, �′),
respectively.

8.4. Enumerating chord diagrams
To enumerate chord diagrams up to isomorphism, we first used the algorithm of Nijenhuis and
Wilf [20] to enumerate linear diagrams. The basic approach of the algorithm is to build up larger
diagrams from smaller ones; accordingly, the end-spot representation proved to bemost useful for
these computations. In order to obtain the desired list of representatives of isomorphism classes
of (cyclic) chord diagrams, after reinterpreting the linear diagrams as cyclic they were put into
a canonical linear representation modulo the dihedral action, and then duplicates were removed
from the resulting list.

8.5. Ribbon group actions
To perform ribbon group actions on graphs, i.e. to form twuals, we encode ribbon graphs using
jewels, which are properly 4-coloured 4-regular simple graph with colors red, green, blue and
yellow, say, in which the red-green-blue subgraph is a disjoint union of 4-cliques. A jewel encodes
an embedding of a graph G as follows:

vertices of G = components of red-yellow subgraph

edges of G = components of red-blue subgraph

faces of G = components of yellow-blue subgraph

Jewels are a generalisation of gems, which incorporate only red, blue and yellow edges. Gems
were mentioned as early as [23], but importantly for us gems and jewels were used by Lins [16] to
reframe the work ofWilson [26] on which this paper is based. Given a jewel	, letG=G(	) denote
the corresponding ribbon graph. For an edge e of G(	), let Ke denote the red-green-blue 4-clique
corresponding to e. Ribbon graph operations may now be realised by the following actions:

dual of an edge e: switch the red and blue colourings in Ke

petrial of an edge e: switch the blue and green colourings in Ke

A jewel which encodes a single vertex graph has a single red-yellow jewel-cycle v. To convert
this to a linearised chord diagram requires choosing a red jewel-edge to be the initial jewel-
edge, assigning that edge a direction and then ordering the other red jewel-edges sequentially
around v.
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8.6. Finding stabilizers
Given labelled graph (G, �) with k ribbons, we want all pairs (γ̂ , π) such that (γ̂ , π)(G, �)∼= (G, �).
Let D, D̂ be linearised chord diagrams for (G, �) in offset form and label form, respectively.
For each γ̂ ∈Sn, apply γ̂ to (G, �) and determine the corresponding linearized chord diagrams
Dγ̂ , D̂γ̂ in offset and label forms, respectively. For each σ ∈D2k such that Dγ̂ σ ≡D, define π ∈ Sk
by π−1D̂γ̂ σ ≡ D̂, and return (γ̂ π−1, π)= (1, π)(γ̂ , ι).

8.7. Finding self-twual graphs
Suppose we are given n-ribbon (H, �H), ribbon-group element γ̂ and permutation μ ∈ Sn such
that (γ̂ ,μ)(H, �H)∼= (H, �H), and γ̂ ′ ∈Sn. We want a graph (G, �G) of the form (G, �G)=
(α̂, ι)(H, �H), for some α̂ ∈Sn, which is self-γ̂ ′ by μ. By Theorem 5.4, α̂ must satisfy
α̂γ̂ φμ(α̂−1)= γ̂ ′. Since φμ is a homomorphism, this gives φμ(α̂)= (γ̂ ′)−1α̂γ̂ which, in coordi-
nates, says

(αμ−1(1), αμ−1(2), . . . , αμ−1(n)) = (
(γ ′

1)
−1α1γ1, (γ ′

2)
−1α2γ2, . . . , (γ ′

n)
−1αnγn

)
(20)

We use the following algorithm to find all possible α̂: Consider each cycle

C = (
iμ−1(i)μ−2(i) . . . μ−r(i)

)
in the cycle decomposition of μ, and for each C consider each element a ∈S. Assign a to αi
and use equation (20) to iteratively determine αμ−1(i), αμ−2(i), . . . , αμ−r(i). If the determined value
of αμ−r(i) agrees with a, then we record the computed data as an option for the portion of α̂
corresponding to cycle C. If each cycle of μ had at least one computation recorded, assemble all
possible α̂ by choosing, in all possible ways, one of the available options for each portion of α̂.

9. Further directions
The work outlined here would be greatly facilitated by a systematic way to study OEBs. In partic-
ular, a canonical choice of OEB representative for each orbit would streamline not only computer
searches, but the theory of twuality in general.

Also, while we found many examples of Class III graphs, none of the examples given here are
canonically self-trial. This raises the question of whether or not canonically self-trial graphs exist.

The results of Section 5 have broader implications than just for the OEBs we used in the exam-
ples given here. In particular, the results apply to any H, not just an OEB. Thus, it is possible to
take any self-twual graph H and use conjugation to generate others. Numerous examples of var-
ious kinds of self-twual graphs are known. It is already known and clear that conjugating by the
same group element throughout will yield another self-twual graph. However, the conjugacy table
shows that at each edge there is a choice of several elements that can be applied. This opens the
potential for many more self-twual graphs arising from any known example. It is then a matter
of checking whether the result is isomorphic to the known example, which is easy in the canon-
ical case. Given the wealth of existing information in the literature about regular maps and their
automorphism groups, Theorem 5.6 should lead to a rich source of new graphs with desirable
self-twuality properties of all kinds.

Another natural direction following from this research is generalising the results from rib-
bon graphs to delta-matroids, which are to embedded graphs as matroids are to abstract graphs.
There are recently developed frameworks extending twuality operations of partial duality and par-
tial Petrie duals to delta-matroids, and the ribbon group action lifted to this setting would open
investigation into various forms of self-twuality for delta-matroids. See [3, 4].
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