
Combinatorics, Probability and Computing (2018) 27, 228–244. c© Cambridge University Press 2017
doi:10.1017/S0963548317000426

On Edge-Disjoint Spanning Trees in a Randomly
Weighted Complete Graph

ALAN FRIEZE1† and TONY JOHANSSON2‡

1Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
(e-mail: alan@random.math.cmu.edu)

2Department of Mathematics, Uppsala University, 751 06 Uppsala, Sweden
(e-mail: tony.johanssson@math.uu.se)

Received 9 November 2015; revised 28 June 2017; first published online 9 October 2017

Assume that the edges of the complete graph Kn are given independent uniform [0,1] weights. We
consider the expected minimum total weight μk of k � 2 edge-disjoint spanning trees. When k is
large we show that μk ≈ k2. Most of the paper is concerned with the case k = 2. We show that μ2
tends to an explicitly defined constant and that μ2 ≈ 4.1704288 . . . .
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1. Introduction

This paper can be considered to be a contribution to the following general problem. We are
given a combinatorial optimization problem where the weights of variables are random. What
can be said about the random variable equal to the minimum objective value in this model? The
most studied examples of this problem are those of (i) minimum spanning trees, e.g. Frieze [10],
(ii) shortest paths, e.g. Janson [18], (iii) minimum cost assignment, e.g. Aldous [1, 2], Linusson
and Wästlund [22], Nair, Prabhakar and Sharma [24] and Wästlund [31], and (iv) the travelling
salesperson problem, e.g. Karp [20], Frieze [12] and Wästlund [32].

The minimum spanning tree problem is a special case of the problem of finding a minimum-
weight basis in an element-weighted matroid. Extending the result of [10] has proved to be
difficult for other matroids. We are aware of a general result due to Kordecki and Lyczkowska-
Hanćkowiak [21] that expresses the expected minimum value as an integral using the Tutte
polynomial. The formulae obtained, although exact, are somewhat difficult to penetrate. In this
paper we consider the union of k-cycle matroids. We have a fairly simple analysis for k → ∞ and
a rather difficult analysis for k = 2.
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Given a connected simple graph G = (V,E) with edge lengths x = (xe : e ∈ E) and a positive
integer k, let mstk(G,x) denote the minimum length of k edge-disjoint spanning trees of G.
(mstk(G) = ∞ if such trees do not exist). When X = (Xe : e ∈ E) is a family of independent
random variables, each uniformly distributed on the interval [0,1], denote the expected value
E[mstk(G,X)] by mstk(G).

As previously mentioned, the case k = 1 has been the subject of some attention. When G is
the complete graph Kn, Frieze [10] proved that

lim
n→∞

mst1(Kn) = ζ (3) =
∞

∑
k=1

1
k3

.

Generalizations and refinements of this result were subsequently given in Steele [30], Frieze
and McDiarmid [14], Janson [17], Penrose [28], Beveridge, Frieze and McDiarmid [4], Frieze,
Ruszinko and Thoma [15] and most recently in Cooper, Frieze, Ince, Janson and Spencer [7].

In this paper we discuss the case k � 2 when G = Kn, and define

μ∗
k = liminf

n→∞
mstk(Kn) and μ∗∗

k = limsup
n→∞

mstk(Kn).

Conjecture 1.1. μ∗
k = μ∗∗

k , that is, limn→∞ mstk(Kn) exists.

Theorem 1.2.

lim
k→∞

μ∗
k

k2
= lim

k→∞

μ∗∗
k

k2
= 1.

Theorem 1.3. With fk and c′2 ≈ 3.59 and λ ′
2 ≈ 2.688 as defined in (2.1), (2.6), (5.9),

μ2 = 2c′2 −
(c′2)

2

4

+
∫ ∞

λ=λ ′
2

(
2− λeλ

2 f2(λ )
+

λ f2(λ )
2eλ −2

f3(λ )
eλ

)(
eλ

f2(λ )
+

λeλ

f2(λ )
− λeλ f1(λ )

f2(λ )2

)
dλ

= 4.17042881 . . . .

There appears to be no clear connection between μ2 and the ζ -function.
Before proceeding to the proofs of Theorems 1.2 and 1.3, we note some properties of the

κ-core of a random graph.

2. The κ-core

The functions

fi(λ ) =
∞

∑
j=i

λ j

j!
, i = 0,1,2, . . . , (2.1)

figure prominently in our calculations. For λ > 0 define

gi(λ ) =
λ f2−i(λ )
f3−i(λ )

, gi(0) = 3− i, i = 0,1,2.
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The κ-core Cκ(G) of a graph G is the largest set of vertices that induces a graph Hκ such
that the minimum degree δ (Hκ) � κ . Pittel, Spencer and Wormald [29] proved that there exist
constants cκ ,κ � 3 such that if p = c/n and c < cκ then w.h.p. Gn,p has no κ-core, and that if
c > cκ then w.h.p. Gn,p has a κ-core of linear size. We list some facts about these cores that we
will need below.

Given λ , let Po(λ ) be the Poisson random variable with mean λ and let

πr(λ ) = Pr{Po(λ ) � r} = e−λ fr(λ ).

Then

cκ = inf

(
λ

πκ−1(λ )
: λ > 0

)
. (2.2)

When c > cκ , define λκ(c) by

λκ(c) is the larger of the two roots to the equation c =
λ

πκ−1(λ )
=

λeλ

fκ−1(λ )
. (2.3)

Then w.v.h.p.1 with λ = λκ(c) we have that

Cκ(Gn,p) has ≈ πκ(λ )n =
fκ(λ )

eλ n vertices and ≈ λ 2

2c
n =

λ fκ−1(λ )
2eλ n edges. (2.4)

Furthermore, when κ is large,

cκ = κ +(κ logκ)1/2 +O(logκ). (2.5)

Łuczak [23] proved that Cκ is κ-connected w.v.h.p. when κ � 3.
Next, let c′κ be the threshold for the (κ + 1)-core having average degree 2κ . Here (see (2.3)

and (2.4))

c′κ =
λeλ

fκ(λ )
where

λ fk(λ )
fk+1(λ )

= 2κ. (2.6)

We have c2 ≈ 3.35 and c′2 ≈ 3.59.

3. Proof of Theorem 1.2: large k

We will prove Theorem 1.2 in this section. It is relatively straightforward. Theorem 1.3 is more
involved and occupies Section 4.

In this section we assume that k = O(1) and is large. Let Zk denote the sum of the k(n− 1)
shortest edge lengths in Kn. We have that for n � k

mstk(Kn) � E[Zk] =
k(n−1)

∑
�=1

�(n
2

)
+1

=
k(n−1)(k(n−1)+1)

n(n−1)+2
∈ [k2(1−n−1),k2]. (3.1)

This gives us the lower bound in Theorem 1.2.

1 For the purposes of this paper, a sequence of events En will be said to occur with very high probability (w.v.h.p.) if
Pr{En} = 1−o(n−1). Similarly, En will be said to occur with high probability (w.h.p.) if Pr{En} = 1−o(1).
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For the upper bound, let k0 = k + k2/3 and consider the random graph H generated by the
k0(n−1) cheapest edges of Kn. The expected total edge weight EH of H is at most k2

0 (see (3.1)).
Here H is distributed as Gn,k0n. This is sufficiently close in distribution to Gn,p, p = 2k0/n

that we can apply the results of Section 2 without further comment. It follows from (2.5) that
c2k < 2k0. Putting λ0 = λ2k(2k0), we see from (2.4) that w.v.h.p. H has a 2k-core C2k with
∼ nPr{Po(λ0) � 2k} vertices. It follows from (2.3) that λ0 = 2k0π2k−1(2k0) � 2k0, and since
π2k−1(λ ) increases with λ and

π2k−1(2k + k2/3) = Pr{Po(2k + k2/3) � 2k−1} � 1− e−c1k1/3

for some constant c1 > 0, we see that

2k + k2/3

π2k−1(2k + k2/3)
� 2k0,

and so λ0 � 2k + k2/3.
A theorem of Nash-Williams [25] states that a 2k-edge connected graph contains k edge-

disjoint spanning trees. Applying the result of Łuczak [23], we see that w.v.h.p. C2k contains
k edge-disjoint spanning trees T1,T2, . . . ,Tk. It remains to argue that we can cheaply augment
these trees to spanning trees of Kn. Since |C2k| ∼ nPr{Po(λ ) � 2k} w.v.h.p., we see that w.v.h.p.

D2k = [n]\C2k satisfies |D2k| � 2ne−c1k1/3
.

For each v ∈ D2k we let Sv be the k shortest edges from v to C2k. We can then add v as a leaf to
each of the trees T1,T2, . . . ,Tk by using one of these edges. What is the total weight of the edges
Yv, v ∈ D2k? We can bound this probabilistically by using the following lemma from Frieze and
Grimmett [13].

Lemma 3.1. Suppose that k1 + k2 + · · ·+ kM � a, and Y1,Y2, . . . ,YM are independent random
variables with Yi distributed as the kith minimum of N independent uniform [0,1] random vari-
ables. If μ > 1, then

Pr

{
Y1 + · · ·+YM � μa

N +1

}
� ea(1+ln μ−μ).

Let ε = 2e−c1k1/3
and μ = 10ln1/ε , and let M = kεn, N = (1− ε)n, a = k2εn. Let B0 be the

event that there exists a set S of size εn such that the sum over v ∈ S of the lengths of the k
shortest edges from v to [n] \ S exceeds μa/(N + 1). Next let B be the event that the sum over
v ∈ S of the length of the kth shortest edge from v to [n] \ S exceeds μa/(k(N + 1)). We have
B0 ⊆ B, and applying Lemma 3.1 we see that

Pr{B} �
(

n
εn

)
exp{kεn(1+ ln μ −μ)} �

(
e
ε
· e−μk/2

)εn

= o(n−1).

It follows that

mstk(Kn) � o(1)+ k2
0 +

μa
N +1

� k2 +3k5/3.

The o(1) term is a bound kn×o(n−1), to account for the cases that occur with probability o(n−1).

https://doi.org/10.1017/S0963548317000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000426
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Combining this with (3.1), we see that

k2 � μk � k2 +3k5/3,

which proves Theorem 1.2.

4. Proof of Theorem 1.3: k = 2

For this case we use the fact that, for any graph G = (V,E), the collection of subsets I ⊆ E
that can be partitioned into two edge-disjoint forests form the independent sets in a matroid, this
being the matroid which is the union of two copies of the cycle matroid of G. See for example
Oxley [27] or Welsh [33]. Let r2 denote the rank function of this matroid, when G = Kn. If G is
a subgraph of Kn, then r2(G) is the rank of its edge-set.

We will follow the proof method in [3], [4] and [17]. Let F denote the random set of edges in
the minimum-weight pair of edge-disjoint spanning trees. For any 0 � p � 1, let Gp denote the
graph induced by the edges e of Kn which satisfy Xe � p. Note that Gp is distributed as Gn,p.

For any 0 � p � 1, ∑e∈F 1(Xe>p) is the number of edges of F which are not in Gp, which equals
2n−2− r2(Gp). So,

mst2(Kn,X) = ∑
e∈F

Xe = ∑
e∈F

∫ 1

p=0
1(Xe>p)d p =

∫ 1

p=0
∑
e∈F

1(Xe>p)d p.

Hence, on taking expectations we obtain

mst2(Kn) =
∫ 1

p=0
(2n−2−E[r2(Gp)])d p. (4.1)

It remains to estimate E[r2(Gp)]. The main contribution to the integral in (4.1) comes from p =
c/n, where c is constant. Estimating E[r2(Gp)] is easy enough for sufficiently small c, but it
becomes more difficult for c > c′2 (see (2.6)). When p = c/n for c > ck, we will need to be able
to estimate E[rk(Ck+1(Gn,p))]. We give partial results for k � 3 and complete results for k = 2.
We begin with a simple observation.

Lemma 4.1. Let k � 2. Let Ck+1 = Ck+1(G) denote the graph induced by the (k + 1)-core of
graph G (it may be an empty subgraph). Let Ek(G) denote the set of edges that are not contained
in Ck+1. Then

rk(G) = |Ek(G)|+ rk(Ck+1). (4.2)

Proof. We use induction on |V (G)|. It is trivial if |V (G)| = 1, so assume that |V (G)| > 1. If
δ (G) � k + 1 then G = Ck+1 and there is nothing to prove. Otherwise, G contains a vertex v
of degree dG(v) � k. Now G− v has the same (k + 1)-core as G. If F1, . . . ,Fk are edge-disjoint
forests such that rk(G) = |F1|+ · · ·+ |Fk|, then by removing v we see, inductively, that

|Ek(G− v)|+ rk(Ck+1) = rk(G− v) � |F1|+ · · ·+ |Fk|−dG(v) = rk(G)−dG(v).

On the other hand G− v contains k forests F ′
1, . . . ,F

′
k such that

rk(G− v) = |F ′
1|+ · · ·+ |F ′

k | = |Ek(G− v)|+ rk(Ck+1).
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We can then add v as a vertex of degree one to dG(v) of the forests F ′
1, . . . ,F

′
k , implying that

rk(G) � dG(v)+ |Ek(G− v)|+ rk(Ck+1).

Thus,

rk(G) = dG(v)+ |Ek(G− v)|+ rk(Ck+1) = |Ek(G)|+ rk(Ck+1).

Lemma 4.2. Let k � 2. If ck < c < c′k, then w.h.p.

|E(Gn,c/n)|−o(n) � rk(Gn,c/n) � |E(Gn,c/n)|. (4.3)

Proof. We will show that when c < c′k we can find k disjoint forests F1,F2, . . . ,Fk contained in
Ck+1 such that

|E(Ck+1)|−
k

∑
i=1

|E(Fi)| = o(n). (4.4)

This implies that rk(Ck+1) � |E(Ck+1)| − o(n), and because rk(Ck+1) � |E(Ck+1)|, the lemma
follows from this and Lemma 4.1.

Gao, Pérez-Giménez and Sato [16] show that when c < c′k, no subgraph of Gn,p has average
degree more than 2k, w.h.p. Fix ε > 0. Cain, Sanders and Wormald [6] proved that if the average
degree of the (k +1)-core is at most 2k− ε , then w.h.p. the edges of Gn,p can be oriented so that
no vertex has indegree more than k. It is clear from (2.4) that the edge density of the (k+1)-core
increases smoothly w.h.p., so we can apply the result of [6] for some value of ε .

It then follows that the edges of Gn,p can be partitioned into k sets Φ1,Φ2, . . . ,Φk where each
subgraph Hi = ([n],Φi) can be oriented so that each vertex has indegree at most one. We call
such a graph a partial functional digraph, or PFD. Each component of a PFD is either a tree or
contains exactly one cycle. We obtain F1,F2, . . . ,Fk by removing one edge from each such cycle.
We must show that w.h.p. we remove o(n) vertices in total. Observe that if Z denotes the number
of edges of Gn,p that are on cycles of length at most ω0 = 1

3 logc n, then

E[Z] �
ω0

∑
�=3

�!

(
n
�

)
�p� � ω0cω0 � n1/2.

The Markov inequality implies that Z � n2/3 w.h.p. The number of edges removed from the
larger cycles to create F1,F2, . . . ,Fk can be bounded by kn/ω0 = o(n), and this proves (4.4) and
the lemma.

Lemma 4.3. If c > c′2, then w.h.p. the 3-core of Gn,c/n contains two edge-disjoint forests of total
size 2|V (C3)|−o(n). In particular, r2(C3(Gn,c/n)) = 2|V (C3)|−o(n).

The proof of Lemma 4.3 is postponed to Section 6. We can now prove Theorem 1.3.

https://doi.org/10.1017/S0963548317000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000426


234 A. Frieze and T. Johansson

5. Proof of Theorem 1.3

As noted in (4.1),

mst2(Kn) =
∫ 1

p=0
(2n−2−E[r2(Gp)])d p. (5.1)

A crude calculation shows that if c is large then

p � c
n

implies that Pr{r2(Gp) < 2n−2−nAc6e−c} = o(1), (5.2)

for some absolute constant A > 0.
Indeed, we know that if p = c/n and c is sufficiently large, then Gp contains a pair of edge-

disjoint cycles, each of length at least n(1− c6e−c) with probability 1− ε1, where ε1 = O(n−α),
for some absolute constant α > 0: see Frieze [11]. If p1 = c1/n and p2 = K p1, then

Pr{r2(Gp2
) < 2n−2−nc6e−c} � ε p2/p1

1
= O(n−Kα),

since Gp2
can be generated by adding edges to p2/p1 independent copies of Gp1

. This confirms
(5.2).

So, for large c,

mst2(Kn) =
∫ c/n

p=0
(2n−2−E[r2(Gp)])d p+ εc, (5.3)

where

0 � εc � An
∫ 1

p=c/n
(np)6e−npd p = A

∫ n

x=c
x6e−xdx � A

∫ ∞

x=c
x6e−xdx < c7e−c,

after changing variables to x = pn. Doing this once more, we have

mst2(Kn) =
∫ c

x=0
(2−2n−1 −n−1E[r2(Gx/n)])dx+ εc. (5.4)

By Lemmas 4.1 and 4.2, for x < c′2 we have

n−1E[r2(Gx/n)] = n−1E[|E(Gx/n)|]−ξ (x,n) = x/2−ξ (x,n),

where limn→∞ ξ (x,n) = 0. Now n−1E[r2(Gx/n)],n = 1,2, . . . , is a sequence of bounded monotone
increasing continuous functions of x. This sequence converges pointwise to a continuous function
f , and so it converges uniformly to f . Thus we can bound max0�x�c′2

ξ (x,n) � η(n), where

limn→∞ η(n) = 0. Clearly f (x) = x/2, and so∫ c′2

x=0
n−1E[r2(Gx/n)]dx =

∫ c′2

x=0

x
2

dx+o(1).

By Lemma 4.3, for x > c′2 we have

E[r2(C3(Gx/n))] = E[2|V (C3)|]−o(n).

So, by Lemma 4.1,

E[r2(Gx/n)] = E[|E(Gx/n)|− |E(C3)|+2|V (C3)|]−o(n),
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and

μ2 =
∫ c′2

x=0

(
2− x

2

)
dx

+
∫ c

x=c′2

(
2− 1

n

(
xn
2
−E[|E(C3(Gx/n))]+E[2|V (C3(Gx/n))|]

))
dx+ εc +o(1). (5.5)

From (2.4), for p = x/n we have

1
n

E[|V (C3)|] =
f3(λ )

eλ +o(1),

1
n

E[|E(C3)|] =
λ f2(λ )

2eλ +o(1),

where λ is the largest solution to λeλ / f2(λ ) = x. Thus,

μ2 = lim
n→∞

mst2(Kn) =
∫ c′2

x=0

(
2− x

2

)
dx+

∫ c

x=c′2

(
2− x

2
+

λ f2(λ )
2eλ −2

f3(λ )
eλ

)
dx+ εc. (5.6)

To calculate this, note that

dx
dλ

=
eλ

f2(λ )
+

λeλ

f2(λ )
− λeλ f1(λ )

f2(λ )2
(5.7)

so ∫ c

x=c′2

(
2− x

2
+

λ f2(λ )
2eλ −2

f3(λ )
eλ

)
dx (5.8)

=
∫ λ (c)

λ (c′2)

(
2− λeλ

2 f2(λ )
+

λ f2(λ )
2eλ −2

f3(λ )
eλ

)(
eλ

f2(λ )
+

λeλ

f2(λ )
− λeλ f1(λ )

f2(λ )2

)
dλ + εc,

where λ (x) is the unique solution to λeλ / f2(λ ) = x.
Note that

λ (c′2) ≈ 2.688 and λ (c) >
c
2

for large c. (5.9)

Now for large λ we can bound(
2− λeλ

2 f2(λ )
+

λ f2(λ )
2eλ −2

f3(λ )
eλ

)(
eλ

f2(λ )
+

λeλ

f2(λ )
− λeλ f1(λ )

f2(λ )2

)

from above by λ 3e−λ . So the range in the integral in (5.8) can be extended to ∞ at the cost of
adding an amount δc where 0 � δc � c4e−c. Using the fact that we can make εc,δc arbitrarily close
to zero by making c arbitrarily large, we obtain the expression for μ2 claimed in Theorem 1.3.

Attempts to transform the integral in the theorem into an explicit integral with explicit bounds
have been unsuccessful. Numerical calculations give

μ2 ≈ 4.1704288 . . . . (5.10)
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The Inverse Symbolic Calculator2 has yielded no symbolic representation of this number. An
apparent connection to the ζ -function lies in its representation as

ζ (x) =
1

Γ(x)

∫ ∞

λ=0

λ x−1

eλ −1
dλ , (5.11)

which is somewhat similar to terms of the form∫ ∞

λ=λ ′
2

poly(λ )
eλ −1−λ

dλ (5.12)

appearing in μ2, but no real connection has been found.

6. Proof of Lemma 4.3

6.1. More on the 3-core
Suppose now that c > c′2 and that the 3-core C3 of Gn,p has N = Ω(n) vertices and M edges. It
will be distributed as a random graph uniformly chosen from the set of graphs with vertex set [N]
and M edges and minimum degree at least three. This is an easy well-known observation, and
follows from the fact that each such graph H can be extended in the same number of ways to a
graph G with vertex set [n] and m edges, and such that H is the 3-core of G. For convenience we
will now assume that V (C3) = [N].

The degree sequence d(v),v ∈ [N] can be generated as follows. We independently choose for
each v ∈V (C3) a truncated Poisson random variable with parameter λ satisfying g0(λ ) = 2M/N,
conditioned on d(v) � 3. So for v ∈ [N],

Pr{d(v) = k} =
λ k

k! f3(λ )
, k = 3,4,5, . . . , λ = g−1

0

(
2M
N

)
. (6.1)

Properties of the functions fi,gi are derived in Appendix B. In particular, the gi are strictly
increasing by Lemma ?? (Appendix C), so g−1

0 is well-defined.
These independent variables are further conditioned so that the event

D =
{

∑
v∈[N]

d(v) = 2M

}
(6.2)

occurs. Now λ has been chosen so that E[d(v)] = 2M/N, and then the local central limit theorem
implies that Pr{D} = Ω(1/N1/2); see for example Durrett [8]. It follows that

Pr{E | D} � O(n1/2)Pr{E}, (6.3)

for any event E that depends on the degree sequence of C3.
In what follows we use the configuration model of Bollobás [5] to analyse C3 after we have

fixed its degree sequence. Thus, for each vertex v we define a set Wv of points such that |Wv| =
d(v), and write W =

⋃
v Wv. A random configuration F is generated by selecting a random

partition of W into M pairs. A pair {x,y} ∈ F with x ∈ Wu,y ∈ Wv yields an edge {u,v} of
the associated (multi-)graph ΓF .

2 https://isc.carma.newcastle.edu.au/
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The key properties of F that we need are as follows: (i) conditional on F having no loops or
multiple edges, it is equally likely to be any simple graph with the given degree sequence; (ii) for
the degree sequences of interest, the probability that ΓF is simple will be bounded away from
zero. This is because the degree sequence in (6.3) has exponential tails. Thus we only need to
show that ΓF has certain properties w.h.p.

6.2. Setting up the main calculation
Suppose now that p = c/n where c > c′2. We will show that w.h.p., for any fixed ε > 0,

i(S) = |{e ∈ E(C3) : e∩S �= /0}| � (2− ε)|S| for all S ⊆ [N]. (6.4)

Proving this is the main computational task of the paper. In principle, it is just an application of
the first moment method. We compute the expected number of S that violate (6.4) and show that
this expectation tends to zero. On the other hand, a moment’s glance at the expression f (w) below
will show that this is unlikely to be easy, and it takes more than half of the paper to verify (6.4).

It follows from (6.4) that

E(C3) can be oriented so that at least (1− ε)N vertices have indegree at least two. (6.5)

To see this, consider the following network flow problem. We have a source s and a sink t plus a
vertex for each v ∈ [N] and a vertex for each edge e ∈ E(C3). The directed edges are: (i) (s,v),v ∈
[N] of capacity two; (ii) (u,e), where u ∈ e of infinite capacity; (iii) (e, t),e ∈ E(C3) of capacity
one. An s− t flow decomposes into paths s,u,e, t corresponding to orienting the edge e into u. A
flow thus corresponds to an orientation of E(C3). The condition (6.4) implies that the minimum
cut in the network has capacity at least (2−ε)N. This implies that there is a flow of value at least
(2− ε)N and then the orientation claimed in (6.5) exists.

Thus w.h.p. C3 contains two edge-disjoint PFDs, each containing (1− ε)N edges. Arguing as
in the proof of Lemma 4.2, we see that we can w.h.p. remove o(N) edges from the cycles of these
PFDs and obtain forests. Thus w.h.p. C3 contains two edge-disjoint forests of total size at least
2(1− ε)N −o(N). This implies that

E[r2(C3(Gn,c/n))] � 2(1− ε)N −o(N),

and since N = Ω(n), we can have

E[r2(C3(Gn,c/n))] = 2(1− ε)N −o(n).

Because ε is arbitrary, this implies r2(C3(Gn,c/n)) = 2N −o(n) whenever c > c′2.

6.3. Proof of (6.4): small S
It will be fairly easy to show that (6.5) holds w.h.p. for all |S| � sε where

sε =
(

1+ ε
e2+ε c

)1/ε

n.

We claim that w.h.p.

|S| � sε implies e(S) < (1+ ε)|S| in Gn,p. (6.6)

Here e(S) = |{e ∈ E(Gn,p) : e ⊆ S}|.
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Indeed,

Pr{∃S violating (6.6)} �
sε

∑
s=4

(
n
s

)( (s
2

)
(1+ ε)s

)
p(1+ε)s

�
sε

∑
s=4

(
ne
s

)s( sec
2(1+ ε)n

)(1+ε)s

=
sε

∑
s=4

((
s
n

)ε e2+ε c
2(1+ ε)

)s

= o(1).

For sets A,B of vertices and v ∈ A we will let dB(v) denote the number of neighbours of v in B.
We then let dB(A) = ∑v∈A dB(v). We will drop the subscript B when B = [N].

Suppose then that (6.6) holds and that |S| � sε and i(S) � (2− ε)|S|. Then if S̄ = [N] \ S, we
have

e(S)+d
S̄
(S) � (2− ε)|S| and d(S) = 2e(S)+d

S̄
(S) � 3|S|,

which implies that e(S) � (1+ ε)|S|, contradiction.

6.4. Proof of (6.4): large S
Suppose now that C3 contains an S such that i(S) < (2− ε)|S|. Let such sets be bad. Let S be
a minimal bad set, and write T = [N] \ S. For any v ∈ S, we have i(S \ v) � (2− ε)|S \ v| while
i(S) < (2− ε)|S|. This implies dT (v) = i(S)− i(S\ v) < 2.

We will start with a minimal bad set and then carefully add more vertices. Consider a set S
such that i(S) < 2|S| and dT (v) � 2 for all v ∈ S. If there is a w ∈ T such that dT (w) � 2, let
S′ = S∪ {w}. We have i(S′) � i(S) + 2 < 2|S′|. This means we may add vertices to S in this
fashion to acquire a partition [N] = S∪ T where dT (v) � 2 for all v ∈ S and dT (v) � 3 for all
v ∈ T . We further partition S = S0 ∪S1 ∪S2 so that dT (v) = i if and only if v ∈ Si. Denote the size
of any set by its lower-case equivalent, that is, |Si| = si and |T | = t.

We now start to use the configuration model. Partition each point set into Wv =W S
v ∪W T

v , where
a point is in W S

v if and only if it is matched to a point in ∪u∈SWu. The sizes of W S
v ,W T

v uniquely
determine w = (s0,s1,s2,D0,D1,D2,D3, t,M). Here Di = dS(Si), i = 0,1,2 and D3 = dT (T ).

6.4.1. Estimating the probability of w. By construction, Di � (3− i)si for i = 0,1,2 and D3 �
3t. Define degree sequences (d1

i , . . . ,d
si
i
) for Si, i = 0,1,2 and (d1

3 , . . . ,d
t
3) for T . Furthermore, let

d̂ j
1
= d j

1
−1, d̂ j

2
= d j

2
−2 and d̂ j

3
� 0 be the S-degrees of vertices in S1,S2,T , respectively.

Dealing with S0. Ignoring for the moment that we must condition on the event D (see (6.2)), the
probability that S0 has degree sequence (d1

0 , . . . ,d
s0
0

), di
0 � 3 for all i, is given by

s0

∏
i=1

λ di
0

di
0! f3(λ )

, (6.7)

where λ is the solution to

g0(λ ) =
2M
N

.
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Hence, letting [xD] f (x) denote the coefficient of xD in the power series f (x), the probability
π0(S0,D0) that d(S0) = D0 is bounded by

π0(S0,D0) � ∑
d1

0+···+d
s0
0

=D0

di
0�3

s0

∏
i=1

λ di
0

di
0! f3(λ )

=
λ D0

f3(λ )s0
∑

d1
0+···+d

s0
0

=D0

di
0�3

s0

∏
i=1

1
di

0!

=
λ D0

f3(λ )s0
[xD0 ]

(
∑

d0�3

xd0

d0!

)s0

=
λ D0

f3(λ )s0
[xD0 ] f3(x)

s0

� λ D0

f3(λ )s0

f3(λ0)
s0

λ D0
0

, (6.8)

for all λ0. Here we use the fact that for any function f and any y > 0, [xD0 ] f (x) � f (y)/yD0 . To
minimize (6.8) we choose λ0 to be the unique solution to

g0(λ0) =
D0

s0
. (6.9)

If D0 = 3s0 then λ0 = 0. In this case, since

f3(λ0) =
λ 3

0 (1+O(λ0))
6

,

we have

π0(S0,D0) �
(

λ 3

6 f3(λ )

)s0

, when D0 = 3s0. (6.10)

Dealing with S1. For each v ∈ S1, we have Wv = W S
v ∪W T

v where |W T
v | = 1. Hence, the probab-

ility π1(S1,D1) that d(S1) = D1 + s1 is bounded by

π1(S1,D1) � ∑
d̂1

1+···+d̂s1
1

=D1

d̂i
1�2

s1

∏
i=1

(
d̂i

1 +1
1

)
λ d̂i

1+1

(d̂i
1 +1)! f3(λ )

=
λ D1+s1

f3(λ )s1
∑

d̂1
1+···+d̂s1

1
=D1

d̂i
1�2

s1

∏
i=1

1

d̂i
1!

=
λ D1+s1

f3(λ )s1
[xD1 ] f2(x)

s1

� λ D1+s1

f3(λ )s1

f2(λ1)
s1

λ D1
1

. (6.11)
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We choose λ1 to satisfy the equation

g1(λ1) =
D1

s1
. (6.12)

Similarly to what happens in (6.10), we have λ1 = 0 when D1 = 2s1 and

f2(λ1) =
λ 2

1 (1+O(λ1))
2

,

so

π1(S1,D1) �
(

λ 3

2 f3(λ )

)s1

, when D1 = 2s1. (6.13)

Dealing with S2. For v ∈ S2, we choose two points from Wv to be in W T
v , so the probability

π2(S2,D2) that d(S2) = D2 +2s2 is bounded by

π2(S2,D2) � ∑
d̂1

2+···+d̂s2
2

=D2

d̂i
2�1

s2

∏
i=1

(
d̂i

2 +2
2

)
λ d̂i

2+2

(d̂i
2 +2)! f3(λ )

� λ D2+2s2

f3(λ )s2

f1(λ2)
s2

λ D2
2

2−s2 , (6.14)

where we choose λ2 to satisfy the equation

g2(λ2) =
D2

s2
. (6.15)

Similarly to what happens in (6.10), we have λ2 = 0 when D2 = s2 and f1(λ2) = λ2(1+O(λ2)),
so

π2(S2,D2) �
(

λ 3

2 f3(λ )

)s2

, when D2 = s2. (6.16)

Dealing with T . Finally, the degree of vertex i in T can be written as di
3 = d̂i

3 +d
i
3, where d̂i

3 � 0

is the S-degree and d
i
3 � 3 is the T -degree. Here, with t = |T |, we have

t

∑
i=1

d̂i
3 = dS(T ) = s1 +2s2

by the definition of S0,S1,S2. So the probability π3(T,D3) that dT (T ) = D3, given s1,s2 can be
bounded by

π3(T,D3) � ∑
d̂1

3+···+d̂t
3=s1+2s2

d̂i
3�0

∑
d

1
3+···+d

t
3=D3

d
i
3�3

t

∏
i=1

(
d̂i

3 +d
i
3

d̂i
3

)
λ d̂i

3+d
i
3

(d̂i
3 +d

i
3)! f3(λ )

=
λ D3+s1+2s2

f3(λ )t ∑
d̂1

3+···+d̂t
3=s1+2s2

d̂i
3�0

∑
d

1
3+···+d

t
3=D3

d
i
3�3

t

∏
i=1

1

d̂i
3!d

i
3!
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=
λ D3+s1+2s2

f3(λ )t
([xD3 ] f3(x)

t)([xs1+2s2 ]ex)

� λ D3+s1+2s2

f3(λ )t

f3(λ3)
t

λ D3
3

ts1+2s2

(s1 +2s2)!
, (6.17)

where we choose λ3 to satisfy the equation

g0(λ3) =
D3

t
. (6.18)

Similarly to what happens in (6.10), we have λ3 = 0 when D3 = 3t and

f3(λ3) =
λ 3

3 (1+O(λ1))
6

,

so

π3(T,D3) � λ D3+s1+2s2

(6 f3(λ ))t

ts1+2s2

(s1 +2s2)!
, when D3 = 3t.

6.4.2. Putting the bounds together. For a fixed w = (s0,s1,s2,D0,D1,D2,D3, t,M), there are( t+s
s0,s1,s2,t

)
choices for S0,S1,S2,T . Having chosen these sets, we partition the Wv,v ∈ S∪T into

W S
v ∪W T

v . Note that our expressions (6.8), (6.11), (6.14), (6.17) account for these choices. Given
the partitions of the Wv, there are (D0 +D1 +D2)!!D3!!(s1 +2s2)! configurations, where (2s)!! =
(2s− 1)× (2s− 3)× ·· · × 3× 1 is the number of ways of partitioning a set of size 2s into s
pairs. Here (D0 +D1 +D2)!! is the number of ways of pairing up

⋃
v∈S W S

v , D3!! is the number of
ways of pairing up

⋃
v∈T W T

v , and (s1 + 2s2)! is the number of ways of pairing points associated
with S to points associated with T . Each configuration has probability 1/(2M)!!. So, the total
probability of all configurations whose vertex partition and degrees are described by w can be
bounded by(

t + s
s0,s1,s2, t

)
λ D0

f3(λ )s0

f3(λ0)
s0

λ D0
0

λ D1+s1

f3(λ )s1

f2(λ1)
s1

λ D1
1

λ D2+2s2

f3(λ )s2

f1(λ2)
s2

λ D2
2

2−s2

× λ D3+s1+2s2

f3(λ )t

f3(λ3)
t

λ D3
3

ts1+2s2

(s1 +2s2)!
(D0 +D1 +D2)!!D3!!(s1 +2s2)!

(2M)!!

=
(

t + s
s0,s1,s2, t

)
λ 2M

f3(λ )N

f3(λ0)
s0

λ D0
0

f2(λ1)
s1

λ D1
1

f1(λ2)
s2

λ D2
2

2−s2
f3(λ3)

t

λ D3
3

ts1+2s2

(s1 +2s2)!

× (D0 +D1 +D2)!!D3!!(s1 +2s2)!
(2M)!!

Write Di = Δis, |Si| = σis, t = τs, M = μs and N = νs. We have k!! ∼
√

2(k/e)k/2 as k → ∞
by Stirling’s formula, so the expression above, modulo an eo(s) factor, can be written as

f (w)s =(
(τ +1)τ+1

σ σ0
0

σ σ1
1

(1−σ0 −σ1)1−σ0−σ1 ττ
λ 2μ

f3(λ )ν
f3(λ0)

σ0

λ Δ0
0

f2(λ1)
σ1

λ Δ1
1

f1(λ2)
σ2

λ Δ2
2

f3(λ3)
τ

λ Δ3
3

(τe)σ1+2σ2

2σ2

(Δ0 +Δ1 +Δ2)
(Δ0+Δ1+Δ2)/2ΔΔ3/2

3

(2μ)μ

)s

. (6.19)
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We note that

σ2 = 1−σ0 −σ1, (6.20)

Δ3 = 2μ −Δ0 −Δ1 −Δ2 −2σ1 −4σ2

= 2μ −4−Δ0 −Δ1 −Δ2 +4σ0 +2σ1, (6.21)

ν = 1+ τ. (6.22)

Hence σ2,Δ3,ν may be eliminated, and we can consider w to be (σ0,σ1,Δ0,Δ1,Δ2,τ,μ). When
convenient, Δ3 may be used to denote 2μ −4−Δ0 −Δ1 −Δ2 +4σ0 +2σ1. Define the constraint
set F to be all w satisfying

Δ0 � 3σ0, Δ1 � 2σ1, Δ2 � 1−σ0 −σ1, Δ3 � 3τ,

Δ0 +Δ1 +Δ2

2
+σ1 +2(1−σ0 −σ1) < 2− ε since i(S) < (2− ε)|S| (see (6.4)),

σ0,σ1 � 0, σ0 +σ1 � 1,

0 � τ � (1− ε)/ε since |S| � εN,

μ � (2+ ε)(1+ τ) since M � (2+ ε)N,

σ0 < 1, otherwise C3 is not connected.

Here ε is a sufficiently small positive constant such that we can (i) exclude the case of small S,
(ii) satisfy condition (6.4), and (iii) have M � (2+ ε)N since c > c′2.

For a given s, there are O(poly(s)) choices of w ∈ F , and the probability that the randomly
chosen configuration corresponds to a w ∈ F can be bounded by

∑
s�εN

∑
w

O(poly(s)) f (w)s � ∑
s

(eo(1) max
F

f (w))s � N(eo(1) max
F

f (w))εN . (6.23)

As N → ∞, it remains to show that f (w) � 1−δ for all w ∈ F , for some δ = δ (ε) > 0. At this
point we remind the reader that we have so far ignored conditioning on the event D defined in
(6.2). Inequality (6.3) implies that it is sufficient to inflate the right-hand side of (6.23) by O(n1/2)
to obtain our result.

So, let

f (Δ0,Δ1,Δ2,σ0,σ1,τ,μ)

=
(τ +1)τ+1

σ σ0
0

σ σ1
1

(1−σ0 −σ1)1−σ0−σ1 ττ
λ 2μ

f3(λ )τ+1

f3(λ0)
σ0

λ Δ0
0

f2(λ1)
σ1

λ Δ1
1

f1(λ2)
1−σ0−σ1

λ Δ2
2

f3(λ3)
τ

λ Δ3
3

× (eτ)2−2σ0−σ1

21−σ0−σ1

(Δ0 +Δ1 +Δ2)
(Δ0+Δ1+Δ2)/2ΔΔ3/2

3

(2μ)μ .

We complete the proof of Theorem 1.3 by showing that

f (w) � exp

{
−ε2

3

}
for all w ∈ F . (6.24)

The proof of (6.24) is a very long and careful calculation. It can be found in the Arxiv version:
arXiv:1505.03429.
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7. Final remarks

There are a number of loose ends to be taken care of. Is Conjecture 1.1 true? Is there a simpler ex-
pression for μ2 of Theorem 1.3? Is it possible to get an exact expression for μ3? On another tack,
what are the expected running times of algorithms for computing these edge-disjoint trees? They
are polynomial-time solvable problems, in the worst case, but maybe their average complexity is
significantly better than worst case.
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[32] Wästlund, J. (2010) The mean field traveling salesman and related problems. Acta Math. 204 91–150.
[33] Welsh, D. J. A. (1976) Matroid Theory, Academic Press.

https://doi.org/10.1017/S0963548317000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000426

