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ONE-DIMENSIONAL SYSTEM ARISING IN STOCHASTIC GRADIENT
DESCENT

KONSTANTINOS KARATAPANIS,∗ University of Pennsylvania

Abstract

We consider stochastic differential equations of the form dXt = |f (Xt)|/tγ dt + 1/tγ dBt,
where f (x) behaves comparably to |x|k in a neighborhood of the origin, for k ∈ [1, ∞).
We show that there exists a threshold value := γ̃ for γ , depending on k, such that if
γ ∈ (1/2, γ̃ ), then P(Xt → 0) = 0, and for the rest of the permissible values of γ , P(Xt →
0) > 0. These results extend to discrete processes that satisfy Xn+1 − Xn = f (Xn)/nγ +
Yn/nγ . Here, Yn+1 are martingale differences that are almost surely bounded.
This result shows that for a function F whose second derivative at degenerate saddle
points is of polynomial order, it is always possible to escape saddle points via the
iteration Xn+1 − Xn = F′(Xn)/nγ + Yn/nγ for a suitable choice of γ .
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1. Introduction

Let F : Rd →R
d, d ≥ 1, be a vector field. For much of what follows F arises as the gradi-

ent of a potential function V , namely V : Rd →R, and F = −∇V . Now, we define a system
driven by

Xn+1 = Xn + an(F(Xn) + ξn+1). (1)

To elaborate on the parameters, let Fn be a filtration; then an, ξn are adapted, and the ξn con-
stitute martingale differences, i.e. E(ξn+1|Fn) = 0. For the purposes of this introduction we
will simplify and assume, without any great loss of abstraction, that an is deterministic and
either is a constant number or is converging to zero comparably to n−γ (i.e. it is �

(
n−γ

)
),

where γ ∈ (1/2, 1]. Also, some additional assumptions on the noise are usually required:
one is a boundedness constraint, that is, we assume the existence of a constant M such that
|ξn| ≤ M almost surely (a.s.); and secondly we want ξn to be quasi-isotropic (see [DKLH18]),
i.e., P((θ · ξn)+ > δ) > δ for any unit direction θ ∈R

d. This condition makes sure that the
process gets jiggled in every direction. This versatile system is well studied, and it arises nat-
urally in many different areas. In machine learning and statistics, (1) can be a powerful tool
for quick optimization and statistical inference (see [AAZB+17], [LLKC18], [CdlTTZ16]),
among other uses. Furthermore, many urn models are represented by (1). These processes play
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576 K. KARATAPANIS

a central role in probability theory due to their wide applicability in physics, biology, and social
sciences; for a comprehensive exposition on the subject see [Pem07].

In machine learning, processes satisfying (1) appear in stochastic gradient descent (SGD).
First, to provide context, let us briefly introduce the gradient descent method (GD) and then
see why SGD arises naturally from it. The GD is an optimization technique which finds local
minima for a potential function V via the iteration

xn+1 − xn = −ηn∇V(xn), (2)

where in many applications we take ηn to be positive and constant. Notice that (2) is a spe-
cialization of (1), with F = −∇V , ξn+1 ≡ 0, and an = ηn. The above method when applied to
non-convex functions has the shortcoming that it may get stuck near saddle points (i.e. points
where the gradient vanishes, that are neither local minima nor local maxima), or may locate
local minima instead of global ones. The former issue can be resolved by adding noise into the
system, which, consequently, helps in pushing the particle downhill and eventually escaping
saddle points (see [Pem90] and [KY03, Section 5.8]). For the latter, in general, avoiding local
minima is a difficult problem ([GM91] and [RRT17]); however, fortunately, in many instances
finding local minima is satisfactory. Recently there have been several problems of interest
where this is indeed the case, either because all local minima are global minima ([GHJY15]
and [SQW17]), or, in other cases, because local minima provide equally good results as global
minima [CHM15]. Furthermore, in certain applications saddle points lead to highly suboptimal
results ([JJKN15] and [SL16]), which highlights the importance of escaping saddle points.

As described in the previous paragraph, escaping saddle points when performing SGD is
an important problem. The saddle problem is well understood when nondegeneracy conditions
are imposed. Results showing that asymptotically SGD will escape saddle points date back
to works of Pemantle [Pem91] and, more recently, [LSJR16], where the authors prove that
random initialization guarantees almost sure convergence to minimizers. The establishment
of asymptotic convergence subsequently led to results on how this can be done efficiently
[LSJR16].

Processes satisfying (1), when an goes to zero, are known as stochastic approximations,
after [RM51]. These processes have been extensively studied since then [KY03]. An important
feature is that the step size an satisfies∑

n≥1

an = ∞ and
∑
n≥1

a2
n < ∞.

This property balances the effects of the noise in the system, so that there is an implicit
averaging that, eventually, eliminates the effects of the noise. The previously described system
hence behaves similarly to the mean flow: the ordinary differential equation whose right-hand
side corresponds to the expectation of the driving term (F(Xt)). This heuristic can help us
identify the support S of the limiting process X∞ := limn→∞ Xn in terms of the topological
properties of the dynamical system dXt

dt = F(Xt) (see [KY03, Chapter 5]). More specifically,
in most instances, one can argue that attractors are in S, whereas repellers or ‘strict’ saddle
points are not (see [KY03, Section 5.8]). However, there has not been a systematic approach
to finding when a degenerate saddle point, i.e. a point that is neither an attractor nor a repeller,
belongs in S.

Stochastic approximations arise naturally in many different contexts. Some early results
were published by [Rup88] and [PJ92]. There, the authors dealt with averaged stochastic
gradient descent (ASGD) arising from a strongly convex potential V with step size n−γ ,
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γ ∈ (1/2, 1]. In their work they proved that one can build, with proper scaling, consistent esti-
mators x̃n (for the arg min (V)) whose limiting distribution is Gaussian. In learning problems,
a modified version of ASGD [RSS12] provides convergence rates to global minima of order
n−1. Additionally, many classical urn processes can be described via (1), where an is of the
order of n−1. Certain efforts are being made towards understanding the support of the limit-
ing process X∞. In specific instances, the underlying problem boils down to understanding an
SGD problem: to characterize the support of X∞ in terms of the class of critical points of the
corresponding potential V . For a comprehensive exposition on urn processes see [Pem07].

From the previous discussion, some fundamental questions of interest regarding (1) are the
following:

1. Does Xn converge?

2. When does Xn converge to (local) minima, consequently avoiding saddle points?

3. When does Xn converge to global minima?

4. How fast does Xn converge to local minima?

When F arises from a potential function V , the first question is for the most part settled: the
limit of the process converges, and it is supported on a subset of the set of critical points of V
(see [KY03, Chapter 5]).

Here, our primary focus will be understanding the second question in a one-dimensional
setting. More specifically, we will work with processes that solve

Xn+1 − Xn = f (Xn)

nγ
+ Yn+1

nγ
, γ ∈ (1/2, 1]. (3)

To put this in context, the antiderivative of −f would correspond to the potential function −V .
Therefore, if a point p has a neighborhood N such that f is positive except for f (p) = 0, then
the point p would be a saddle point.

Problem 1.1. Let (Xn)≥1 solve (3). Suppose that p is a saddle point. Find the threshold value,
denoted γ̃ , for γ , should it exist, such that the following hold:

1. When γ ∈ (1/2, γ̃ ), P(Xn → p) = 0.

2. When γ ∈ (γ̃ , 1], P(Xn → p) > 0.

Part 1 of Problem 1.1 guarantees that the SGD avoids saddle points, and hence converges to
local minima. Choosing γ appropriately in the first regime (i.e. γ ∈ (1/2, γ̃ )) enables us to
optimize the performance of the SGD. In practice, choosing a small step size can slow the
rate of convergence; however, a bigger step size may lead the process to bounce around (see
[BR95] and [SL87]). In [EDM01] the authors study the rate of convergence for polynomial
step sizes in the context of Q-learning for Markov decision processes, and they experimentally
demonstrate that for γ approximately 17

20 the rate of convergence is optimal.
In the literature there are many results of this type. However, as already mentioned, the

vast majority of them require the saddle points to satisfy certain nondegeneracy conditions.
In fact, nondegenerate saddle points will never be in the support of X∞. Interestingly enough,
the previous conclusion is not always valid for degenerate ones; see [Pem91], in which the
support of X∞ for a generalized urn model [HLS80] fitting (3) for γ = 1 is characterized in
terms of a ‘general’ function f . However, we show that for any V , under some mild conditions,
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we can find γ such that saddle points do not belong to S (see Theorems 1.2 and 1.4). Hence,
we demonstrate that implementing SGD, by adding enough noise, gives the desired asymptotic
behavior even in the degenerate case.

It is the hope of the author that this work is a step towards understanding a broader class
of non-convex problems. One prospective application would be analyzing complex systems
that can be studied by finding a corresponding simpler one-dimensional system. Although
non-convex optimization problems are, generally, NP-hard (for a discussion in the context of
escaping saddle points see [AG16]), it would be possible to extend the results of this paper
to certain classes of problems in higher dimensions, as we are focusing on the asymptotic
behavior of the system. Potentially, such an extension can be achieved by reducing the multidi-
mensional problem to a suitable one-dimensional problem and then applying the results of this
paper. For an example where the analysis of the asymptotic behavior of a system of stochastic
approximations relies on reducing the problem to a one-dimensional problem, see [Pem90].
Also we are trying to establish that if we understand the underlying dynamical system suffi-
ciently, then by adding enough noise, we can guarantee that the process will wander until it
is captured by a downhill path, and thus it will eventually escape the unstable neighborhood.
Finally, this paper, and even more so a multidimensional extension of it, can serve as a theo-
retical guarantee of convergence, much in the spirit of the works of [LSJR16] and [Pem90],
which were succeeded by efficient algorithms [JGN+17].

To extend results to the multidimensional setting using this paper, one would need to find
a suitable corresponding one-dimensional system. One potential path to accomplish this is to
use a Łojasiewicz-type inequality; for a reference see [Spr, Theorem 2] and [Son12, Lemma
3.2, p. 315]. Before we state the inequality we will need a definition.

Definition 1.1. Suppose that V : Rn →R. The zero set of V is denoted by ZV = {x ∈R
n:

V(x) = 0}.

Theorem 1.1. Let V be defined as before. Let ZV denote the zero set of V. Then there is an open
set 0 ∈O such that there is a positive constant k ∈ (1, 2) such that the following holds:

|∇V(x)| ≥ c|V(x)|k/2 for all x ∈O.

Now suppose that Xn satisfies (1), where F( · ) = −V where an = 1
nγ . Furthermore, assume

V : Rd →R is an analytic function such that V(0) = ∇V(0) = 0. Hereby, we assume that 0 is a
saddle point and that it is also an isolated critical point.

To study whether Xn → 0, our candidate line of attack consists of three distinct steps.

• We start by studying the process (V(Xn))n≥1. Then Theorem 1.1 should give an upper
bound on |V(Xn)|.

• Then the process Xn may wander into the realm where V(Xn) < 0 with probability
bounded from below.

• Lastly, we show that when V(Xn) < 0, the process may stay negative with probability
bounded from below; hence we conclude that P(Xn → 0) = 0.

For the second part of the strategy we notice that the path from Xn to z ∈ ZV along the
flow x′

t = −∇V(xt) has length V(Xn). So we should expect that as long as V(Xn) and the
remaining noise in the recursion (1) are comparable, then Xn may wander into the realm where
V(Xn) < 0.
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To expand on the third step we need the following definition.

Definition 1.2. Suppose that V : Rn →R and let x ∈R
n such that V(x) < 0. Denote by Ox the

connected component of {x ∈R
n : V(x) ≤ 0} such that x ∈Ox.

For the last step of the strategy we ought to understand the geometry of the conical region
OXn ∩ ZV . For instance, the surface OXn ∩ ZV may be very steep, so that under the slightest
perturbation the iterates Xn may return to the realm V(Xn) > 0. It is important to note that
in certain instances, depending on the surface OXn ∩ ZV , there could be a degenerate saddle
point where the iterates could get stuck. However, if we assume, for example, that V is a
homogeneous polynomial, then the angular size of this surface near the origin is not changing
over time, and so we should expect a probability bounded from below that the process crosses

into the region with V(Xn) < −δt
1−γ
1−k , where k is given by Theorem 1.1. To gain intuition on

the previous bound one can look at the proof of Proposition 6.1.

1.1. Results for the continuous model

We proceed by transitioning to a continuous model. For that purpose we need a potential,
a step size, and a noise. However, it is natural to consider, without the need to contemplate, a
process defined by

dLt = f (Lt)

tγ
dt + 1

tγ
dBt, γ ∈ (1/2, 1]. (4)

We assume that f (0) = 0 and that f is otherwise positive in a neighborhood N of zero. What
we wish to investigate is whether Lt will not converge to 0 with probability 1, or will converge
there with some positive probability. The answer to these questions depends only on the local
behavior of f on N .

The main non-convergence result is the following.

Theorem 1.2. Suppose that N is a neighborhood of zero. Let (Lt)t≥1 be a solution of (4), where
f(x) is Lipschitz. We distinguish two cases depending on f and the parameters of the system:

1. k|x| ≤ f (x), k > 1
2 , and γ = 1 for all x ∈N .

2. |x|k ≤ f (x) , 1
2 + 1

2k ≥ γ , and k > 1 for all x ∈N .

If either 1 or 2 holds, then P(Lt → 0) = 0.

In the first part of the theorem, the result holds even in the case k = 1
2 ; however, the proof is

omitted to avoid repetition. In Part 1, we have only considered γ = 1 since that is the only
critical case; that is, for γ < 1 the effects of the noise would be overwhelming and for all k we
would obtain P(Lt → 0) = 0.

We now state the main convergence theorem.

Theorem 1.3. Suppose that N is a neighborhood of zero. Let (Lt)t≥1 be a solution of (4). We
distinguish two cases depending on f and the parameters of the system:

1. k1|x| ≤ f (x) ≤ k2|x|, 0 < ki < 1/2, and γ = 1 for all x ∈N ∩ ( − ∞, 0].

2. 0 < c|x|k ≤ f (x) ≤ |x|k, 1
2 + 1

2k > γ , and k > 1 for all x ∈N ∩ ( − ∞, 0].

If either 1 or 2 holds, then P(Lt → 0) > 0.
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This is proved by first establishing the previous results for monomials, i.e. f (x) = |x|k or
f (x) = k|x|, which is done in Sections 3 and 4. We prove the stated theorems in Section 5, by
utilizing the comparison results found in Section 2.

In Section 3 we deal with the linear case, i.e. f (x) = k|x|. There, the stochastic differential
equation (SDE) can be explicitly solved, which simplifies matters to a great extent. Firstly,
in Subsection 3.2, we prove that when k > 1/2, the corresponding process a.s. will not con-
verge to 0, which is accomplished by proving that it will converge to infinity a.s. Secondly, in
Subsection 3.3, we show that when k < 1/2, the process will converge to 0 with some positive
probability.

In Section 4 we move on to the higher-order monomials, i.e. f (x) = |x|k. Here we show that
the process will behave as the ‘mean flow’ process h(t) infinitely often; this is accomplished
by studying the process Lt/h(t). In Subsection 4.2, the main theorem is that when 1

2 + 1
2k ≥ γ ,

Lt → ∞ a.s. In Subsection 4.3, we show that when 1
2 + 1

2k < γ , the process may converge to 0
with positive probability.

Qualitatively, the previous constraints on the parameters are in accordance with our intu-
ition. To be more specific, when k increases, f becomes steeper, which should indicate it is
easier for the process to escape. When γ decreases the remaining variance increases; hence
we should expect that the process visits the unstable trajectory with greater ease, due to higher
fluctuations.

1.2. Results for the discrete model

The asymptotic behavior of the discrete processes is the expected one, depending on the
parameters of the problem. Here, we study processes satisfying

Xn+1 − Xn ≥ f (Xn)

nγ
+ Yn+1

nγ
, γ ∈ (1/2, 1), k ∈ (1, ∞), (5)

or

Xn+1 − Xn ≤ f (Xn)

nγ
+ Yn+1

nγ
, γ ∈ (1/2, 1), k ∈ (1, ∞), (6)

where Yn are a.s. bounded (i.e. there is a constant M such that |Yn| < M a.s.), E(Yn+1|Fn) = 0,
and E(Y2

n+1|Fn) ≥ l > 0. The main non-convergence theorem is the following.

Theorem 1.4. Suppose that N is a neighborhood of zero. Let (Xn)n≥1 solve (5). If |x|k ≤ f (x),
1
2 + 1

2k > γ , and k > 1 for all x ∈N , then P(Xn → 0) = 0. For the convergence result the
nondegeneracy condition E(Y2

n+1|Fn) ≥ l is replaced with the assumption stated in Part 1 of
Theorem 1.5.

Theorem 1.5. Let N = ( − 3ε, 3ε) be a neighborhood of zero. Suppose (Xn)n≥1 solve (6).
Assume the following:

1. There exist −ε2 > −3ε and −ε1 < −ε such that for all M > 0, there exists n > M such
that P(Xn ∈ ( − ε2, −ε1)) > 0.

2. 0 < f (x) ≤ |x|k, 1
2 + 1

2k < γ , and k > 1 for all x ∈N .

Then P(Xn → 0) > 0.

The assumption imposed on Xn, Part 1 of Theorem 1.5, says that the process should be able
visit a neighborhood of the origin for large enough n. If this constraint is not imposed on the
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FIGURE 1. (Xn)n≥10 and X10 = −1.

process, the previous result need not hold. For instance, the drift could dominate the noise, and
consequently the process might never reach a neighborhood of the origin with probability 1.
There are processes that naturally satisfy this property; an example is the urn process defined
in Section 1 (see [Pem91]).

Example 1.1. Suppose that Xn satisfies

Xn+1 − Xn = max (|Xn|3, 1)

n
3
4

+ Un

n
3
4

,

where the Un are independent and identically distributed variables, uniformly distributed on
( − 2, 2). As the Un dominate the driving term, the assumption 1 is satisfied. And since 1

2 +
1

2·3 < 3
4 , we expect that Xn → 0 holds with positive probability. In Figure 1 we can see a typical

example where convergence of the iterates occurs.

2. Preliminary results

We will now prove two important lemmas that will be needed throughout. Let f : R→R be
Lipschitz such that for every ε > 0 there exists c such that f (x) > c > 0 for all x ∈R \ ( − ε, ε).
Also, let g : R≥0 →R be a continuous function such that

∫∞
0 g2(t)dt < ∞. Let Xt satisfy

dXt = f (Xt)dt + g(t)dBt. (7)

Lemma 2.1. lim supt→∞ Xt ≥ 0 a.s.

Proof. We will argue by contradiction. Assume that lim supt→∞ Xt < 0, and pick δ > 0 such
that lim supt→∞ Xt < −δ with positive probability. Then there is a time u such that Xt ≤ −δ

for all t ≥ u. But this has as an immediate consequence that
∫ t

1 f (Xs)ds → ∞. However, since
the process Gt = ∫ t

1 g(s)dBs has finite quadratic variation, i.e. supt〈Gt〉 = ∫∞
0 g2(s)ds < ∞, Gt

stays a.s. finite. The last two observations imply that Xt → ∞, which is a contradiction.
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Lemma 2.2. lim inft→∞ Xt ≥ 0 a.s.

Proof. We will again argue by contradiction. Assume that lim inft→∞ Xt < 0 on a set of
positive probability. Take an enumeration of the pairs of positive rationals (qn, pn) such that
qn > pn. Now, define An = {Xt ≤ −qn i.o., Xt ≥ −pn i.o.}. Since lim supt→∞ Xt ≥ 0, we have⋃

n≥0 An = {lim inft→∞ Xt < 0}. Now, for t1 < t2 assume that Xt1 ≥ −pn and Xt2 ≤ −qn. Then
we see that Xt2 − Xt1 ≤ −qn + pn; however,

Xt2 − Xt1 =
∫ t2

t1
f (Xs)ds +

∫ t2

t1
g(s)dBs

≥
∫ t2

t1
g(s)dBs.

Hence we conclude that
∫ t2

t1
g(s)dBs ≤ −qn + pn. By the definition of An, on the event An we

can find a sequence of times (t2k, t2k+1) such that t2k < t2k+1 and
∫ t2k+1

t2k
g(s)dBs ≤ −qn + pn.

Now, if we define Gu,t = ∫ t
u g(s)dBs, we see that G1,t converges a.s. since it is a martingale of

bounded quadratic variation. Hence P(An) = 0, i.e. P( lim inft→∞ Xt < 0) = 0.
The next comparison result is intuitively obvious; however, it will be useful for comparing

processes with different drifts.

Proposition 2.1. Let (Ct)t≥0 and (Dt)t≥0 be stochastic processes in the same Wiener space that
satisfy

dCt = f1(Ct)dt + g(t)dBt, dDt = f2(Dt)dt + g(t)dBt

respectively, where g, f1, f2 are deterministic real-valued functions. Assume that f1(x) > f2(x)
for all x ∈R, and Cs0 > Ds0 . Then Ct > Dt for every t ≥ s0 a.s.

Proof. Define τ = inf{t > s0|Ct = Dt}, and set Dτ = Cτ = c, for τ < ∞. Now, from continu-
ity of f1 and f2, we can find δ such that f1(x) > f2(x) for every x ∈ (c − δ, c]. However, for all s
we have

Cτ − Dτ − (Cs − Ds) = −(Cs − Ds) =
∫ τ

s
f1(Cu) − f2(Du)du.

Thus, for s such that Cy, Dy ∈ (c − δ, c) for every y ∈ (s, τ ), we have

0 > −(Cs − Ds)

=
∫ τ

s
f1(Cu) − f2(Du)du

> 0.

Therefore {τ < ∞} has zero probability.
In what follows, we will prove two important lemmas, corresponding to Lemma 2.1 and

Lemma 2.2, for the discrete case. We will assume that Xn satisfies

Xn+1 − Xn ≥ f (Xn)

nγ
+ Yn+1

nγ
, γ ∈ (1/2, 1), (8)

where f has the property that for every ε > 0 there exists c > 0 such that f (x) ≥ c for every
x ∈ ( − ∞, −ε), and the Yn are defined similarly as in (5).
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Lemma 2.3. lim sup Xn ≥ 0 a.s.

Proof. The proof is nearly identical to that of the continuous case (Lemma 2.1).

Lemma 2.4. lim inft→∞ Xt ≥ 0 a.s.

Proof. The proof is identical to that of the continuous case (Lemma 2.2).

We provide a suitable version of the Borel–Cantelli lemma (for a reference see Theorem
5.3.2 in [Dur13]).

Lemma 2.5. Let Fn, n ≥ 0, be a filtration with F0 = {0, 
}, and let An, n ≥ 1, be a sequence
of events with An ∈Fn. Then

{An i.o.} =
⎧⎨
⎩
∑
n≥1

P(An|Fn−1) = ∞
⎫⎬
⎭ .

3. Continuous model, simplest case

3.1. Introduction

Let Lt be defined by (4), for f (x) = k|x| and γ = 1. To simplify, we make a time change and
consider Xt := Let , and subsequently we obtain

Xt+dt − Xt = Let+etdt − Let

= k|Let |dt + e−t(Bt+etdt − Bet )

= k|Xt|dt + e− t
2 dBt,

which is the model we will study. We begin with some definitions: first,

dXt = k|Xt|dt + e− t
2 dBt. (9)

We introduce another SDE closely related to the previous one, which will be useful:

dKt = kKtdt + e− t
2 dBt. (10)

It is easy to see that both of these SDEs admit unique strong solutions; for a reference see
Theorem 11.2 in Chapter 6 in [RWW87]. Therefore we can construct Xt, Kt in the classi-
cal Wiener space (
,F , P). The solution for the SDE (10) is given by Kt = ekt(e−t0kKt0 +∫ t

t0
e−s(k+ 1

2 )dBs). Indeed, substituting in (10) and using Itô’s formula, we get

dKt = a′(t)(k0 +
∫ t

t0
b(s)dBs) + a(t)b(t)dBt

= a′(t)
a(t)

Kt + a(t)b(t)dBt,

where a(t) = ek(t−t0) and b(t) = e−t( 1
2 +k)+kt0 , so that a′(t)

a(t) = k and a(t)b(t) = e− t
2 .

Proposition 3.1. Let (Xt)t≥t0 , (Kt)t≥t0 in the Wiener probability space (
,F , P) be the solu-
tions of (9), (10) respectively. We start them at time t0, Xt0 ≥ Kt0 ≥ 0. Then Xt ≥ Kt for every
t ≥ t0.

Proof. This is a direct application of Proposition 2.1.
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3.2. Analysis of Xt when k > 1/2

We start by stating the main result of this section, which we will prove at the end of the
subsection.

Theorem 3.1. Let (Xt)t≥1 be the solution of (9) for k > 1
2 ; then Xt → ∞ a.s.

Now we will show that (Xt)t≥1 cannot stay negative for all times. This will be accomplished
by a direct computation after solving the SDE.

Proposition 3.2. Let (Xt)t≥1 be the solution of (9) for k > 1
2 . Assume that at time s, Xs < 0.

Then Xt will reach 0 with probability 1, i.e. P( supu≥s Xu > 0) = 1.

Proof. First, note that the solution of the SDE (9), run from time s with initial condition Xs <

0, coincides with the solution of the SDE dXt = −kXtdt + e− t
2 dBt before Xt hits 0. Formally,

we define τ0 = inf{t|t ≥ s, Xt = 0}. Using the same method as when solving SDE (10), we

obtain Xt = e−kt(eksXs + ∫ t
s eu(k− 1

2 )dBu) on {t < τ0}. Set Gt = ∫ t
s eu(k− 1

2 )dBu, and calculate the

quadratic variation of Gt, namely 〈Gt〉 = (e2t(k− 1
2 ) − e2s(k− 1

2 ))/(2k − 1). Next, we compute the
probability of never returning to zero:

P(τ = ∞) = P

(
sup

s<u<∞
Xu ≤ 0

)

= P

(
sup

s<u<∞
Gu ≤ −eksXs

)

= 1 − P

(
sup

s<u<∞
Gu > −eksXs

)

= 1 − lim
t→∞ P

(
sup

s<u<t
Gu > −eksXs

)

= 1 − lim
t→∞ 2P

(
Gt > −eksXs

)
, from the reflection principle

= 1 − lim
t→∞ 2P

⎛
⎝N

⎛
⎝0,

e2t
(

k− 1
2

)
− e2s

(
k− 1

2

)
2k − 1

⎞
⎠> −eksXs

⎞
⎠

= 0,

since

e2t
(

k− 1
2

)
− e2s

(
k− 1

2

)
2k − 1

→ ∞.

We will now prove two important lemmas that are true for solutions of (9) for any k > 0.

Lemma 3.1. Let (Xt)t≥1 be the solution of (9). Then on the event {Xt ≥ 0 i.o.}, there is a positive
constant c < 1 such that {Xt ≥ ce−t/2 i.o.} holds a.s.
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Proof. Assume we start the SDE at time ti with initial condition Xti ≥ 0. Then we see that

Xt ≥
∫ t

ti
k|Xu|du +

∫ t

ti
e− u

2 dBu ≥
∫ t

ti
e− u

2 dBu.

Set Gt = ∫ t
ti

e− u
2 dBu. The quadratic variation of Gt is 〈Gt〉 = e−t1 − e−t. Fix 0 < c < 1. Now,

observe that we can always choose t big enough so that 〈Gt〉 ≥ ce−t1 for any t1.
Then

P

(
sup

ti<u<t
Xu > e−t1/2

)
≥ P

(
sup

ti<u<t
Gu > e−t1/2

)

= 2P
(
Gt > e−t1/2)

≥ 2P
(
N(0, ce−t1 ) > e−t1/2)

= 2P
(
N(0, c) > 1

)
> γ > 0.

Let g(x) = inf{y|e−x − e−y ≥ ce−x}. Now we can formally define the sequence of the stopping
times. The first stopping time is τ1 = inf{t|Xt ≥ 0}; then we define recursively τi+1 = inf{t|t >

τi, t > g(τi), Xt ≥ 0}. We also define the associated filtration Fn =Fτn , for n ≥ 1 and F0 =
{0, 
}. Now let An = {∃t, τn−1 < t < τn , s.t. Xt ≥ ce−t/2}. By definition An ∈Fn. We find a
lower bound for P(An|Fn−1):

P(An|Fn−1) ≥ P

(
sup

τn−1<u<τn

Xu > ce−tn−1/2|Fn−1

)
≥ P

(
sup

τn−1<u<g(τn−1)
Xu > ce−τn−1/2|Fn−1

)
> γ .

On {Xt ≥ 0 i.o.} the sum
∑

n≥1 P(An|Fn−1) has infinitely many nonzero terms bigger than γ ;
hence

∑
n≥1 P(An|Fn−1) = ∞ a.s. Finally, by Lemma 2.5 (Borel–Cantelli) we conclude.

The next lemma uses the previous lemma to establish that on {Xt ≥ 0 i.o.} we have
lim inft→∞ Xt > 0.

Lemma 3.2. Let (Xt)t≥1 be the solution of (9). Then on the event {Xt ≥ 0 i.o.} we have that
{lim inft→∞ Xt > 0} holds a.s.

Proof. Indeed, if we start the process at time s with initial condition Xs ≥ ce− s
2 , then the

solution of (9), before hitting 0, is given by

Xt = ekt
(

e−ksXs +
∫ t

s
e−u(k+ 1

2 )dBu

)
≥ ekt

(
ce−s(k+ 1

2 ) +
∫ t

s
e−u(k+ 1

2 )dBu

)
.

Define Gt = ∫ t
s e−s(k+ 1

2 )dBs. We calculate its quadratic variation:

〈Gt〉 = e−2tk−t

−2k − 1
+ e−2sk−s

2k + 1
.
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Taking t → ∞ shows 〈G∞〉 = e−2sk−s

2k + 1
. Therefore,

P

(
inf

s≤u<∞ Xu >
c

2
e− s

2

)
= P

(
inf

s≤u<∞ eku
(

ce
−s
(

k+ 1
2

)
+ Gu

)
>

c

2
e− s

2

)

≥ P

(
inf

s≤u<∞ eks
(

ce
−s
(

k+ 1
2

)
+ Gu

)
>

c

2
e− s

2

)

= P

(
inf

s≤u<∞ ce
−s
(

k+ 1
2

)
+ Gu >

c

2
e
−s
(

k+ 1
2

))

= P

(
inf

s≤u<∞ Gu > − c

2
e
−s
(

k+ 1
2

))
(11)

= 1 − P

(
sup

s≤u<∞
Gu >

c

2
e
−s
(

k+ 1
2

))

= 1 − 2 lim
t→∞ P

(
Gt > − c

2
e
−s
(

k+ 1
2

))
, by the reflection principle

= 1 − 2P

(
N

(
0,

e−s(2k+1)

2k + 1

)
>

c

2
e−s(k+ 1

2 )
)

= 1 − 2P

(
N

(
0,

1

k + 1

)
>

c

2

)
> δ > 0.

We know that on {Xt ≥ 0 i.o.} the event {Xt ≥ ce− t
2 i.o.} holds a.s. Therefore, on {Xt ≥

0 i.o.}, if we define τ0 = 0 and τn+1 = {t > τn + 1|Xt ≥ ce− t
2 }, we see that τn < ∞ a.s., and

τn → ∞ a.s. Also, we define the corresponding filtration, namely Fn = σ (τn).
To show that on the event {Xt ≥ ce− t

2 i.o.} the event A = {lim inf→∞ Xt ≤ 0} has probability
zero, it suffices to argue that there is a δ such that P(A|Fn) < 1 − δ a.s. for all n ≥ 1. This is
immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1 − P

(
inf

τn≤u<∞ Xu >
c

2
e− τn

2 |Fn

)
< 1 − δ.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. From Proposition 3.2 we know that {Xt ≥ 0 i.o.} has probability 1.
Therefore from Lemma 3.2 we deduce lim inft→∞ Xt > 0 a.s. Consequently,

∫∞
0 |Xu|du → ∞

a.s. At the same time lim supt→∞
∫ t

0 e− u
2 dBu < ∞ a.s.; hence Xt → ∞ a.s.

3.3. Analysis of Xt when k < 1/2

As before, (Xt)t≥1 is the solution of the stochastic differential equation dXt = k|Xt|dt +
e− t

2 dBt.
The behavior of Xt when k < 1/2 is different. The process in this regime can converge to 0

with positive probability. More specifically, we have the following theorem.
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Theorem 3.2. Let (Xt)t≥1 solve (9) with k < 1
2 , and define A = {Xt → 0}, B = {Xt → ∞}. Then

the following hold:

1. Let A, B be as above. Then P(A ∪ B) = 1.

2. Both A and B are nontrivial, i.e., P(A) > 0 and P(B) > 0.

3. On {Xt ≥ 0i.o.} we get Xt → ∞.

Before proving the theorem, we first need to prove a proposition. We will show that the
process, starting from a negative value, will never cross 0 with positive probability.

Proposition 3.3. Let (Xt)t≥1 solve (9) with k < 1
2 . Assume that at time s, Xs < 0. Then (Xt)t≥1

will hit 0 with probability α, where 0 < α < 1.

Proof. Define the stopping time τ1 = inf{t ≥ s|Xt = 0}. As in Proposition 3.2, the solution

for Xt started at time s up to time τ1 is given by Xt = e−kt(eksXs + ∫ t
s eu(k− 1

2 )dBu). We have

P(τ = ∞) = P

(
sup

s<u<∞
Xu ≤ 0

)

= 1 − lim
t→∞ 2P

(
N

(
0,

e2t(k− 1
2 ) − e2t(k− 1

2 )

2k − 1

)
> −eksXs

)
, as in Proposition 3.2

= 1 − 2P
(
N
(
0, −e2s(k− 1

2 )/(2k − 1)
)
> −eksXs

)
= 1 − α.

Therefore 0 < α < 1.

Proof of Theorem 3.2.

1. Define the events N = {∃ss.t. Xt < 0∀t ≥ s} and P = {Xt ≥ 0 i.o.}. Of course N and P are
disjoint and P(P ∪ N) = 1. To prove Part 1, we will show that N ⊂ {Xt → 0} up to a null
set and P = {Xt → ∞}. From Lemma 2.2 we know that lim inft→∞ Xt ≥ 0 a.s.; therefore
N ⊂ {Xt → 0} up to a null set.
To show that P = {Xt → ∞}, note that Lemma 3.2 shows that on {Xt ≥ 0 i.o.},
lim inft→∞ Xt > 0 a.s. Consequently, on {Xt ≥ 0 i.o.} we have Xt → ∞, as

∫∞
0 |Xu|du →

∞ and lim supt→∞
∫ t

0 e− u
2 dBu < ∞ a.s. Therefore, P = {Xt → ∞}, which concludes

Part 1.

2. The fact that P(A) > 0 follows immediately from Proposition 3.3. Now, we will prove
that P(B) > 0. Define the stopping time τ0 = inf{t|Xt = 0}. Also, define Y(t, ω) = 1 if
Xs ≥ 0 for all s ≥ t + 1. Observe that {Yτ0 = 1, τ0 < ∞} ⊂ P. Hence, using the strong
Markov property,

P(Yτ = 1, τ < ∞) =
∫ ∞

0
P(τ = u)P0(Xt ≥ 0, ∀t ≥ 1)du

≥
∫ ∞

0
P(τ = u)P0(Kt ≥ 0, ∀t ≥ 1)du since Xt ≥ Kt

= αP0(Kt ≥ 0, ∀t ≥ 1)

> 0.
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3. This follows immediately from the proof of 1.

Lastly, we prove a proposition that will be used in Section 5.

Proposition 3.4. Suppose (Xt)t≥1, (Yt)t≥1 solve (9), with constants k and k1 respectively.
Suppose that 0 < k1 < k < 1/2. Let ε > 0. If Xs, Ys ∈ ( − 2ε, −ε) a.s., then there is an event
A with positive probability, such that Xt, Yt ∈ ( − 3ε, 0) for every t > s.

Proof. Solving the SDE before it hits zero, we find Xt = e−kt(eksXs + ∫ t
s eu(k− 1

2 )dBu)

and Yt = e−k1t(ek1sYs + ∫ t
s eu(k1− 1

2 )dBu). Let ε > 0. Since the process Gt = ∫ t
s eu(k− 1

2 )dBu

has finite quadratic variation, the event A = {Gt ∈ ( − ε, ε)∀t > s} has positive probability.

Set G̃t = ∫ t
s eu(k1− 1

2 )dBu, and define Nt = Gtet(k1−k). Using Itô’s formula, we find dNt =
et(k− 1

2 )e(k1−k)tdBt + (k1 − k)e(k1−k)tGtdt. Therefore,

Gte
(k1−k)t = G̃t +

∫ t

s
(k1 − k)e(k1−k)uGudu.

So

Gte
(k1−k)t −

∫ t

s
(k1 − k)e(k1−k)uGudu = G̃t.

To bound |G̃t| observe that

−
∫ t

s
(k1 − k)e(k1−k)uGudu ≤ −ε

∫ t

s
(k1 − k)e(k1−k)udu

= −ε
(

e(k1−k)t − e(k1−k)s
)

.

Similarly we obtain − ∫ t
s (k1 − k)e(k1−k)uGudu ≥ ε(e(k1−k)t − e(k1−k)s). Thus on A, we obtain

the following inequalities:

−εe(k1−k)t + ε
(

e(k1−k)t − e(k1−k)s
)

≤ G̃t ≤ εe(k1−k)t − ε
(

e(k1−k)t − e(k1−k)s
)

.

Simplifying, we obtain |G̃t| ≤ εe(k1−k)s ≤ ε. Now we will estimate Xt on A. Using that ε <

|eksXs| we obtain the upper bound

Xt = e−kt
(

eksXs +
∫ t

s
eu(k− 1

2 )dBu

)

≤ e−kt(eksXs + ε)

< 0

and the lower bound

Xt = e−kt
(

eksXs +
∫ t

s
eu(k− 1

2 )dBu

)

≥ e−kt( − 2eksε − ε)

≥ −3ε.

Doing similarly for Yt, we conclude.
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4. Analysis of dLt = |Lt|k

tγ dt + 1
tγ dBt

4.1. Introduction

As in the previous section, to simplify matters, we will work with reparametrizing Lt. Set

θ (t) = t
1

1−γ , and let Xt = Lθ(t). To obtain the SDE that Xt obeys, notice that dBθ(t) =√
θ ′(t)dBt.

Therefore

dXt = |Xt|k
θ (t)γ

θ ′(t)dt + 1

θ (t)γ
√

θ ′(t)dBt

= c1|Xt|kdt + c2t−
γ

1−γ

√
θ ′(t)dBt

= c1|Xt|kdt + c2t−
γ

2(1−γ ) dBt,

where c2
2 = c1 = 1/(1 − γ ). By abusing the notation we set Xt = Xt/c2, which satisfies an SDE

of the form

dXt = c|Xt|kdt + t−
γ

2(1−γ ) dBt, (12)

where k > 1, γ ∈ (1/2, 1), and c ∈ (0, ∞). By a time scaling, we may assume that Xt solves

dXt = |Xt|kdt + t−
γ

2(1−γ ) dBt, (13)

where k > 1 and γ ∈ (1/2, 1). Notice that the noise is scaled differently. However, it will be
evident that only the order of the noise is relevant. The SDE (13) will be the primary focus of
the next subsection, and the results will apply to solutions of (12) as well.

We define another process that will be fundamental for our analysis, namely Zt = − Xt
h(t) ,

where h(t) = −t
1

1−k . Next, we find the SDE that Zt satisfies.

Proposition 4.1. Suppose that (Xt)t≥1 solve (12), and set C(c) = 1
c(k−1) , h(t) = −t

1
1−k . Then the

process Zt = − Xt
h(t) satisfies

Zt − Zs =
∫ t

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu. (14)

Also, before Xt hits zero we get a solution purely in terms of Zt:

Zt − Zs =
∫ t

s
c|h(u)|k−1Zu

(
C − ( − Zu)k−1

)
du +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu. (15)

Proof. Recall that since h(t) is a continuous function, the covariance 〈h(t), Zt〉 is 0. Using
Itô’s formula we obtain

dZt = − 1

h(t)
dXt + Xtd

(
− 1

h(t)

)
.
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Thus,

Zt − Zs =
∫ t

s
− 1

h(u)
c|Xu|kdu +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu +
∫ t

s
Xu

h′(u)

h(u)2
du

=
∫ t

s
Xu

h′(u)

h(u)2
− 1

h(u)
c|Xu|kdu +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu

=
∫ t

s
c

Xu

h(u)

(
h′(u)

ch(u)
− |Xu|k

Xu

)
du +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu

=
∫ t

s
c

Xu

h(u)

(
1

c(k − 1)

|h(u)|k
h(u)

− |Xu|k
Xu

)
du +

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu.

The SDE (15) is an immediate consequence of the last line of the above calculation.
In the next proposition, we describe some properties of the noise for the process Zt, and we

give a very important inequality for Subsection 4.2, which relates the order of the determin-
istic system converging to zero and the order of the remaining noise for Xt, i.e. the order of〈∫∞

s u− γ
2(1−γ ) dBu

〉
.

Proposition 4.2. Set G′
s,t = ∫ t

s − 1
h(u) u− γ

2(1−γ ) dBu, the noise term of (15) and (14).

1. In the regime 1
2 + k

2 ≥ γ , 〈G′
s,∞〉 = ∞.

2. In the regime 1
2 + k

2 < γ , 〈G′
s,∞〉 < ∞.

3. Also, given the same conditions as in Part 1 for the pair (k, γ ), the following inequality
is true:

1

k − 1
≥ 2γ − 1

2(1 − γ )
.

Proof. We calculate its quadratic variation at time t, namely,

〈G′
s,t〉 =

∫ t

s

1

h(u)2
u− γ

1−γ du.

Notice that by the definition of h(t), we have h(t)−1 = �
(

t
1

k−1

)
; therefore

1

h(u)2
u− γ

1−γ = �
(

u
2

k−1 − γ
1−γ

)
.

Consequently, 〈G′
s,∞〉 = ∞ when

2

k − 1
− γ

1 − γ
≥ −1 ⇐⇒ 2

k − 1
+ 1

γ − 1
≥ −2.

In the first regime we have

1

2
+ 1

2k
≥ γ ⇐⇒ k − 1

2k
≤ 1 − γ ⇐⇒ 2k

k − 1
≥ 1

1 − γ

⇐⇒ 2

k − 1
+ 2 ≥ 1

1 − γ
⇐⇒ 2

k − 1
+ 1

1 − γ
≥ −2. (16)
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So, indeed, when 1
2 + 1

2k ≥ γ , 〈G′
s,∞〉 = ∞. Also, from the previous calculation we see that

when 1
2 + 1

2k < γ ,
2

k − 1
− γ

1 − γ
< −1; (17)

therefore when 1
2 + 1

2k < γ , 〈G′
s,t〉 < ∞. Finally, rearranging the first inequality of (16), we

obtain
1

k − 1
≥ 2γ − 1

2(1 − γ )
.

The solution of the SDE (13), when Xt is positive, explodes in finite time. However, since
we are interested in the behavior of Xt when Xt < M for a positive constant M, we may change
the drift when Xt surpasses the value M, which in turn would imply that the SDE (13) admits
strong solutions. One way to do this is by studying the SDE whose drift term is equal to |x|k
when x < M and Mk when x > M. This SDE can be seen to admit strong solutions for infinite
time. The reason is that this process is a.s. bounded from below, and the drift is positive. Also,
Xt cannot explode to plus infinity in finite time since the drift is bounded from above when Xt

is positive. However, for simplicity, we will use the form shown in (13).

4.2. Analysis of Xt when 1
2 + 1

2k ≥ γ , k > 1, and γ ∈ ( 1
2 , 1)

The main result of this section is the following theorem.

Theorem 4.1. Let (Xt)t≥1 solve (13). When 1/2 + 1/2k ≥ γ , Xt → ∞ a.s.

We will see its proof at the end of this subsection. Now we will prove an important
proposition which shows that Xt cannot stay far away from the left of the origin.

Proposition 4.3. Let (Xt)t≥1 solve (12) for c = 1. Then, for some β < 0, the event {Xt ≥
βt

1−2γ
2(1−γ ) i.o.} has probability 1.

Proof. Set

G′
t =

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu,

which corresponds to the noise term of (15). First we will prove that {Xt ≥ C′h(t) i.o.} a.s.,

where C′ > C
1

k−1 and C = C(1) = 1
k−1 . To do so, we will argue by contradiction. Assume that

A = {∃ s, Xt < C′ · h(t)∀t > s} has positive measure. Take ω ∈ A, and find s(ω) such that Xt <

C′ · h(t) for all t > s. Notice that this implies that Zt < −C′ for t > s. Take u > s; since |x|k
x is

increasing we see that

|Xu|k
Xu

< C′k−1 |h(u)|k
h(u)

< C
|h(u)|k
h(u)

.

This in turn gives

C
|h(u)|k
h(u)

− |Xu|k
Xu

> 0.

Therefore ∫ t

s

Xu
h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du > 0
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for all t > 0. However, since the process

G′
w,t :=

∫ s

w
− 1

h(u)
u− γ

2(1−γ ) dBu

for any fixed w has infinite quadratic variation, we may find G′
s,t > −Zs. Now, from (14)

we get

Zt =
∫ t

s

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du + Zs + G′

s,t

> 0.

This contradicts the fact that Zt < −C′. Therefore {Xt > C′h(t) i.o.} a.s.
Finally, in Proposition 4.2 Part 3 we have shown that 1

k−1 ≥ 2γ−1
2(1−γ ) ; therefore

−t
1

1−k ≥ −t
1−2γ

2(1−γ ) .

So we conclude that there exists a constant β < 0 such that {Xt ≥ βt
1−2γ

2(1−γ ) i.o.} holds a.s.

Corollary 4.1. Let (Xt)t≥1 solve (12) for c = 1. Then lim inft→∞ Xt > 0 a.s.

Proof. Set Gs,t = ∫ t
s u− γ

2(1−γ ) dBu, and note that 〈Gs,∞〉 = �(s
1−2γ
(1−γ ) ). Fix γ > 0; since

〈Gs,∞〉 = �(s
1−2γ
(1−γ ) ) for any u > 0, it is possible to find W(u) > u > 0 such that

P

(
sup

u<t<W(u)
Gu,t > γ u

1−2γ
2(1−γ )

)
> δ, (18)

for δ independent of u. Take γ > −β, where β is such that {Xt ≥ βt
1−2γ

2(1−γ ) i.o.} (as in Proposition
4.3). Now, using the lower bound Xt − Xs ≥ Gs,t, we obtain

P

(
sup

s<t<W(s)
Xt − Xs > γ s

1−2γ
2(1−γ )

)
≥ P

(
sup

s<t<W(s)
Gs,t > γ s

1−2γ
2(1−γ )

)
> δ. (19)

When Xs ≥ βs
1−2γ

2(1−γ ) , observe that on the event{
sup

s<t<W(s)
Xt − Xs > γ s

1−2γ
2(1−γ )

}

there is τs such that

Xτs ≥ Xs + βs
1−2γ

2(1−γ ) = (γ + β)s
1−2γ

2(1−γ ) ≥ 0.

Hence, if we choose a sequence of stopping times such that Xτn ≥ βτn
1−2γ

2(1−γ ) and τn+1 > W(τn),
we have

P

(
sup

τn<t<τn+1

Gτn,t > γτn
1−2γ

2(1−γ ) |Fτn

)
> δ.

So, by Borel–Cantelli (Lemma 2.5), on the events{
sup

τn<t<τn+1

Xt − Xτn > γτ

1−2γ
2(1−γ )

n

}
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we may conclude that {Xt ≥ 0 i.o.} has probability 1. Define τn as before, except that instead

of Xτn ≥ βτn
1−2γ

2(1−γ ) we set Xτn ≥ 0; by Borel–Cantelli we obtain that {Xt ≥ γ t
1−2γ

2(1−γ ) i.o.} has
probability 1.

Since Gs,t is symmetric and 〈Gs,∞〉 = �

(
s

1−2γ
1−γ

)
, we have

P

(
inf

s<t<∞ Xt − Xs > −γ

2
s

1−2γ
2(1−γ )

)
≥ P

(
inf

s<t<∞ Gs,t > −γ

2
s

1−2γ
2(1−γ )

)

= 1 − P

(
sup

s<t<∞
Gs,t >

γ

2
s

1−2γ
2(1−γ )

)
> δ′ > 0.

for some δ′ independent of s.

Define τn such that Xτn ≥ γ τn
1−2γ

2(1−γ ) , and set Fτn =Fn. To show that A = {lim inf→∞ Xt ≤ 0}
has probability zero, it suffices to argue that there is a δ such that P(A|Fn) < 1 − δ a.s. for all
n ≥ 1. This is immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1 − P

(
inf

τn≤u<∞ Xu − Xτn > −γ

2
τn

1−2γ
2(1−γ ) |Fn

)
< 1 − δ′.

Proof of Theorem 4.1. Since Xt is a solution of (13), we have Xt − X1 = ∫ t
1 |Xu|kdu + G1,t.

From Corollary 4.1 we know that lim inft→∞ Xt > 0 a.s.; therefore
∫ t

1 |Xu|kdu → ∞ a.s.
However, since 〈G1,∞〉 < ∞, we have that lim supt→∞ |G1,t| < ∞ a.s. Therefore, Xt → ∞ a.s.

4.3 Analysis of Xt when 1
2 + 1

2k < γ and k > 1

We now state the main theorem of this section, which we will prove at the end.

Theorem 4.2. The process (Xt)t≥1, the solution of (12), converges to zero with positive
probability, when X1 < 0.

We prove a technical lemma first.

Lemma 4.1. Let (Zt)t≥s solve (14), and set

G′
t =

∫ t

s
− 1

h(u)
u− γ

2(1−γ ) dBu.

Suppose that Zs > −
(

C
k

) 1
k−1

. Define

A =
{

G′
t ∈ ( − ε, ε)∀t ∈ (s, s + δ), and G′

t ∈
(

− 2ε, − 9

10
ε

)
∀t ∈ (s + δ, ∞)

}
.

Then the following hold:

1. P(A) > 0 for every ε, δ > 0.

2. For all ε > 0 small enough, there is δ > 0 such that Zt < −5ε

3
for every t ∈ (s, s + δ)

on A.
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3. Define τC = inf
{

t > s|Zt = −2
(

C
k

) 1
k−1

}
. Then τC > s + δ a.s., where δ is the same as

in Part 2.

Proof.

1. This is immediate, since in Proposition 4.2 Part 2 we have shown that 〈G′∞〉 < ∞.

2. The first restriction on ε is such that Zs < −3ε. Next, we begin by defining f1 and f2 on
(s, s + δ) satisfying

f ′(x) = c|h(x)|k−1f (x)(C − ( − f (x)k−1)), (20)

where c and C are the same as the parameters of the SDE (14), with initial conditions
satisfying

−
(

C

k

) 1
k−1

< Zs + ε < f1(s) < −5ε

3

and

−
(

C

k

) 1
k−1

< f2(s) < Zs − ε.

Also, we define the function q(x) = x(C − ( − x)k−1), whose derivative is q′(x) = C −
k( − x)k−1, which implies that q(x) is increasing on

((− C
k

) 1
k−1 , 0

)
. This function will

be important later. We should also note that f is decreasing in intervals where f (x) ∈(− (C
k

) 1
k−1 , 0

)
, since there f ′(x) < 0.

We can pick the δ > 0 so that f2(t) > −(C
k

) 1
k−1 for every t ∈ (s, s + δ). We will show that

Zt > f2(t) on (s, s + δ) by contradiction. Using the SDE (15) for Zt, we get that

Zt − Zs =
∫ t

s
c|h(u)|k−1Zu

(
C − ( − Zu)k−1

)
du + g(t), (21)

where g(t) is a continuous function such that supt∈(s,s+δ) |g(t)| ≤ ε. Assume that f2 and
Z become equal at some point, and choose t to be the first time. Using the integral form
of (20), and subtracting it from (15), we get

0 = Zt − f2(t)

=
∫ t

s
c|h(u)|k−1Zu

(
C − ( − Zu)k−1)− c|h(u)|k−1f2(u)

(
C − ( − f2(u))k−1)du

+ Zs − f2(s) + g(t)

= (t − s)
(
c|h(ξ )|k−1Zξ

(
C − ( − Zξ )k−1)− c|h(ξ )|k−1f2(ξ )

(
C − ( − f2(ξ ))k−1))

+ Zs + g(t) − f2(s)

> (t − s)
(
c|h(ξ )|k−1Zξ

(
C − ( − Zξ )k−1)− c|h(ξ )|k−1f2(ξ )

(
C − ( − f2(ξ ))k−1)),

where in the last line we used that Zs + g(t) − f2(s) > 0. Since ξ < t, we have that Zξ >

f2(ξ ) > −
(

C
k

) 1
k−1

, and consequently q(Zξ ) > q(f2(ξ )), so

|h(ξ )|k−1q(Zξ ) > |h(ξ )|k−1q(f2(ξ )).
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Therefore,

0 < c|h(ξ )|k−1Zξ

(
C − ( − Zξ )k−1

)
− c|h(ξ )|k−1f2(ξ )

(
C − ( − f2(ξ ))k−1

)
,

which gives a contradiction.
Arguing similarly we can show that f1(t) > Zt on (s, s + δ), which completes Part 2.

3. Finally, for Part 3 we observe that Zt > f2(t) for t ∈ (s, s + δ); hence τC > s + δ a.s.

Before proving the theorem we will need the following proposition.

Proposition 4.4. Let (Xt)t≥s solve (12). Assume that at time s, Xs < 0, and Zs > −
(

C
k

) 1
k−1

.

Then with positive probability the process never returns to 0.

Proof. The condition 1/2 + 1/2k < γ , as has already been shown in Section 4.2, implies
that 〈G′∞〉 < ∞. On the event A as defined in Lemma 2.3, using (14), we get the following
upper and lower bounds for all t ≥ s + δ:

− Xt

h(t)
≤ − Xs

h(s)
+
∫ t

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du − 9

10
ε, (22)

− Xt

h(t)
≥ − Xs

h(s)
+
∫ t

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du − 2ε. (23)

Claim: On the event A, Xt < 0 for all t > s.

Proof: We will argue by contradiction. Assume that P({τ0 < ∞} ∩ A) > 0. We choose ε

such that 3ε
2 < C

1
k−1 . Now, define τl = sup{t ≤ τ0| − Xt

h(t) = − 3ε
2 } and notice that Lemma 4.1

implies that τlε > s + δ, since Zt < − 5ε
3 on (s, s + δ). Also, on {τ0 < ∞} ∩ A we have τl < ∞.

Then from (23) we see that

∫ τl

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du ≤ Xs

h(s)
+ ε

2
.

Therefore,

− Xs

h(s)
+
∫ τl

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du − 9

10
ε ≤ −2ε

5
. (24)

Now, notice that Xt > 3
2εh(t) for every t ∈ (τl, τ0), so if w ∈ (τl, τ0), we get

C
|h(w)|k
h(w)

− |Xw|k
Xw

< C
|h(w)|k
h(w)

− C
|h(w)|k
h(w)

= 0,

and of course Xw
h(w) > 0. So we conclude that

∫ τ0

τl

c
Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du < 0. (25)
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Combining (24) and (25), we get that

0 = − Xτ0

h(τ0)

≤ − Xs

h(s)
+
∫ τ0

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du − 9

10
ε

= − Xs

h(s)
+
∫ τl

s
c

Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du − 9

10
ε

+
∫ τ0

τl

c
Xu

h(u)

(
C

|h(u)|k
h(u)

− |Xu|k
Xu

)
du

≤ −2ε

5
,

a contradiction.
We have developed all the tools necessary to prove the theorem.

Proof of Theorem 4.2. Define a stopping time σ = inf{t|Zt > −
(

C
k

) 1
k−1 }. If the event {σ <

∞} has positive probability, then Proposition 4.4 implies that Xt converges to zero with positive
probability. Indeed, recall from Lemma 1 that lim inft→∞ Xt ≥ 0 a.s. Therefore, since on the
event A as in Lemma 4.1 we have lim supt→∞ Xt ≤ 0, we deduce that limt→∞ Xt = 0. To finish
the proof, it suffices to show that when {σ < ∞} has zero probability, Xt → 0 with positive
probability. This is easy to see since P({σ < ∞}) = 0 implies that Zt never hits zero; therefore
lim supt→∞ Xt ≤ 0 on {σ < ∞}.

We now prove a proposition that will be used in the next section.

Proposition 4.5. Let (Xt)t≥s solve (12). Take the event A such that Lemma 4.1 holds, with

ε <
(C

k

) 1
k−1 , where C(c) = 1

c(k−1) as in the parameter C of the SDE (14). Then, on A, the process

Xt stays within a region of the origin. More specifically, Zt > −2
(C

k

) 1
k−1 .

Proof. Let τC = inf

{
t > s|Zt = −2

(
C
k

) 1
k−1
}

, and define

σ = sup

{
τC > t > s|Zt = −

(
C

k

) 1
k−1
}

.

We will show that τC = ∞ a.s. We assume otherwise, and reach a contradiction. From Lemma
4.1 Part 3, we know that τC > s + δ. Therefore,

ZτC ≥ Zs +
∫ t

s
c|h(u)|k−1Zu

(
C − ( − Zu)k−1

)
du − 2ε

≥ Zσ − Zσ + Zs +
∫ t

s
c|h(u)|k−1Zu

(
C − ( − Zu)k−1

)
du − 2ε

≥ Zσ + 9ε

10
− 2ε > −2

(
C

k

) 1
k−1

,

the desired contradiction.
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5. Analysis of dLt = f (Lt)
tγ dt + 1

tγ dBt

For this section, we assume that f is globally Lipschitz. For f as before, we define

dLt = f (Lt)

tγ
dt + 1

tγ
dBt, γ ∈

(
1

2
, 1

]
. (26)

By our assumptions on f , the SDE (26) admits strong solutions. Also, we define a more general
SDE, namely

dXt = f (Xt)dt + g(t)dBt, (27)

where g : R≥0 →R>0 is continuous, and T = ∫∞
0 g2(t)dt is possibly infinite.

Proposition 5.1. Let (Xt)t≥1 be a solution of (27). Then for every t, c > 0 and x ∈R, P(Xt ∈
(x − c, x + c)) > 0.

Proof. Firstly, we change time. Let ξ (t) = ∫ t
0 g2(t)dt, and define X̃t = Xξ−1(t). Then

dX̃t = f (X̃t)

g2(ξ−1(t))
dt + dBt. (28)

This gives a well-defined SDE whose solution is defined on [0,T ′] for T ′ ∈R, ξ (t) < T ′ < T .
The path-space measure of X̃t is mutually absolutely continuous to the one induced from
the Brownian motion. Since the Brownian motion satisfies the property described in the
proposition, so does Xt.

We give the proofs of Theorems 1.2 and 1.3. For the proofs, we use that the theorems hold
if and only if they hold for their corresponding reparametrizations.

Proof of Theorem 1.2 Parts 1 & 2. Both parts can be proved simultaneously. Let
τ = inf{t|Xt ∈ ( − ε, ε)} and τ ′ = inf{t > τ |Xt ∈ {−3ε, 3ε}}. Now, define a stochastic process
(Ut)t≥τ started on Fτ that satisfies (13) or (9) with Uτ = −2ε. From Proposition 2.1, we see
that Ut < Xt for all t ∈ (τ, τ ′). Now we can see that P(τ ′ = ∞) = 0. Indeed,

P(τ ′ = ∞) ≤ P(Ut ≤ 3ε for all t ≥ τ ) ≤ 1 − P(Ut → ∞) = 0.

Proof of Theorem 1.3 Part 1. Suppose N = ( − 3ε, 3ε) for ε > 0. Without loss of generality
and for the purposes of this proof, assume that

ε < min

((
C(1)

k

) 1
k−1

,

(
C(c)

k

) 1
k−1
)

.

Pick a time z such that

h(t) ≥ −3

2

(
k

C(c)

) 1
k−1

ε

for all t ≥ z, and define τ = inf{t ≥ z|Xt ∈ ( − ε, ε)} and τ ′ = inf{t > τ |Xt ∈ {−3ε, 3ε}}. From
Proposition 5.1, τ < ∞ with positive probability. Now we define two stochastic processes
(Yt)t≥τ , (Y ′

t)t≥τ in the same probability space as Xt started on Fτ , that satisfy (12) with
drift constants 1 and c respectively. From Proposition 2.1, we see that if Yτ > Xτ > Y ′

τ , then
Yt > Xt > Y ′

t for all t ∈ (τ, τ ′). We set Y ′
τ such that Xτ > Y ′

τ , and

ZY′
t = − Y ′

t

h(t)
> max

(
−
(

C(1)

k

) 1
k−1

, −
(

C(c)

k

) 1
k−1
)

.
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Now we need to show that {τ ′ = ∞} ∩ {Yt → 0} ∩ {Y ′
t → 0} is nontrivial. Take ε1 and εc,

both less than ε, as in the statement of Lemma 4.1 for Yt and Y ′
t respectively, and pick

ε′ = min (ε1, εc). For ε′, using Lemma 4.1, we know we can find δ1 and δc such that on

A1 = {Gt ∈ ( − ε′, ε′) for all t ∈ (s, s + δ1), and Gt ∈
(

− 2ε′, − 9

10
ε′
)

for all t ∈ (s + δ1, ∞)}

we have Ys → 0, and on

Ac = {Gt ∈ ( − ε′, ε′) for all t ∈ (s, s + δc), and Gt ∈ (− 2ε′, − 9

10
ε′) for all t ∈ (s + δc, ∞)}

we have Y ′
s → 0. From here, since A1 ∩ Ac is nontrivial, we only need to argue that {τ ′ =

∞} ⊃ A ∩ Ac. From the remark of Lemma 4.1 we see that Yt and Y ′
t always stay below 0 on

A1 ∩ Ac. Also, from Proposition 4.5, we see that

ZY′
t > −2

(
C(c)

k

) 1
k−1

.

Equivalently, and using that

h(t) ≥ −3

2

(
k

C(c)

) 1
k−1

ε,

we have

Y ′
t > 2h(t)

(
C(c)

k

) 1
k−1

≥ −3ε.

We now prove the second part of Theorem 1.3.

Proof of Theorem 1.3 Part 2. Let N = ( − 3ε, 0). Define τ = inf{t ≥ 1|Xt ∈ ( − 3ε
2 , − 5ε

4 )},
and let the exit time from N be τe = inf{t|Xt �∈ ( − 3ε, 0)}. From Proposition 5.1, we have
that τ < ∞ holds with positive probability. Define (Yt)τ≤t≤τe , (Y ′

t)τ≤t≤τe to be two processes
that satisfy (9) with constants k1, k2 respectively. Suppose that Yτ < Xτ < Y ′

τ and Yτ , Y ′
τ ∈

( − 2ε, −ε). Then by Proposition 2.1, we get Yt < Xt < Y ′
t for all t ∈ (τ, τe). Now, using

Proposition 3.4, there is an event A such that Yt, Y ′
t ∈ ( − 3ε, 0) for all t ≥ τ . Consequently,

Xt ∈ ( − 3ε, 0) for all t ≥ τ , since τe = ∞ on A. Finally, using Lemma 2.2 we conclude that
Yt → 0 on A; hence also Xt → 0 on A.

6. The discrete model

6.1. Analysis of Xt when 1
2 + 1

2k > γ , k > 1, and γ ∈ (1/2, 1)

Before proving Theorem 1.4, as described in Section 1.2, we assume that Xn satisfies

Xn+1 − Xn ≥ |Xn|k
nγ

+ Yn+1

nγ
, k > 1andγ ∈ (1/2, 1), (29)

where the Yn are a.s. bounded and E(Yn+1|Fn) = 0. In this section we additionally require Yn

to satisfy E(Y2
n+1|Fn) ≥ l > 0.

Theorem 6.1. Let (Xn)n≥1 solve (29). When 1/2 + 1/2k > γ , Xt → ∞ a.s. Now we develop the
necessary tools to prove this theorem.
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Proposition 6.1. The process (Xn)n≥1 gets close to the origin infinitely often. More specifically,

for β < 0 the event
{

Xn ≥ βn
1−2γ

2 i.o.
}

has probability 1.

Proof. From the restrictions on k we obtain

1

2
+ 1

2k
≥ γ ⇐⇒ k − 1

2k
≤ 1 − γ .

Set h(t) = −t
1−γ
1−k , and define Zn = −Xn

hn
. From here, on the event {Xm < 0 for all m ≥ n}, we get

the following recursion:

Zn+1 − Zn ≥ − Xn+1

h(n + 1)
+ Xn

h(n)
(30)

≥ −Xn

(
1

h(n + 1)
− 1

h(n)

)
− |Xn|k

nγ h(n + 1)
− Yn+1

nγ h(n + 1)

≥ Xn
1 − γ

k − 1
ξ

− 1−γ
1−k −1

n − |Xn|k
nγ h(n + 1)

− Yn+1

nγ h(n + 1)
, where ξn ∈ (n, n + 1)

≥ Xn

h(n + 1)nγ

(
1 − γ

k − 1
ξ

− 1−γ
1−k −1

n h(n + 1)nγ − |Xn|k
Xn

)
− Yn+1

nγ h(n + 1)

≥ Xn

h(n + 1)nγ

(
−an

1 − γ

k − 1
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγ h(n + 1)
(31)

≥ Xn

h(n + 1)nγ

(
−2(1 − γ )

k − 1
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγ h(n + 1)
, (32)

where

an = ξ
−(1−γ )

1−k −1
n h(n + 1)nγ

−|h(n)|k−1
. (33)

To justify the inequality (32), for large enough n, notice that an → 1.
Define

G′
s,n =

n−1∑
i=s

Yi + 1

iγ h(i + 1)
.

We will see that G′
1,n grows big enough so that Zn must, at certain times, get close enough to

the origin so that Xn surpasses a constant multiple of h(n). To this end, we have the following
lemma.

Lemma 6.1. lim supn→∞ G′
1,n = ∞ a.s.

We use the following theorem; for a reference see [Fis92, Theorem 1, p. 676].

Theorem 6.2. Let Xn be a martingale difference such that E(X2
i |Fi−1) < ∞. Set s2

n =∑n
i=1 E(X2

i |Fi−1), and define φ(x) = (2 log2 (x2 ∨ e2))
1
2 . We assume that sn → ∞ a.s. and that

|Xi| ≤ Kisi
φ(si)

a.s., where Ki is Fi−1-measurable with lim supi→∞ Ki < K for some constant K.
Then there is a positive constant ε(K) such that

lim supn→∞
∑n

i=1
Xi

snφ(sn) ≥ ε(K) a.s.
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It is clear that G′
1,n satisfies all the hypotheses required for the aforementioned theorem to

hold.
From Lemma 6.1, it is immediate that for any random time s (not necessarily a stopping

time), lim supn→∞ G′
s,n = ∞ a.s.

Now, we return to the proof of Proposition 6.1. Assume that there is n0 such that

Xn < −
(

3(1 − γ )

k − 1

) 1
k−1

n
1−γ
1−k

for all n ≥ n0. Then, since |x|k
x is increasing, we get that

|Xn|k
Xn

< −3(1 − γ )

k − 1
n−1+γ .

Therefore,

−2(1 − γ )

k − 1
|h(n)|k−1 − |Xn|k

Xn
> −2(1 − γ )

k − 1
n−1+γ + 3(1 − γ )

k − 1
n−1+γ = (1 − γ )

k − 1
n−1+γ > 0

So

Zn ≥ Zn0 +
n∑

i=n0

Xi

h(i + 1)iγ

(
2(1 − γ )

k − 1
|h(i)|k−1 − |Xi|k

Xi

)
+ G′

n0,n

> Zn0 + G′
n0,n,

which gives lim supn→∞ Zn = ∞. This is a contradiction, since it would imply Xn ≥ 0 infinitely
often.

Since n
1−γ
1−k = o(n

1−2γ
2 ), for every constant β < 0 the event {Xn ≥ βn

1−2γ
2 i.o.} holds a.s.

We define Gn,u =∑u−1
i=n

Yi+1
iγ ; this is an important quantity for the next lemma and the

remainder of the section.

Lemma 6.2. For any n, we can find a1 > 0, δ > 0 such that P
(

supu≥n Gn,u ≥ a1n
1−2γ

2

∣∣∣Fn

)
> δ

and P

(
Gn,∞ ≥ a1n

1−2γ
2

∣∣∣Fn

)
> δ.

Proof. Define τ = inf{u ≥ n|Gn,u /∈ ( − a2n
1−2γ

2 , a2n
1−2γ

2 )}. We calculate the stopped vari-
ance of Gτ := Gn,τ . We will do so recursively; fix m ≥ n and calculate as follows:

E((Gτ∧m+1)2|Fn) −E(Gτ∧m)2|Fn) =E

(
1τ>m

(
2

Ym+1

mγ
Gm + Y2

m+1

m2γ

) ∣∣∣∣∣Fn

)

=E

(
1τ>m2

Ym+1

mγ
Gm

∣∣∣∣Fn

)
+E

(
1τ>m

Y2
m+1

m2γ

∣∣∣∣∣Fn

)

= 0 +E

(
1[τ>m]E

(
Y2

m+1

m2γ

∣∣∣∣∣Fm

) ∣∣∣∣∣Fn

)

≥ ε
1

m2γ
E
(
1[τ>m]|Fn

)
≥ ε

1

m2γ
P(τ = ∞|Fn).
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Therefore,

E
(
(Gτ∧m)2

∣∣Fn
)≥E

(
(Gτ∧n)2

∣∣Fn
)+ cP(τ = ∞|Fn)

(
n1−2γ − (m − 1)1−2γ

)
= cP(τ = ∞|Fn)

(
n1−2γ − (m − 1)1−2γ

)
. (34)

Notice that since the Yn are a.s. bounded, |Gτ | ≤ a2n
1−2γ

2 + M
nγ , and since γ > γ − 1/2, we

get that |Gτ | ≤ 2a2n
1−2γ

2 for n large enough. For m large, we can find a constant c′ such that
n1−2γ − (m − 1)1−2γ ≥ c′n1−2γ . Using (34), we obtain

2a2n1−2γ

εc′n1−2γ
= 2a2

εc′ ≥ P(τ = ∞|Fn).

Choosing a2 small enough, we may conclude P(τ < ∞|Fn) > 1/2 for all n large enough.
Now we take any martingale Mn starting at 0 such that it exits an interval ( − 2a, 2a) with

probability at least p, and |Mn+1 − Mn| < a a.s. Then we stop the martingale upon exiting the
interval ( − 2a, 2a); that is, define τ− to be the first time Mn goes below −2a and τ+ to be the
first time that Mn surpasses 2a, and set τ = τ− ∧ τ+. Using the optimal stopping theorem for
the bounded martingale Mτ∧n and taking n to infinity, we obtain

0 =E(Mτ ) ≤ −2aP(τ− < τ+) + 3aP(τ− > τ+) + 2aP(τ = ∞)

= −2ap + 2a(1 − p) + 5aP(τ− > τ+).

So P(τ− > τ+) ≥ 4p − 2

5
, which implies that P( supn Mn ≥ 2a) ≥ 4p − 2

5
.

The previous argument applied to Gn,u, given Fn, concludes the proof of the first part of
the lemma. Indeed, since the probability p of exiting the interval is bigger than 1/2, we may

deduce that
4p − 2

5
> 0.

For the second part of the lemma, we use the following inequality: let Mn be a martingale
such that M0 = 0 and E(M2

n) < ∞. Then

P

(
max

n≥u≥0
Mu ≥ λ

)
≤ E

(
M2

n

)
E
(
M2

n

)+ λ2

(for a reference see [Dur13, Exercise 5.4.5, p. 213]). Let τ be the first time Gn,u sur-
passes a2n1−2γ . Condition on [τ < ∞], and notice that Gn,∞ > a2

2 n1−2γ when infu≥τ Gτ,u >

− a2
2 n1−2γ . Using the previous inequality and the fact that x

x+1 is increasing, we obtain

P

(
Gn,∞ ≤ a2

2
n

1−2γ
2

∣∣∣∣Fτ , [τ < ∞]

)
≤ P

(
inf
u≥τ

Gτ,u ≤ −a2

2
n1−2γ

∣∣∣∣Fτ , [τ < ∞]

)

≤ E
(
(Gτ,∞)2

∣∣Fτ , [τ < ∞]
)

E
(
(Gτ,∞)2

∣∣Fτ , [τ < ∞]
)+ a2

2
4 n1−2γ

≤ cτ 1−2γ

cτ 1−2γ + a2
2

4 n1−2γ

≤ c

c + a2
2

4

.
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Therefore,

P

(
Gn,∞ ≥ a2

2
n

1−2γ
2

∣∣∣Fn

)
≥ P(τ < ∞)

a2
2

4

c + a2
2

4

,

which concludes the proof.
For any stopping time σ , we get the following version of the previous lemma.

Lemma 6.3. For any n, we can find a1 > 0, δ1 > 0, δ2 > 0 such that P( supu≥σ Gσ,u ≥
a1σ

1−2γ
2 |Fσ ) > δ1 and P

(
Gσ,∞ ≥ a1σ

1−2γ
2

∣∣∣Fσ

)
> δ2.

Corollary 6.1. The event {Xn ≥ 0 i.o.} holds a.s.

Proof. For any m, n we get the lower bound Xm − Xn ≥ Gn,m. Now, we define an increas-

ing sequence of stopping times τn, going to infinity a.s., such that Xτn ≥ βτ
1−2γ

2
n for |β| < a1,

where a1 is such that P
(

supu≥σ Gτn,u ≥ a1τn
1−2γ

2

∣∣∣Fτn

)
> δ1, whose existence is guaranteed

by Lemma 6.3. From Proposition 6.1, we can do so with all τn a.s. finite. Hence,

P

(
sup

∞≥u≥τn

Xu − Xτn ≥ a1τn
1−2γ

2

∣∣∣∣Fτn

)
≥ P

(
sup

∞≥u≥τn

Gτn,u ≥ a1τn
1−2γ

2

∣∣∣∣Fτn

)
> δ1 > 0.

Therefore, by Borel–Cantelli on the event
{

Xτn ≥ βτ
1−2γ

2
n i.o.

}
, we get {Xτn ≥ 0 i.o.}.

Therefore {Xn ≥ 0 i.o.} holds a.s.

Proof of Theorem 6.1. Again we define an increasing sequence of stopping times τn, going to

infinity a.s., such that Xτn ≥ 0 this time. Since P

(
Gτn,∞ ≥ a1τ

1−2γ
2

n

∣∣∣∣Fτn

)
> δ2, an application

of Borel–Cantelli shows that {Xn ≥ a1
2 n

1−2γ
2 i.o.} holds a.s. We claim that a.s. there are con-

stants c(ω) > 0 and m(ω) such that {Xn > cforalln ≥ m} = {lim infn→∞ Xn > 0}. Indeed, if we

define τ0 = 0 and τn+1 = inf{m > τn + 1|Xm ≥ a1
2 m

1−2γ
2 }, we see that τn < ∞ a.s. and τn → ∞.

This gives a corresponding filtration, namely Fn = σ (τn).
To finish the claim, we show that A = {lim infn→∞ Xn ≤ 0} has probability zero. To do so,

it is sufficient to argue that there is a δ such that P(A|Fn) < 1 − δ a.s. for all n ≥ 1. This is
immediate from the previous calculation. Indeed,

P(A|Fn) ≤ 1 − P

(
lim inf

n
Xn ≥ 3a1

2
τ

1−2γ
2

n

∣∣∣∣Fn

)

= 1 − P

(
lim inf

n
Xn − a1

2
τ

1−2γ
2

n ≥ a1τ
1−2γ

2
n

∣∣∣∣Fn

)

≤ 1 − P

(
lim inf

n
Gτn,n ≥ a1τ

1−2γ
2

n

∣∣∣∣Fn

)
< 1 − δ2.

The process Gm,∞ is a.s. finite, and since the drift term
∑

i≥n
|Xi|k

iγ → ∞, we get that Xn → ∞.
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Proof of Theorem 1.4. Define τ = inf{n|Xn ∈ ( − ε, ε)} and τ ′ = inf{n > τ |Xn �∈ ( − ε′, ε′)},
where ε < ε′. When ε is small enough, we may assume that τ < ∞ with positive probabil-
ity; otherwise we have nothing to prove. On {τ < ∞}, couple Xn with X′

n so that P(Xn =
X′

n, τ ≤ n ≤ τ ′|[τ < ∞]) = 1, where Xn
′ is a process that solves (29). Since X′

n → ∞ a.s.,
we have that τ ′ < ∞ a.s. Thus, on {limn→∞ Xn = 0}, we have that {Xn > ε′ i.o.}. Therefore,
P( limn→∞ Xn = 0) = 0.

6.2. Analysis of Xt when 1
2 + 1

2k < γ , k > 1, and γ ∈ (1/2, 1)

Before proving the main Theorem 1.5, as described in Section 1.2 we will study a process
(Xn)n≥1 that satisfies

Xn+1 − Xn ≤ f (x)

nγ
+ Yn+1

nγ
, γ ∈ (1/2, 1), k ∈ (1, ∞), (35)

where 0 < f (x) ≤ |x|k when x ∈ ( − ε, ε), and f (x) = |x|k when x ∈R \ ( − ε, ε).

The analysis will again rely on studying the process Zn = − Xn
h(n) , where h(t) = −t

1−γ
1−k . An

important quantity related to the process Zn will be G′
s,n =∑n−1

i=s
Yi+1

iγ h(i+1) .
Recall that the Yn constitute martingale differences satisfying |Yn| < M almost surely.

Furthermore, we find x0 < 0 such that f (x) > M for every x ≤ x0. We will make use of x0 in
the next lemma.

Lemma 6.4. Take C = max (M, |X1|, |x0|). Then Xn > −2C for all n, a.s.

Proof. We can show this by induction. Of course X1 > −2C. For the inductive step, we
distinguish two cases. First, assume that −2C < Xn < −C. Then

Xn+1 = Xn + f (Xn)

nγ
+ Yn+1

nγ

≥ −2C + f (Xn)

nγ
− M

nγ

> −2C.

Now, assume that Xn ≥ −C. Then

Xn+1 = Xn + |Xn|k
nγ

+ Yn

nγ

≥ −C + 0 − M

nγ

> −2C.

Pick ε > 0 such that

ε ≤ min

(
1

4
,

1

2

(
1 − γ

3(k − 1)

) 1
k−1
)

.

Let an be defined as in Section 6.1, first appearing in (31) and defined in (33).
Claim: We can find n0 that satisfies the following properties:

1. an > 1/2 for n ≥ n0 a.s.
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2. If − Xn+1
h(n+1) > −2ε and − Xn

h(n) ≤ −2ε, then − Xn+1
h(n+1) < −ε, when n ≥ n0.

3. P(G′
n0,n ∈ (−ε

2 , ε
2 )∀n ≥ n0|Fn0 ) > 0.

Proof.

1. This is trivial.

2. Recall that h(t) = −t
1−γ
1−k . Since |Yn| < M, and Xn > −2C a.s., whenever Xn < 0 we have

|Xn+1 − Xn| = O(n−γ ). Also, n−γ = o(h(n)), since γ >
1−γ
k−1 . Indeed, γ >

1−γ
k−1 is equiv-

alent to γ > 1/k = 1/2k + 1/2k; however, 1/2 > 1/2k, and since γ > 1/2 + 1/2k, we

conclude. Furthermore, notice that
h(n)

h(n + 1)
→ 1. Calculate

− Xn+1

h(n + 1)
= −Xn+1 − Xn

h(n + 1)
− Xn

h(n)
· h(n)

h(n + 1)

≥ o(1) − 2ε
h(n)

h(n + 1)
.

Since the o(1) term and h(n)
h(n+1) depend only on n, we conclude Part 2.

3. Using the inequality (17) we find that 1−γ
k−1 − γ < −1−δ

2 for some δ > 0, so(
mγ h(m + 1)

)−1 ∼ m
1−γ
k−1 −γ ≤ m

1−γ
k−1 −γ ≤ m

−1−δ
2 .

Therefore, by Doob’s inequality we have

P

(
sup
u≥n0

(
G′n0

u

∣∣Fn0

)2 ≥ ε2

4

)
≤
∑

m≥n0

E(Y2
m+1|Fn0 )

m2γ h2(m + 1)

≤ C
∑

m≥n0

1

m2γ h2(m + 1)

=
∑

m≥n0

�

(
m

2
(

1−γ
k−1 −γ

))

=
∑

m≥n0

�
(

m−1−δ
)

= �
(
n0

−δ
)→ 0.

Notice that the previous claim holds for any stopping time τ , in place of n. So we obtain a
version of the previous lemma for stopping times.

Lemma 6.5. Let τ be a stopping time such that τ ≥ n0, where n0 is the same as in the previous
claim. Then P(G′

τ,n ∈ (−ε
2 , ε

2 )∀n ≥ τ |Fτ ) > 0.

Let

ε ≤ min

(
1

4
,

1

2

(
1 − γ

3(k − 1)

) 1
k−1
)

,

and define a stopping time τ = inf{n ≥ n0|Zn < −2ε}.
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Proposition 6.2 Let (Xn)n≥1 satisfy (35). If τ < ∞ holds with positive probability, then
P(Xn → 0) > 0. More specifically, the process (Xn : n ≥ τ ) converges to zero with positive
probability.

Proof. On the event {Xm < 0for allm ≥ n} we use the expression for Zn = − Xn

h(n)
and obtain,

as in (31) (except now the inequalities are reversed),

Zn+1 − Zn ≤ Xn

h(n + 1)nγ

(
−an

1 − γ

k − 1
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγ h(n + 1)

<
Xn

h(n + 1)nγ

(
− 1 − γ

2(k − 1)
|h(n)|k−1 − |Xn|k

Xn

)
− Yn+1

nγ h(n + 1)
.

Set

Dn = Xn

h(n + 1)nγ

(
− 1 − γ

2(k − 1)
|h(n)|k−1 − |Xn|k

Xn

)
.

Then we have

Zm − Zτ ≤
m−1∑
i=τ

Di + G′
τ,m. (36)

Now we will show by contradiction that on the event A = {G′
τ,n ∈ ( − ε

2 , ε
2 )∀n ≥ τ }

the process satisfies Xn < 0 for all n ≥ τ . Define τ0 = inf{n ≥ τ |Zn ≥ 0} and σ = sup{τ ≤
n < τ0|Zn−1 ≤ −2ε, Zn > −2ε}. Also, when Zn ≥ −2ε we have Xn ≥ 2εh(n) = −2εn

1−γ
1−k . So

|Xn|k
Xn

≥ −(2ε)k−1n−1+γ . Therefore, by the definition of ε, we get

− 1 − γ

2(k − 1)
|h(n)|k−1 − |Xn|k

Xn
<

(
− 1 − γ

2(k − 1)
+ 1 − γ

3(k − 1)

)
n−1+γ = − 1 − γ

6(k − 1)
n−1+γ < 0.

Hence Dn < 0 whenever Zn ≥ −2ε. If {τ0 < ∞} ∩ A has positive probability, then {σ < ∞} ∩ A
does also. Thus, on {τ0 < ∞} ∩ A,

0 ≤ Zτ0 = Zτ +
τ0−1∑
i=τ

Di + G′
τ,τ0

= Zτ − Zσ + Zσ +
τ0−1∑
i=τ

Di + G′
τ,τ0

= Zσ − G′
τ,σ + G′

τ,τ0 +
τ0−1∑
i=σ

Di

< −ε + ε

2
+ ε

2
+ 0 = 0,

which is a contradiction.
Now we can complete the proof of the proposition. On the event A the process satisfies

Xn < 0 for all n > τ ; therefore lim supn→∞ Xn ≤ 0 on A. However, by Lemma 2.4 we have
lim supn→∞ Xn ≥ 0 a.s. Therefore, on A, Xn → 0.
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Remark 6.1 On A we showed that Xn converges to zero, since for all n ≥ τ , Xn < 0, and the
only place to converge is the origin.

Proof of Theorem 1.5. We define τ = inf{n ≥ n0|Xn ∈ ( − ε2, −ε1)}, where n0 is the same
as in Lemma 6.5, and τe = inf{n|Xn �∈ ( − 3ε, 3ε)}. Let (X′

n : n ≥ τ ) be a process that satisfies
(35). Then we couple (Xn) with (X′

n) on {τ < ∞} so that P(Xn = X′
n, τ ≤ n ≤ τe|{τ < ∞}) =

1. To show that X′
n converges to zero with positive probability, first we need to verify that

the conditions for Proposition 6.2, are met. The only thing we need to check is that Z′
τ =

− X′
τ

h(τ ) < −2ε. However, since h(t) → 0 this is always possible by choosing n0 large enough.
Furthermore, by Proposition 6.2, we see that there is an event of positive probability such
that X′

n → 0, where τe is infinite conditioned on this event. Therefore, Xn converges to 0 with
positive probability.
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