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In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of

connected graphs on [n] = {1, 2, . . . , n} with m edges, whenever n and the nullity m − n + 1

tend to infinity. Let Cr(n, t) be the number of connected r-uniform hypergraphs on [n]

with nullity t = (r − 1)m − n + 1, where m is the number of edges. For r � 3, asymptotic

formulae for Cr(n, t) are known only for partial ranges of the parameters: in 1997 Karoński

and �Luczak gave one for t = o(log n/ log log n), and recently Behrisch, Coja-Oghlan and

Kang gave one for t = Θ(n). Here we prove such a formula for any fixed r � 3 and any

t = t(n) satisfying t = o(n) and t → ∞ as n → ∞, complementing the last result. This leaves

open only the case t/n → ∞, which we expect to be much simpler, and will consider in

future work. The proof is based on probabilistic methods, and in particular on a bivariate

local limit theorem for the number of vertices and edges in the largest component of a

certain random hypergraph. We deduce this from the corresponding central limit theorem

by smoothing techniques.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C65, 05C30

1. Introduction

Our aim in this paper is to prove a result about r-uniform hypergraphs that can be viewed

in two complementary ways, either as a probabilistic result or as an enumerative one.

In this section we shall state the enumerative form; in the next section we switch to the
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probabilistic viewpoint, which we shall adopt for most of the paper, and in particular in

the proofs.

If H is an r-uniform hypergraph then

|H | � c(H) + (r − 1)e(H),

where |H | is the number of vertices of H , e(H) is the number of edges, and c(H) is the

number of components, with equality if and only if H is a forest, i.e., every component of

H is a tree. Define the nullity n(H) of H as

n(H) = c(H) + (r − 1)e(H) − |H |, (1.1)

so n(H) � 0, and H is a tree if and only if c(H) = 1 and n(H) = 0. Note for later that,

if H is connected, then |H | + n(H) − 1 must be a multiple of r − 1. If we replace each

hyperedge of H by a tree on the same set of r vertices, then n(H) is simply the nullity of

the resulting (multi-) graph. Connected graphs or hypergraphs are naturally parametrized

by the number of vertices and the nullity, although often the excess n(H) − 1 is considered

instead.

One of the most basic questions about any class of combinatorial (or other) structures

is: how many such structures are there with given ‘size’ parameters? Or, sometimes more

naturally, how many ‘irreducible’ structures? For (labelled) graphs and hypergraphs, the

first question is trivial, but the second, taking ‘irreducible’ to mean connected, certainly

is not, and it is no surprise that it has been extensively studied. Given integers r � 2,

s � 1 and t � 0, let Cr(s, t) be the number of connected r-uniform hypergraphs on

[s] = {1, 2, . . . , s} having nullity t. (Thus Cr(s, t) = 0 if r − 1 does not divide s + t − 1.)

Starting with Cayley’s formula C2(s, 0) = ss−2, the asymptotic evaluation of C2(s, t) was

studied by Wright [28, 29, 30, 31] and others for increasingly broad ranges of t = t(s),

culminating in the results of Bender, Canfield and McKay [7] giving an asymptotic

formula for C2(s, t) whenever s → ∞, for any function t = t(s).

For r � 3, much less is known. Selivanov [27] gave an exact formula for the number

Cr(s, 0) of trees; the remaining results we shall mention are all asymptotic, with r fixed,

s → ∞, and t some function of s. Karoński and �Luczak [17] gave an asymptotic formula

for Cr(s, t) when t = o(log s/ log log s), so the hypergraphs counted are quite close to trees.

In an extended abstract from 2006, Andriamampianina and Ravelomanana [1] outlined

an extension of this to the case t = o(s1/3). Recently, Behrisch, Coja-Oghlan and Kang [6]

gave an asymptotic formula for Cr(s, t) when t = Θ(s); their proof is based on probabilistic

methods, which seem to work best when t is relatively large, rather than the enumerative

methods most successful for small t. Independently and essentially simultaneously with

the present work, Sato and Wormald [24] (see also Sato [23]) have given an asymptotic

formula for Cr(s, t) when r = 3, t = o(s) and t/(s1/3 log2 s) → ∞.

Our main result complements those in [6], and greatly extends those in [17, 24], covering

the entire range t → ∞, t = o(s). The formula we obtain is rather complicated; to state it

we need some definitions.

Given an integer r � 2 and a real number 0 < ρ < 1, define

Ψr(ρ) = − r − 1

r

log(1 − ρ)

ρ

1 − (1 − ρ)r

1 − (1 − ρ)r−1
− 1. (1.2)
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For any r � 2 it is easy to see that Ψr(ρ) is strictly increasing on (0, 1), since each of

the factors − log(1 − ρ)/ρ and (1 − (1 − ρ)r)/(1 − (1 − ρ)r−1) is. Since Ψr is continuous,

considering the limits at 0 and 1 we see that Ψr gives a bijection from (0, 1) to (0,∞).

Theorem 1.1. Let r � 2 be fixed, and let t = t(s) satisfy t → ∞ and t = o(s) as s → ∞. Then

when s + t − 1 is divisible by r − 1 the number Cr(s, t) of connected r-uniform hypergraphs

on [s] with nullity t satisfies

Cr(s, t) ∼
√

3

2
√
π

r − 1√
s

(
e
(
1 − (1 − ρ)r

)
sr

m r! ρr

)m(
ρ(1 − ρ)(1−ρ)/ρ

)s
(1.3)

as s → ∞, where ρ > 0 is the unique positive solution to

Ψr(ρ) =
t − 1

s
, (1.4)

and m = (s + t − 1)/(r − 1) is the number of edges of any such hypergraph. Moreover, the

probability Pr(s, t) that a random m-edge r-uniform hypergraph on [s] is connected satisfies

Pr(s, t) ∼ er/2+1r=2

√
3(r − 1)

2

(
1 − (1 − ρ)r

ρr

)m(
ρ(1 − ρ)(1−ρ)/ρ

)s
, (1.5)

where 1A denotes the indicator function of A.

To understand this result it may help to note that Ψr(x) = (r − 1)x2/12 + O(x3) as

x → 0, so

ρ ∼ 2

√
3

r − 1

t

s

when t/s → 0. Also, it may be useful to note that rearranging (1.4) gives m/s = (Ψr(ρ) +

1)/(r − 1), so we can rewrite the formulae (1.3) and (1.5) as functions of s and ρ only (or

m and ρ only) if we wish.

There are many ways to write a formula such as (1.3), and checking whether two such

formulae agree may require some calculation. In the appendix to [11] we present such

calculations showing that Theorem 1.1 matches the results of [2, 3, 7, 17, 24] where the

ranges of applicability overlap, as well as the corrected version of [6]. In particular, for the

graph case (which of course is not our main focus), (1.3) is consistent with (indeed, implied

by) the Bender–Canfield–McKay formula [7]. For hypergraphs, Theorem 1.1 shows that

the asymptotic formula of Karoński and �Luczak [17] extends not only to t = o(s1/3), as

they suspected, but to any t = o(s1/2) (and no further).

We shall return to the topic of estimating Cr(s, t) when t/s → ∞ in a future paper [12].

Although we have not yet checked all the details, this regime seems to be much easier to

analyse than that considered here or by Behrisch, Coja-Oghlan and Kang. The key point

is that, following the approach taken in the next section, the random hypergraph that one

needs to analyse has average degree tending to infinity, which means that its behaviour is

relatively simple. In particular, with high probability all small components are trees.
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2. Probabilistic reformulation

In this section we shall state a probabilistic result that turns out to be equivalent to

Theorem 1.1; as we shall see, the formulae in this setting are significantly simpler. In the

rest of the paper we shall use probabilistic methods to prove this reformulation, deducing

Theorem 1.1 in Section 12.

For 2 � r � n and 0 < p < 1, let Hr
n,p be the random r-uniform hypergraph with vertex

set [n] = {1, 2, . . . , n} in which each of the
(
n
r

)
possible hyperedges is present independently

with probability p. Throughout we consider r � 2 fixed, n → ∞, and

p = p(n) = λ(r − 2)!n−r+1,

where λ = λ(n) = Θ(1); often, we write λ as λ(n) = 1 + ε(n). It is well known (see

Section 2.1) that the model Hr
n,p undergoes a phase transition at λ = 1 analogous to that

established by Erdős and Rényi [16] in the graph case, and indeed that the ‘window’ of

this phase transition is given by λ = 1 + ε with ε3n = O(1); see [9]. For this reason, we call

the model Hr
n,p subcritical if λ = 1 − ε with ε = ε(n) satisfying ε3n → ∞, and supercritical if

λ = 1 + ε with ε3n → ∞. Here we study the supercritical phase, so throughout this paper

we make the following assumption unless specified otherwise.

Assumption 2.1 (Weak Assumption). The quantities p(n), λ(n) and ε(n) > 0 are related

by λ = 1 + ε and p = λ(r − 2)!n−r+1. Moreover, r � 2 is fixed and, as n → ∞, we have

ε3n → ∞ and ε = O(1).

Much of the time we additionally suppose that ε → 0, i.e., we assume the following.

Assumption 2.2 (Standard Assumption). The conditions of Assumption 2.1 hold, and in

addition ε → 0 as n → ∞.

Given a hypergraph H , let L1(H) denote the component with the most vertices, chosen

according to any fixed rule if there is a tie. Let L1(H) = |L1(H)|, M1(H) = e(L1(H)) and

N1(H) = n(L1(H)) be the order, size and nullity of this component. Our next result gives

an asymptotic formula for the probability that the triple (L1(Hr
n,p),M1(Hr

n,p), N1(Hr
n,p))

takes any specific value within the ‘typical’ range, throughout the supercritical regime. Of

course, since these three parameters are dependent, the result can be stated in terms of any

two of them; here we consider L1 and N1. To state the result we need a few definitions.

For λ > 1 let ρλ be the unique positive solution to

1 − ρλ = e−λρλ , (2.1)

so ρλ is the survival probability of a Galton–Watson branching process whose offspring

distribution is Poisson with mean λ, and define ρr,λ by

1 − ρr,λ = (1 − ρλ)
1/(r−1). (2.2)

It is easy to see that ρr,λ is the survival probability of a certain branching process naturally

associated to the neighbourhood exploration process in Hr
n,p, p = λ(r − 2)!n−r+1, where
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each particle has a Poisson Po(λ/(r − 1)) number of groups of r − 1 children. From (2.1)

and (2.2) it is easy to check that

λ �→ ρr,λ is a continuous function (1,∞) → (0, 1). (2.3)

Turning to the analogous parameter relevant to N1(Hr
n,p), set

ρ∗
r,λ =

λ

r

(
1 − (1 − ρr,λ)

r
)

− ρr,λ. (2.4)

As noted in [10], if λ = 1 + ε then, as ε → 0 from above, we have

ρr,λ ∼ 2ε

r − 1
and ρ∗

r,λ ∼ 2

3(r − 1)2
ε3. (2.5)

Theorem 2.3. Let r � 2 be fixed, let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) satisfies

ε → 0 and ε3n → ∞, set λ = λ(n) = 1 + ε and define ρr,λ and ρ∗
r,λ as above. Then, whenever

xn = ρr,λn + O(
√
n/ε) and yn = ρ∗

r,λn + O(
√
ε3n) with xn + yn − 1 divisible by r − 1, we have

P
(
L1(Hr

n,p) = xn, N1(Hr
n,p) = yn

)
∼ r − 1

σnσ∗
n

f

(
xn − ρr,λn

σn
,
yn − ρ∗

r,λn

σ∗
n

)
(2.6)

as n → ∞, where σn =
√

2n/ε, σ∗
n =

√
10/3(r − 1)−1

√
ε3n, and

f(a, b) =
1

2π
√

2/5
exp

(
−5

4
(a2 − 2

√
3/5 ab + b2)

)
(2.7)

is the probability density function of a bivariate Gaussian distribution with mean 0, unit

variances, and covariance
√

3/5.

We shall comment briefly on the uniformity of the asymptotics in (2.6) above in

Remark 2.7 below. For ease of comparison with other results, note that combining (2.6)

and (2.7) results in the expression
√

6

8π

(r − 1)2

εn
exp

(
−5

4
(a2 − 2

√
3/5 ab + b2)

)
, (2.8)

with a and b the arguments of f in (2.6).

The probability that the largest component of Hr
n,p has � vertices and m edges is very

closely related to the number of connected hypergraphs with � vertices and m edges.

This relationship was used by Karoński and �Luczak [18] to prove the special case of

Theorem 2.3 when ε3n → ∞ but ε3n = o(log n/ log log n). Behrisch, Coja-Oghlan and Kang

[4, 5] used probabilistic methods to prove a result corresponding to Theorem 2.3 but with

ε = Θ(1) (i.e., roughly speaking, the case λ > 1 constant), and then, in [6], used this

to deduce their enumerative result mentioned in the previous section. We shall deduce

Theorem 1.1 from Theorem 2.3 in Section 12.

At a very high level, the strategy of the proof of Theorem 2.3 is similar to that

followed by Behrisch, Coja-Oghlan and Kang [5] for the case ε = Θ(1): we start from the

corresponding central limit theorem (proved very recently in [10]), and apply ‘smoothing’

arguments to deduce the local limit theorem. However, the details are very different:

https://doi.org/10.1017/S0963548315000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000309


26 B. Bollobás and O. Riordan

Behrisch, Coja-Oghlan and Kang apply this technique to a univariate result for L1 only,

and then use a different argument going via the hypergraph model analogous to G(n, m)

to deduce a bivariate result. This method does not appear to work when ε → 0. Instead,

we apply two smoothing arguments; one to handle the nullity (or excess), and then one

for the number of vertices.

Bivariate local limit results do not necessarily imply the corresponding univariate local

limit results, due to the possibility of a ‘bad’ event B on which one of the two parameters

takes a ‘typical’ value and the other does not, with P(B) = o(1) but P(B) large compared

to the relevant point probabilities. However, the method used to prove Theorem 2.3 gives

the following local limit results for L1(Hr
n,p) and N1(Hr

n,p) separately.

Theorem 2.4. Let r � 2 be fixed, and let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n)

satisfies ε → 0 and ε3n → ∞. Set λ = λ(n) = 1 + ε and define ρr,λ as in (2.2). Then whenever

xn = ρr,λn + O(
√
n/ε) we have

P
(
L1(Hr

n,p) = xn
)

∼ 1

2
√
πn/ε

exp

(
− (xn − ρr,λn)2

4n/ε

)
as n → ∞.

Theorem 2.5. Let r � 2 be fixed, let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) → 0

and ε3n → ∞, and set λ = λ(n) = 1 + ε. For any tn � 0 we have

P
(
N1(Hr

n,p) = tn
)

=
1

σ∗
n

√
2π

exp

(
−

(tn − ρ∗
r,λn)2

2(σ∗
n)2

)
+ o(1/σ∗

n),

where ρ∗
r,λ is defined in (2.4) and σ∗

n =
√

10/3(r − 1)−1
√
ε3n.

Our main results assume our Standard Assumption 2.2; however, all our arguments can

be extended, with varying amounts of additional work (and more complicated statements),

to require only our Weak Assumption 2.1. Since the results of Behrisch, Coja-Oghlan and

Kang [4, 5] cover the case ε = Θ(1), we assume ε → 0 much of the time for simplicity.

In the probabilistic setting, a local (central) limit theorem is not the last possible word.

One could ask for moderate and/or large deviation results (indeed, Eyal Lubetzky has

asked us this question). We have not pursued these questions, but for a wide range of the

parameters Lemma 8.4 shows that the probability that the largest component of Hr
n,p has

s vertices and nullity t is asymptotic to the expected number of components of Hr
n,p with

these parameters. This expectation can of course be calculated using Theorem 1.1. This

method should give tight results for all moderate deviations and some (but not all) large

deviations.

Remark 2.6. Instead of the model Hr
n,p one could consider the analogue Hr

n,m of the

original Erdős–Rényi size model, where we select an m-edge r-uniform hypergraph on [n]

uniformly at random. Relating m and p by p = m/
(
n
r

)
, Theorem 2.3 implies an analogous

result for this model. (This is not completely obvious, but can be shown using Theorem 1.1

as an intermediate step; alternatively, one can use Lemma 8.4 and its analogue for Hr
n,m,
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and directly relate the expected number of s-vertex k-edge components in the models Hr
n,p

and Hr
n,m.) Behrisch, Coja-Oghlan and Kang [5] prove such a result in the denser setting,

i.e., when λ > 1 is constant. Here, unlike in [5], the parameters of the local limit theorem

in Hr
n,m are exactly the same as those in Hr

n,p. Very informally this should be no surprise,

since the conversion between models corresponds to changing the number of edges by

a random number of order O(
√
n). Such a change changes the typical size of the giant

component by O(
√
n) vertices, which (in our range) is small compared to the standard

deviation
√

n/ε. Similarly, the change in the nullity from switching from one model to

the other is O(ε2
√
n) = o(

√
ε3n).

2.1. Related work

We have already mentioned a number of previous enumerative results related to The-

orem 1.1. In this subsection we shall outline a number of previous probabilistic results

related to Theorem 2.3, but first we introduce some general terminology.

Let (An) be a sequence of integer-valued random variables. We say that (An) satisfies a

global limit theorem with parameters μn and σn if (An − μn)/σn converges in distribution

to some distribution Z on the reals whose density function φ(x) is continuous and

strictly positive. We say that (An) satisfies the corresponding local limit theorem if, for any

sequence (xn) of integers with xn = μn + O(σn), we have

P(An = xn) ∼
φ

(
(xn − μn)/σn

)
σn

(2.9)

as n → ∞. In the examples considered here, Z will always be the standard normal

distribution N(0, 1), but this is not necessary for the general arguments. These definitions

extend in a natural way to bivariate global and local limit theorems for sequences

(An, Bn). In these terms, Theorem 2.3 is a bivariate local limit theorem for the pair

(L1(Hr
n,p), N1(Hr

n,p)).

Remark 2.7. Let us comment in some detail on the issue of uniformity in asymptotics

such as (2.9) above, since this may perhaps cause some confusion. In general, we adopt

the approach of quantifying over sequences, since this seems intuitive and avoids lengthy

sequences of quantifiers. For example, writing η(n, xn) for the ratio of the two sides of

(2.9) above, the precise interpretation of (2.9) is the following: for any sequence (xn) with

the property that supn |xn − μn|/σn < ∞, we have η(n, xn) → 1 as n → ∞. Thus the rate at

which η(n, xn) tends to 1 is allowed to depend on the choice of the sequence (xn).

Of course, such a statement automatically gives a certain kind of uniformity: given

a constant C , for each n let x±
n denote the choices of xn with |xn − μn| � Cσn that

maximize/minimize the ratio η(n, xn). Applying (2.9) to the sequences (x+
n ) and (x−

n ) gives

η(n, x±
n ) → 1, so we have the uniform statement

max
x : |x−μn|�Cσn

η(n, x) → 1

as n → ∞, and the same for min.

In most of our results, we quantify over r � 2, the choice of a sequence (p(n)) satisfying

certain assumptions, and then perhaps additional sequences such as the sequences (xn)
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and (yn) appearing in Theorem 2.3. The results then state that with all these choices

fixed, a certain sequence indexed by n is O(1) or o(1). As above, although the bounds are

not claimed to be uniform, bounds that are uniform over suitable sets of choices follow

immediately.

As usual we say that an event E = En (formally a sequence (En) of events) holds with

high probability, or w.h.p., if P(En) → 1 as n → ∞. Analogous to the classical 1960 result

of Erdős and Rényi [16] for the case of graphs, in 1985 Schmidt-Pruzan and Shamir

[25] showed that if r � 2 is constant (which we assume throughout) and p = p(n) =

λ(r − 2)!n−r+1, then the random hypergraph Hr
n,p undergoes a phase transition at λ = 1:

for λ < 1 constant, w.h.p. L1(Hr
n,p) is at most a constant times log n, if λ = 1 then L1(Hr

n,p)

is of order n2/3, and if λ > 1 is constant then w.h.p. L1(Hr
n,p) � cr,λn for some constant

cr,λ > 0. The model studied in [25] is in fact more general, allowing edges of different sizes

up to O(log n).

The case where the ‘branching factor’ λ is bounded and bounded away from 1 is

essentially equivalent to that where λ > 1 is constant; we shall not distinguish them in this

discussion. Still considering this case, in 2007 Coja-Oghlan, Moore and Sanwalani [14]

refined the results of Schmidt-Pruzan and Shamir, finding in particular the asymptotic

value ρr,λn of L1(Hr
n,p) in the supercritical case, and giving an asymptotic formula for its

variance. In 2010 Behrisch, Coja-Oghlan and Kang [4] went further when they established

the limiting distribution of L1(Hr
n,p) in the regime λ > 1 constant: they used random walk

and martingale methods to establish a central limit theorem, and then a smoothing

technique, combined with multi-round exposure (ideas that appear in a slightly different

form in [14]), to deduce the corresponding local limit theorem. In [5] they deduced from

this a bivariate local limit theorem for L1(Hr
n,p) and M1(Hr

n,p) (equivalent to one for

L1(Hr
n,p) and N1(Hr

n,p)) under the same assumption λ > 1 constant. This result is directly

analogous to Theorem 2.3 except that ε = Θ(1) rather than ε → 0, and, as shown in [6],

leads to an enumerative result analogous to Theorem 1.1, but for hypergraphs with nullity

Θ(s), where s is the number of vertices.

Turning to the case where λ = λ(n) → 1, let us write λ as 1 + ε with ε = ε(n). Building on

enumerative results of theirs [17] from 1997, in 2002 Karoński and �Luczak [18] proved a

bivariate local limit theorem for L1(Hr
n,p) and N1(Hr

n,p) just above the ‘critical window’ ε =

O(n−1/3) of the phase transition, in the range where ε3n → ∞ but ε3n = o(log n/ log log n).

In an extended abstract from 2006, Andriamampianina and Ravelomanana [1] outlined

an extension of the enumerative results of Karoński and �Luczak [17] to treat hypergraphs

with much larger excess (or nullity); this implies an extension of the local limit theorem

of [18] to the range where ε3n → ∞ but ε4n → 0. These results illustrate a general

phenomenon in this field: it seems that the barely supercritical case is more accessible to

enumerative methods, and the strongly supercritical case (λ > 1 constant) to probabilistic

methods.

In the special case of graphs, even more detailed results have been proved. Following

many earlier results (see, for example, the references in [21]), in 2006 Luczak and �Luczak

proved a local limit theorem for L1(H2
n,p) throughout the entire supercritical regime, i.e.,

when λ = 1 + ε with ε3n → ∞ and ε = O(1), as part of a more general result about the
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random cluster model. Slightly earlier, Pittel and Wormald [21] had come very close

to proving a trivariate local limit theorem for L1(H2
n,p), N1(H2

n,p) and a third parameter,

the number of vertices in the ‘core’. More precisely, they proved a trivariate local limit

theorem for the conditional distribution of these parameters where the conditioning is on

the event that there is a unique giant component of approximately the right size, an event

that holds with probability 1 − o(1). With hindsight it is easy to remove the conditioning

using, for example, Lemma 8.4.

Returning to hypergraphs, if we ask for results covering the entire (weakly) supercritical

regime ε3n → ∞, ε → 0, it is only recently that anything non-trivial has been proved about

the giant component. Indeed, as far as we are aware, the first result of this type is

the central limit theorem for L1(Hr
n,p) proved in [9], using random walk and martingale

arguments. A bivariate central limit theorem for L1(Hr
n,p) and N1(Hr

n,p) was proved very

recently in [10], using similar methods. Here we shall use smoothing ideas as in [14, 5], but

applied in a very different way, to deduce the corresponding bivariate local limit theorem,

Theorem 2.3; Theorem 1.1 will then follow easily.

The methods of Sato and Wormald [24] are extensions of those used by Pittel and

Wormald [21] and so, in the range in which they apply (i.e., r = 3, and p = (1 + ε)(r −
2)!n−r+1 where ε = ε(n) → 0 but ε4n/ log3/2 n → ∞), may potentially lead to a trivariate

local limit result for L1, N1 and the number of vertices in the core. As far as we are

aware, whether such a result can be proved throughout the range ε → 0 but ε3n → ∞, or

for r > 3, is currently open.

In the next section we illustrate the basic strategy of our proof of Theorem 2.3 by

showing how the same idea can be applied in a much simpler setting. Then, in Section 3.1,

we describe some of the complications that will arise when we implement this idea to

prove Theorem 2.3. Only then, in Section 3.2, do we describe the organization of the rest

of the paper. The reason for this is that almost all of the paper is devoted to the proof of

Theorem 2.3, and our description of the key steps in and structure of this proof will only

make sense after the discussion earlier in Section 3. Formally, next to nothing in Section 3

is required in the later sections; the exception is that we use Proposition 3.1 in the proof

of Theorem 2.5.

3. Smoothing: a simple example

The following trivial, standard observation captures the intuition that ‘local smoothness’

is what is needed to pass from a global limit theorem to the corresponding local one.

Proposition 3.1. Suppose that a sequence (An) of random variables satisfies a global limit

theorem with parameters μn and σn, and that P(An = xn) − P(An = x′
n) = o(1/σn) as n → ∞

whenever xn = μn + O(σn) and xn − x′
n = o(σn). Then (An) satisfies the corresponding local

limit theorem.

Once again, we quantify over sequences: the precise assumption is that for every pair

of sequences (xn) and (x′
n) such that (xn − x′

n)/σn → 0 and supn |xn − μn|/σn < ∞, we have

σn(P(An = xn) − P(An = x′
n)) → 0.
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Proof. Let φ(x) be the density function associated to the global limit theorem, and

Φ(x) =
∫
y<x

φ(y)dy the corresponding distribution function. Fix a sequence (xn) with

xn = μn + O(σn); by our definition of a local limit theorem it suffices to show that P(An =

xn) ∼ φ((xn − μn)/σn)/σn. Let C = 2 supn |xn − μn|/σn, which is finite by assumption.

The global limit theorem implies that for any fixed x ∈ [−C,C] we have

P(An � μn + xσn) = Φ(x) + o(1)

as n → ∞; since Φ(x) is continuous the same estimate holds uniformly in x ∈ [−C,C]. It

follows that if δn → 0 slowly enough, then

P
(
xn − δnσn < An � xn + δnσn

)
∼ Φ

(
xn − μn

σn
+ δn

)
− Φ

(
xn − μn

σn
− δn

)
∼ 2δnφ

(
xn − μn

σn

)
.

Let In be the set of integers x with xn − δnσn < x � xn + δnσn, and let x±
n ∈ In be chosen

to maximize and minimize P(An = x). Since x+
n = μn + O(σn) and x+

n − x−
n = o(σn), by

assumption P(An = x+
n ) and P(An = x−

n ) differ by o(1/σn). It follows that all 2δnσn + O(1)

values of P(An = x) for x ∈ I are within o(1/σn) of each other and hence of their average,

which is (1 + o(1))φ((xn − μn)/σn)/σn.

A standard technique for establishing the smoothness required by Proposition 3.1 is

to find a ‘smooth part’ within the distribution of An. Given a sequence (σn) of positive

real numbers, we call a sequence (Dn) of sets of probability distributions on the integers

σn-smooth if the following conditions hold whenever (Yn) is a sequence of random variables

such that the distribution of Yn is in Dn:

if yn − y′
n = o(σn) then |P(Yn = yn) − P(Yn = y′

n)| = o(1/σn). (3.1)

To give a simple example of a smooth sequence, suppose that σn → ∞, fix a constant

c > 0, and let Dn be the family of all binomial distributions with variance at least cσ2
n .

It is easy to check that (Dn) is σn-smooth, for example directly from the formula for the

binomial distribution. Note that the number of trials in the binomial distributions need

not be n, or even Θ(n).

The following trivial observation describes at a high level the general strategy that we

shall use to prove Theorem 2.3; of course there will be many complications to overcome.

Lemma 3.2. Let (σn) be a sequence of positive reals, and let (Dn) be σn-smooth. Let (Fn)

be a sequence of σ-algebras, and suppose that we can write An as Xn + Yn, where Xn and

Yn are integer-valued, Xn is Fn-measurable, and the conditional distribution of Yn given Fn

is always in Dn. If (An) satisfies a global limit theorem with parameters μn and σn, then (An)

satisfies the corresponding local limit theorem.

Proof. Let (xn) and (x′
n) be sequences of integers with xn − x′

n = o(σn). (We may also

assume xn = μn + O(σn), but do not need this assumption.) Writing Ωn for the probability
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space on which An is defined, by (3.1) we have

sup
Ωn

|P(An = xn | Fn) − P(An = x′
n | Fn)|

� sup
Ωn

sup
a∈Z

|P(Yn = a | Fn) − P(Yn = a + x′
n − xn | Fn)| = o(1/σn).

(As usual, to obtain this uniform bound we consider an ∈ Z and ωn ∈ Ωn (almost)

achieving the supremum over a and Ωn above; then we apply (3.1) with yn = an and

y′
n = an + x′

n − xn, to the conditional distribution of Yn given Fn evaluated at ωn.) It

follows that |P(An = xn) − P(An = x′
n)| = o(1/σn), so we may apply Proposition 3.1.

This ‘smooth part’ technique is easiest to apply in the case of sums of independent

variables; in this setting McDonald [20], for example, used it with each Dn consisting of a

single binomial distribution with appropriate parameters. Similar ideas in a combinatorial

setting were used by Scott and Tateno [26]. Behrisch, Coja-Oghlan and Kang [4] used

it to prove the special case of Theorem 2.4 where ε = Θ(1), with the σ-algebra Fn

corresponding to the first part of a multi-round exposure of the edges of Hr
n,p. Their

particular decomposition cannot be used to prove Theorem 2.4, since the variance of the

relevant variable Yn is too small when ε → 0; we return to this later.

Remark. A variant of the method above is to replace the condition (3.1) by the stronger

condition P(Yn = yn + 1) = P(Yn = yn) + O(1/σ2
n), as in Davis and McDonald [15], for

example. In situations where Yn has a simple distribution, this condition may be just as

easy to verify as (3.1); applying it leads to a slightly simpler argument overall. In more

complicated situations, including those where the decomposition Xn + Yn in Lemma 3.2

holds only most of the time, rather than always, it is likely to be better to consider

probabilities of values o(σn) apart, as above. Then the error bounds needed in the

estimates of the point probabilities are looser; this is vital in our argument in Section 11,

for example.

As a simple warm-up for our main result, let us outline how Lemma 3.2 may be

applied to the variable An = L1(Gn), where Gn = H2
n,p = G(n, p) is the standard Erdős–

Rényi (binomial) random graph with p = p(n) = λ/n with λ > 1 constant. Since the result

here is not new, and our aim is to illustrate in a simple setting some of the ideas we

shall use later, we shall assume the following fact without proof. Recall that the 2-core, or

simply core, C(G) of a graph G, introduced in [8], is the maximal subgraph with minimum

degree at least 2.

Proposition 3.3. Let λ > 1 be constant. There is a constant c = c(λ) > 0 such that Gn =

G(n, λ/n) has the following properties with probability 1 − o(n−1/2): the core C(Gn) of Gn

has a unique component C1 with at least cn vertices, and C1 is a subgraph of the largest

component of Gn; furthermore, Gn has at least cn isolated vertices.

Here then is our illustration of smoothing for the Erdős–Rényi model, in the simple

case of constant branching factor. In this case the central limit theorem was established
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by Pittel and Wormald [21] and the local one by Luczak and �Luczak [19]; our aim here

is to show how one can deduce one from the other.

Theorem 3.4. Let p = p(n) = λ/n where λ > 1 is constant, set Gn = G(n, p) and let An =

L1(Gn). If (An) satisfies a global limit theorem with σn = Θ(
√
n) then it satisfies the corres-

ponding local limit theorem.

Proof. Given any graph G, let G− be the reduced graph obtained from G by deleting

all pendant edges incident with the core C(G) of G. In other words, G− is the spanning

subgraph of G obtained by deleting those edges e = vw in which v has degree 1 and w

is in C(G). Note that G and G− have the same core. It follows that if H is any graph

that can arise as G− for some G, then a graph G with V (G) = V (H) has G− = H if and

only if G is formed from H in the following way: for each isolated vertex v of H , either

do nothing, or add an edge from v to some vertex w of the core C(H) of H . Since the

probability of a graph G in the model G(n, p) is proportional to (p/(1 − p))e(G), it follows

that for any graph H whose core C(H) has m vertices, the conditional distribution of

Gn = G(n, p) given that G−
n = H may be described as follows.

For each isolated vertex v of H , with probability pm/(pm + 1 − p) pick a uniformly

random vertex w of C(H) and join v to w; otherwise do nothing. The decisions associated

to different v are independent.

Let Fn be the σ-algebra generated by the random variable G−
n , let Xn be the number

of vertices in the component of H = G−
n containing the largest component C1 of its

core (chosen according to any fixed rule if there is a tie), and let Yn be the number

of vertices ‘rejoined’ to this component C1 when constructing Gn from G−
n as above. Let

A′
n = Xn + Yn, noting that whenever C1 is a subgraph of the largest component of Gn,

we have A′
n = L1(Gn). Clearly, Xn is Fn-measurable. Moreover, from the independence

over vertices v, the conditional distribution of Yn given Fn is the binomial distribution

Bin(i(G−
n ), π) where i(H) denotes the number of isolated vertices of a graph H and

π = π(G−
n ) = p|C1|/(p|C(G−

n )| + 1 − p).

Let c > 0 be the constant appearing in Proposition 3.3. Let En be the event that

the core C(Gn) = C(G−
n ) has a unique component with at least cn vertices, and that

i(G−
n ) � cn. Note that En ∈ Fn. Also, since i(G−

n ) � i(Gn), by Proposition 3.3 we have

P(En) = 1 − o(n−1/2). Whenever En holds we have c � p|C1| � p|C(G−
n )| = O(1) so, since

1 − p ∼ 1, the probability π is bounded away from 0 and 1. Hence, since i(G−
n ) � cn, the

variance i(G−
n )π(1 − π) of the (binomial) conditional distribution of Yn is at least an for

some constant a > 0. Letting Dn be the family of all binomial distributions with variance

at least an, then whenever En holds, the conditional distribution of Yn given Fn is in Dn.

As noted above, the sequence (Dn) is
√
n-smooth.

Recall that A′
n = Xn + Yn is the number of vertices in the component of Gn containing

the largest component C1 of C(Gn) = C(G−
n ) (chosen according to any fixed rule if there

is a tie) so, by Proposition 3.3, A′
n = L1(Gn) with probability at least 1 − o(n−1/2). Since

En holds w.h.p., the conditional distribution of A′
n given En satisfies the same global

limit theorem as the unconditional distribution of An = L1(Gn); let μn and σn = Θ(
√
n)
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be the parameters of this global limit theorem, and let φ be the associated limiting

density function. Having conditioned on En, we now apply Lemma 3.2, which involves

conditioning further on Fn and using the fact that (Dn) is
√
n-smooth.1 We obtain the

result that for any xn satisfying xn − μn = O(
√
n) we have

P(A′
n = xn | En) =

φ
(
(xn − μn)/σn

)
σn

+ o(n−1/2).

Since P(En) = 1 − o(n−1/2) and P(A′
n �= An) = o(n−1/2) we have P(An = xn) = P(A′

n = xn |
En) + o(n−1/2), giving the result.

3.1. Smoothing in the proof of Theorem 2.3

In the rest of the paper we shall use a version of the above technique to prove Theorem 2.3.

Since this proof is rather long, and on reading (or writing!) it for the first time one might

wonder why it is so complicated, in this section we outline some of the problems that

occur when adapting the proof of Theorem 3.4. Some of these concern the transition from

graphs to hypergraphs, some arise when allowing ε → 0, and some concern the extension

to a bivariate result. It is allowing ε → 0 that turns out to cause by far the most difficulty.

(Recall that p = λ(n)(r − 2)!n−r+1 where λ(n) = 1 + ε(n) is the ‘branching factor’.)

Firstly, it turns out that (in both the graph and hypergraph cases) the number of vertices

of degree 1 joined directly to the core is Θ(ε2n). This means that the variance obtained

by deleting and reattaching such vertices will be Θ(ε2n), which is much smaller than the

variance Θ(n/ε) of L1 = L1(Hr
n,p) when ε → 0. For this reason we need to remove and

reattach larger trees; indeed, it turns out that we need to consider trees up to size Θ(ε−2),

which is essentially the largest size that appears. (The bulk of the variance comes from

the large trees.) This complicates things, since each tree contributes a different number of

vertices to the giant component.

Secondly, there are various ‘good events’ E that we need to hold for various parts of

our smoothing argument. As in the simple example above, one is that the core is not too

much smaller than it should be, and another is that the largest component of the core

is contained in the largest component of the whole graph. Some of the bad events Ec

turn out to have probability exp(−Θ(ε3n)) (since the core is really characterized by the

kernel, which has Θ(ε3n) vertices). So if ε3n → ∞ slowly, the unconditional probabilities

of these events may be much larger than the probabilities such as P(L1 = xn) = Θ(
√
ε/n)

that we wish to estimate. The solution is to show that P(E | L1 = xn) = 1 − o(1), so

P(L1 = xn) ∼ P({L1 = xn} ∩ E). Then we can effectively condition on E (though being

careful to keep independence where it is needed).

Thirdly, unlike for graphs, in the hypergraph case, even the simple operation of deleting

all ‘pendant edges’ attached to the core (i.e., hyperedges with one vertex in the core and

1 To spell this out, let (Ωn,Pn) be the (finite) probability space on which Gn is defined, and let Qn be the

probability measure Pn(· | En) on Ωn. We apply Lemma 3.2 to the sequence of probability spaces (Ωn,Qn), on

which the random variables A′
n satisfy the required global limit theorem. Since En ∈ Fn, then when ω ∈ En we

have Qn(· | Fn)(ω) = Pn(· | Fn)(ω) (by the tower-law). So, working on (Ωn,Qn), when ω ∈ En the conditional

distribution of Yn given Fn is in Dn; what happens when ω /∈ En is irrelevant since Qn(Ec
n) = 0. Hence

Lemma 3.2 gives an asymptotic formula for Qn(A′
n = xn) = Pn(A′

n = xn | En).
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the other vertices in no other hyperedges) is not so simple to invert. The inverse involves

selecting disjoint sets of r − 1 isolated vertices to rejoin to the core. The condition that

the sets must be disjoint means that the number that do rejoin no longer has a binomial

distribution. We deal with this by randomly ‘marking’ some vertices throughout the graph.

Roughly speaking, we detach pendant edges attached either to the core or to marked

vertices, meaning that we remember that a certain (r − 1)-tuple was attached either to the

core or to a marked vertex. Then all choices of where to reattach the tuples do turn out

to be independent. Of course, we actually detach larger trees, not just pendant edges. In

fact, rather than consider individual trees, we shall directly study the forests attached to

the core and to a suitable set of marked vertices.

Finally, for the bivariate result we need to show that the nullity N1 of the largest

component also has a smooth distribution; for this we use the same basic smoothing

technique applied in a different (and much simpler) way than for L1. Fortunately, since

our smoothing argument for L1 involves operations on the hypergraph that do not affect

N1, these two separate smoothing arguments combine to give the joint smoothness of L1

and N1 needed to prove Theorem 2.3.

One might wonder whether our approach is really easier than (or indeed different from)

proving a local limit theorem directly. Whether or not it is easier, the fact remains that the

local limit theorem was previously only known for restricted ranges of the key parameter

ε(n). As to whether the approaches are genuinely different, we believe that the answer

is ‘yes’. A key observation is that we study only part of the variation in the size of the

giant component. The general method means that, writing σ2
n for the variance of the

quantity (L1 or N1) we are studying, our ‘smoothing distribution’ needs variance Θ(σ2
n),

but it can be an arbitrarily small constant times σ2
n . This is vital since it means that in

many of our estimates we have a constant factor elbow room. This is unlikely to be the

case in any direct proof of the local limit theorem, since it would lead to a significant

error in the variance of L1 or N1. Here the variances of L1 and N1 are part of the input

(the global limit assumption), and we really are establishing only smoothness, rather than

re-evaluating the whole distribution.

3.2. Organization of the rest of the paper

The rest of the paper is organized as follows. In Section 4 we state two results from [10]

that we shall need; one of these is the global (central) limit theorem corresponding to

Theorem 2.3. Then we state two key intermediate results, Theorems 4.3 and 4.4. The first

establishes smoothness of N1, showing (a little more than) that nearby values have almost

equal probabilities. The second establishes (essentially) smoothness of the distribution of

L1 conditional on N1; as we note in the next section, these results easily imply Theorem 2.3.

In Section 5 we prove Theorem 4.3, using multi-round exposure arguments reminiscent

of those used by Behrisch, Coja-Oghlan and Kang [5]. In the subsequent sections we

prepare the ground for the (much more complicated) proof of Theorem 4.4. First, in

Section 6 we present a result of Selivanov [27] enumerating hypergraph forests subject

to certain constraints, and a simple consequence concerning random forests. Then, in

Section 7, we use Selivanov’s formula to show that a certain distribution associated to

detaching and reattaching forests from the core and ‘marked’ vertices is
√

n/ε-smooth
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as defined earlier in this section, so it can play the role of Yn above when studying the

distribution of L1. Next, in Section 8, we state a precise form of the supercritical/subcritical

duality result for the random hypergraph Hr
n,p; in Section 9 we use this to establish some

properties of the ‘small’ components of Hr
n,p that we shall need later. In Section 10 we

formally define ‘marked vertices’ and the extended core of Hr
n,p, and show that with high

conditional probability it has the properties we need. After this preparation, in Section 11

we prove Theorem 2.3; in Section 12 we show that Theorem 1.1 follows. Finally, in the

appendix to an earlier version [11] of this paper, we give detailed calculations comparing

our formulae with those in [2, 3, 6, 7, 17, 24].

4. The key ingredients

In this section we state two results from [10] that we shall need as ‘inputs’ to our

smoothing arguments. Then we state our two main intermediate results, and show how

they combine to give Theorem 2.3.

4.1. Inputs

Building on methods we used in [9] to prove the central limit theorem for L1 = L1(Hr
n,p),

in [10] we proved the following bivariate (global) central limit theorem for the order L1

and nullity N1 of the largest component of Hr
n,p. Here, and throughout, ρr,λ and ρ∗

r,λ are

as defined in (2.2) and (2.4).

Theorem 4.1. Let r � 2 be fixed, and p = p(n) = (1 + ε)(r − 2)!n−r+1, where ε = ε(n) → 0

and ε3n → ∞. Let L1 and N1 be the order and nullity of the largest component L1 of Hr
n,p.

Then (
L1 − ρr,λn√

2n/ε
,

N1 − ρ∗
r,λn√

10/3(r − 1)−1
√
ε3n

)
d→ (Z1, Z2),

where
d→ denotes convergence in distribution, and (Z1, Z2) has a bivariate Gaussian distri-

bution with mean 0, Var[Z1] = Var[Z2] = 1 and Cov[Z1, Z2] =
√

3/5.

In particular, recalling (2.5), L1 is asymptotically Gaussian with mean Θ(εn) and

variance Θ(n/ε), and N1 is asymptotically Gaussian with mean Θ(ε3n) and variance

Θ(ε3n).

In Section 5 we shall need the following large-deviation bounds on L1 and L2, the order

of the second largest component of Hr
n,p; this result is also proved in [10].

Theorem 4.2. Let r � 2 be fixed, and let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = O(1)

and ε3n → ∞. If ω = ω(n) → ∞ and ω = O(
√
ε3n) then

P
(
|L1(Hr

n,p) − ρr,λn| � ω
√
n/ε

)
= exp(−Ω(ω2)). (4.1)
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Moreover, if L = L(n) satisfies ε2L → ∞ and L = O(εn), then

P(L2(Hr
n,p) > L) � C

εn

L
exp(−cε2L),

for some constants c, C > 0.

Here, as usual, the constants c, C and the implicit constant in the Ω notation in (4.1)

are allowed to depend on all previous choices: on r, the function p(n), and the functions

ω(n) and L(n); see Remark 2.7.

4.2. Main steps

Theorem 2.3 is the bivariate local limit version of Theorem 4.1. To deduce it from

Theorem 4.1, we must show that ‘nearby’ potential values of the pair (L1, N1) have

essentially the same probability. (Recalling (1.1), for (s, t) to be a potential value, r − 1

must divide s + t − 1.) We proceed in two stages. In the first, we show that N1 has a

smooth distribution, which will already allow us to prove Theorem 2.5. More precisely,

we shall prove the following result in Section 5. We consider the pair (L1 − (r − 2)N1, N1)

rather than (L1, N1) for technical reasons that will become clear during the proof; this

makes little difference, since the standard deviation of N1 is much smaller than that

of L1.

Theorem 4.3. Let r � 2 be fixed, and let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) =

O(1) and ε3n → ∞. For any sequences (tn) and (t′n) with tn, t
′
n � 0 and tn − t′n = o(

√
ε3n), and

any In ⊂ Z, we have

P
(
N1 = tn and L1 − (r − 2)N1 ∈ In

)
− P

(
N1 = t′n and L1 − (r − 2)N1 ∈ In

)
= o((ε3n)−1/2).

By Proposition 3.1, Theorems 4.1 and 4.3 imply Theorem 2.5. Indeed, Theorem 4.1

immediately implies that N1 = N1(Hr
n,p) satisfies a central limit theorem with parameters

ρ∗
r,λn for the mean and σ∗

n =
√

10/3(r − 1)−1
√
ε3n for the standard deviation. Since σ∗

n =

Θ(
√
ε3n), taking In = Z in Theorem 4.3 we see that if tn − t′n = o(σ∗

n) then P(N1 = tn) −
P(N1 = t′n) = o(1/σ∗

n). Hence Theorem 2.5 follows by Proposition 3.1.

In the next result, and much of the rest of the paper, we only consider potential values

of L1 in a ‘typical’ range. To be precise, having fixed a function p(n) (and thus ε(n) and

λ(n)) satisfying our Weak Assumption 2.1, let δ = δ(n) satisfy

δ → 0 and δ � (ε3n)−1/3, (4.2)

and let

R = Rn = Rn,p = [(1 − δ)ρr,λn, (1 + δ)ρr,λn]. (4.3)

(To be concrete, we may just set δ = (ε3n)−1/3, but the precise value is irrelevant as long

as the conditions above hold.) Recalling (2.5) and (2.3), under our Weak Assumption 2.1

we have ρr,λ = Θ(ε) and ρr,λ bounded away from 1. Hence there are constants c, C > 0
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(depending on the function ε(n)) such that, for n large enough,

Rn ⊆ [cεn, Cεn] and Rn ⊆ [cεn, (1 − c)n]. (4.4)

By Theorem 4.2, applied with ω = ω(n) = δρr,λn/(
√

n/ε) = Θ(δ
√
ε3n), under our Weak

Assumption 2.1 we have

P(L1(Hr
n,p) /∈ R) � exp(−cδ2ε3n) � exp(−c(ε3n)1/3) = O(1/(ε3n)). (4.5)

The bulk of the paper will be devoted to the proof of the following result establishing,

essentially, smoothness of the conditional distribution of L1 given N1.

Theorem 4.4. Let r � 2 be fixed, let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) satisfies

ε → 0 and ε3n → ∞, and set L1 = L1(Hr
n,p). Define R = Rn as in (4.3). If (xn), (yn) and (tn)

are sequences of integers with xn, yn ∈ Rn, xn − yn = o(
√
n/ε), tn � 2, and

xn ≡ yn ≡ 1 − tn modulo (r − 1),

then

P(L1 = xn,N1 = tn) − P(L1 = yn, N1 = tn) = o(1/(εn)).

Theorems 4.3 and Theorem 4.4 will be proved in Sections 5–11. First, let us show how

they imply Theorem 2.3. Although the argument is straightforward, since Theorem 4.4 is

our main result, we shall spell out the details.

Proof of Theorem 2.3. Throughout we fix r � 2, and a function p = p(n) = (1 + ε)(r −
2)!n−r+1 such that ε = ε(n) satisfies ε → 0 and ε3n → ∞. Let

σn =
√

2n/ε and σ∗
n =

√
10/3(r − 1)−1

√
ε3n = Θ(

√
ε3n).

Indicating the dependence on n for once, let L1,n = L1(Hr
n,p) and N1,n = N1(Hr

n,p). It will

be convenient to consider the linear combination

L̃1,n = L1,n − (r − 2)N1,n.

Recalling the definitions (2.2) and (2.4) of ρr,λ and ρ∗
r,λ, set

ρ̃r,λ = ρr,λ − (r − 2)ρ∗
r,λ.

Since σ∗
n = o(σn), Theorem 4.1 immediately implies that(

L̃1,n − ρ̃r,λn

σn
,
N1,n − ρ∗

r,λn

σ∗
n

)
d→ (Z1, Z2), (4.6)

where (Z1, Z2) has a bivariate Gaussian distribution with mean 0, Var[Z1] = Var[Z2] = 1

and Cov[Z1, Z2] =
√

3/5; the probability density function f(a, b) of this distribution is

given in (2.7).

Let (xn) and (yn) be sequences with xn = ρr,λn + O(σn) (i.e., supn |xn − ρr,λn|/σn < ∞)

and yn = ρ∗
r,λn + O(σ∗

n), such that xn + yn − 1 is a multiple of r − 1 for all n; our aim is
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to prove (2.6) for these sequences. By a standard subsequence argument, we may assume

without loss of generality that

xn − ρr,λn

σn
→ x and

yn − ρ∗
r,λn

σ∗
n

→ y

for some x, y ∈ R. Since the density f(a, b) is continuous and strictly positive, what we

must show is exactly that

P
(
L1,n = xn, N1,n = yn

)
=

(r − 1)f(x, y) + o(1)

σnσ∗
n

. (4.7)

(As usual, the o(1) term represents a quantity that tends to 0 as n → ∞; the rate may

depend on all the choices made so far.)

It will be convenient to consider more explicit reformulations of Theorems 4.3 and 4.4.

By Theorem 4.3, for every constant α > 0 there is a constant β > 0 and an integer n0 such

that the following holds: whenever n � n0, t, t′ � 0 with |t − t′| � βσ∗
n , and I ⊂ Z, then∣∣∣P(

N1,n = t, L̃1,n ∈ I
)

− P
(
N1,n = t′, L̃1,n ∈ I

)∣∣∣ � α/σ∗
n . (4.8)

Indeed, if (4.8) does not hold, then picking an α for which it fails, for each k we may find

an nk > nk−1 and Ink , tnk and t′nk such that |tnk − t′nk | � σ∗
n/k and P

(
N1,nk = tnk , L̃1,nk ∈ Ink

)
and P

(
N1,nk = t′nk , L̃1,nk ∈ Ink

)
differ by at least α/σ∗

n . Completing the sequences tn, t
′
n and

In appropriately gives a counterexample to Theorem 4.3.

Similarly, since σn = Θ(
√
n/ε) and σnσ

∗
n = Θ(εn), Theorem 4.4 implies that for any

constant η > 0 there are γ1 > 0 and n0 such that whenever n � n0, t � 2 and s, s′ ∈ Rn

with |s − s′| � γ1σn and s ≡ s′ ≡ 1 − t modulo r − 1, then∣∣∣P(L1,n = s, N1,n = t) − P(L1,n = s′, N1,n = t)
∣∣∣ � η

σnσ∗
n

. (4.9)

Let η > 0 be constant. We shall show that if n is large enough, then∣∣∣∣P(
L1,n = xn, N1,n = yn

)
− (r − 1)f(x, y)

σnσ∗
n

∣∣∣∣ � 4rη

σnσ∗
n

, (4.10)

proving (4.7) and thus Theorem 2.3.

Define γ1 as in (4.9). Since f(·, ·) is continuous at (x, y), we may choose γ2 > 0 such that

whenever |a − x| � γ2 and |b − x| � γ2, we have |f(a, b) − f(x, y)| � η. Set γ = min{γ1, γ2}
and let

In = [ρ̃r,λn + (x − γ/2)σn, ρ̃r,λn + (x + γ/2)σn].

For n � 1 and t � 0 let

πn,t = P
(
N1,n = t, L̃1,n ∈ In

)
.

By (4.8), applied with α = ηγ, there is a constant β > 0, which we may assume to be less

than γ2, such that for all large enough n we have

|πn,t − πn,t′ | � ηγ/σ∗
n (4.11)
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whenever t, t′ lie in the interval

Jn = [ρ∗
r,λn + (y − β/2)σ∗

n , ρ
∗
r,λn + (y + β/2)σ∗

n].

(Here we have used the fact that for n large Jn consists only of positive integers, which

holds since σ∗
n = o(ρ∗

r,λn).) Let

an =
1

|Jn|
∑
t∈Jn

πn,t =
1

|Jn|P
(
(L̃1,n, N1,n) ∈ In × Jn

)
.

Since σ∗
n → ∞ and β is constant, we have |Jn| ∼ βσ∗

n . It follows from (4.6) that

an ∼ 1

βσ∗
n

∫ x+γ/2

a=x−γ/2

∫ y+β/2

b=y−β/2

f(a, b) da db.

Since β and γ are at most γ2, for all (a, b) in the region of area βγ over which we integrate

we have |f(a, b) − f(x, y)| � η. Hence, for n large enough,

|an − f(x, y)γ/σ∗
n | � 2ηγ/σ∗

n .

Now an is the average of the values πn,t over t ∈ Jn, so the bound (4.11) implies that all

of these values are within ηγ/σ∗
n of an. For n large enough, yn ∈ Jn, so

|πn,yn − f(x, y)γ/σ∗
n | � 3ηγ/σ∗

n . (4.12)

Since the component of Hr
n,p with L1,n vertices and nullity N1,n is by definition connected,

(1.1) gives L1,n + N1,n ≡ 1 modulo r − 1. Hence

πn,yn = P
(
N1,n = yn, L1,n − (r − 2)yn ∈ In

)
=

∑
s∈Sn

P
(
L1,n = s, N1,n = yn

)
(4.13)

where Sn consists of all integers in In + (r − 2)yn congruent to 1 − yn modulo r − 1. Hence

|Sn| =
|In|
r − 1

+ O(1) =
γσn

r − 1
+ O(1) ∼ γσn

r − 1
. (4.14)

Recall that xn = ρr,λn + xσn + o(σn) and yn = ρ∗
r,λn + O(σ∗

n) = ρ∗
r,λn + o(σn). Thus we

have xn − (r − 2)yn = ρ̃r,λn + (x + o(1))σn, and so for sufficiently large n we have xn − (y −
2)yn ∈ In and so xn ∈ Sn. Further, s ∈ Sn implies |s − ρr,λn| � |xn − ρr,λn| + γσn = O(σn).

Hence, for n large enough, Sn ⊆ Rn. It follows by (4.9) that the probabilities summed in

(4.13) are all within η/(σnσ
∗
n) of each other and hence of their average, which by (4.12)

and (4.14) is within 3rη/(σ∗
nσn) of (r − 1)f(x, y)/(σnσ

∗
n). Since xn ∈ Sn this concludes the

proof of (4.10) and hence that of Theorem 2.3.

5. Smoothing the excess: multi-round exposure

In this section we prove Theorem 4.3. The arguments in this section do not obviously

simplify in the case ε → 0, so throughout we work with our Weak Assumption 2.1, i.e.,

we let p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) satisfies ε = O(1) and ε3n → ∞.

Set

p1 = (1 + ε/2)(r − 2)!n−r+1
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and define p2 by p = p1 + p2 − p1p2, noting that

p2 ∼ (ε/2)(r − 2)!n−r+1 = Θ(εn−r+1). (5.1)

Using a now standard idea originally due to Erdős and Rényi [16], we shall view Hr
n,p as

H1 ∪ H2 where H1 and H2 are independent, and Hi has the distribution Hr
n,pi

. To prove

Theorem 4.3 we first ‘reveal’ (i.e., condition on) H1. Then we reveal many but not all

edges of H2. We do this in such a way that the remaining edges of H2 must be of a simple

type. We then show that the conditional distribution of the number of these edges present

is essentially binomial. Since each will contribute 1 to N1 = n(Hr
n,p), this will allow us to

prove the result. The strategy is inspired by a related argument of Behrisch, Coja-Oghlan

and Kang [4], itself based on ideas of Coja-Oghlan, Moore and Sanwalani [14], though

the details are very different since the objective is different. (Their argument is used to

‘smooth’ L1 rather than N1, and requires ε bounded away from zero.)

We start with a simple lemma showing that the distribution we shall use for smoothing

is indeed smooth in the relevant sense.

Lemma 5.1. Let r � 3 be fixed. Given integers i, � > 0 and a real number 0 < π < 1, for

0 � a � i/(r − 2) let

na = ni,�,a =
1

a!

(
i

r − 2

)(
i − (r − 2)

r − 2

)
· · ·

(
i − (a − 1)(r − 2)

r − 2

)(
�

2

)a

, (5.2)

and let Yi,�,π be the probability distribution on the non-negative integers defined by

P(Yi,�,π = a) = pa = pi,�,π,a = πana

/ i/(r−2)∑
b=0

πbnb.

Let ε = ε(n) satisfy ε3n → ∞ and ε = O(1), set σ0 = σ0(n) =
√
ε3n, and let i = i(n), � = �(n)

and π = π(n) satisfy i = Θ(n), � = Θ(εn) and π = Θ(εn−r+1). Then, whenever (yn) and (y′
n)

satisfy yn − y′
n = o(σ0), we have

P(Yn = yn) − P(Yn = y′
n) = o(1/σ0), (5.3)

where Yn = Yi(n),�(n),π(n).

Although the reader need not check this, Lemma 5.1 says that certain sequences (Dn)

of sets of probability distributions of the type Yi,�,π are σ0(n)-smooth in the sense of (3.1).

Proof. Fix sequences ε(n), i(n), �(n) and π(n) satisfying the conditions above; in what

follows, much of the time we suppress the dependence on n in the notation.

Let (x)y denote the falling factorial x(x − 1) · · · (x − y + 1). Then, with n fixed, for

a + 1 � i/(r − 2) we have

qa =
pa+1

pa
=

1

a + 1

π

(r − 2)!

(
�

2

)
(i − a(r − 2))r−2. (5.4)

The sequence (qa) is strictly decreasing, so (pa) is unimodal.
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For a = a(n) satisfying i − a(r − 2) = Ω(n), by the assumptions on i, � and π above we

have

qa = Θ
(
(a + 1)−1(εn−r+1)(εn)2nr−2

)
= Θ(ε3n/(a + 1)).

For i − a(r − 2) = o(n) it is easy to see that qa = o(1). Let a0 = a0(n) be the minimal

integer such that qa0
� 1. Then we have a0 = Θ(ε3n) and hence i − a0 = Ω(n).

Writing σ0 = σ0(n) =
√
ε3n, it follows from (5.4) that for a = a(n) = a0 + O(σ0) we have

qa = qa0
(1 + O(σ0/a0)) = qa0

(1 + O(σ−1
0 )) = 1 + O(σ−1

0 ). (5.5)

Since qa = pa+1/pa, this has the following consequence: for any sequences a1 = a1(n) and

a2 = a2(n) such that ai = a0 + O(σ0), a1 − a2 = o(σ0) and a1 < a2, we have2

pa2
/pa1

=
∏

a1�a<a2

qa = (1 + O(σ−1
0 ))o(σ0) = 1 + o(1). (5.6)

From the unimodality of (qa) and the definition of a0 we have maxa pa = pa0
. It is easy

to see that pa0
= O(1/σ0): otherwise, we could use (5.6) to deduce that

∑
a pa > 1, a

contradiction. Hence, maxa pa = pa0
= O(1/σ0). Thus, from (5.6), for ai = a0 + O(σ0) we

have

a1 − a2 = o(σ0) =⇒ pa2
− pa1

= o(1/σ0). (5.7)

For a > a0, by unimodality we have

1 =
∑
b

pb �
∑

a0<b�a

pb � (a − a0)pa,

so if (a − a0)/σ0 → ∞ then pa = o(1/σ0). Similarly, if (a0 − a)/σ0 → ∞ then pa = o(1/σ0).

It follows that (5.7) holds for any sequences a1(n), a2(n) with a1 − a2 = o(1/σ0), which is

exactly (5.3).

Proof of Theorem 4.3. Define p1, p2, H1 and H2 as at the start of the section, and set

σ0 =
√
ε3n.

(Recall that, up to a constant factor, σ2
0 is the variance of N1(Hr

n,p).) We shall first apply

Theorem 4.2 to H1, noting that (ε/2)3n → ∞. Let C1 be the component of H1 with the

most vertices (chosen according to any rule if there is a tie). Since ρr,1+ε/2 = Θ(ε), by

Theorem 4.2 there are constants 0 < c < C such that the event

E1 = {cεn � |C1| � Cεn}

satisfies

P(Ec
1) = exp(−Ω(ε3n)) = o(1/σ0).

2 To deduce (5.6) we need (5.5) to hold uniformly in a with a1(n) � a < a2(n). To see that it does, choose the

‘worst-case’ a = a(n) in this range for each n and apply (5.5) to the resulting sequence.
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By the last part of Theorem 4.2,

P(L2(Hr
n,p) � cεn) � exp(−Ω(ε3n)) = o(1/σ0).

Let E2 be the event that C1 is contained in the largest component L1 of Hr
n,p = H1 ∪ H2.

Since H1 ⊂ Hr
n,p, we have

P(Ec
2) � P(Ec

1) + P(L2(Hr
n,p) � cεn) = o(1/σ0).

Let i(H) denote the number of isolated vertices in a hypergraph H . It is easy to see that

E[i(Hr
n,p)] = Θ(n).

Let c′ be a constant such that E[i(Hr
n,p)] � 2c′n for large enough n, and let E3 be the

event

E3 = {i(Hr
n,p) � c′n}. (5.8)

Then standard concentration arguments (e.g., a simple application of the Hoeffding–

Azuma inequality) show that

P(Ec
3) = exp(−Ω(n)) = o(1/σ0).

Reveal all edges of H1, which of course determines C1. We shall reveal some partial

information about H2 in a two-step process.

First, test r-sets (i.e., potential edges) for their presence in H2 according to the following

algorithm: if there is any untested r-set e which does not consist of two vertices in C1 and

r − 2 vertices that are isolated in the current hypergraph H , then pick some such r-set e

and test whether it is present in H2. Otherwise, stop. By the ‘current hypergraph’ we mean

the hypergraph formed by the edges revealed so far, so H1 ⊂ H ⊂ H1 ∪ H2 = Hr
n,p.

Let H be the hypergraph revealed at the end of the algorithm, let I be the set of

isolated vertices of H , and let U be the set of untested r-sets when the algorithm stops.

Then U has a very simple form: it consists precisely of all
(|C1|

2

)( |I|
r−2

)
r-sets with two

vertices in C1 and r − 2 in I . To see this, note first that if there were any untested r-set

not of this form, the algorithm would not have stopped. Conversely, since any isolated

vertices in the final hypergraph H were isolated throughout the running of the algorithm,

and C1 (a component of H1, not of the current graph) does not change as the algorithm

runs, any r-set of this form cannot have been tested.

At this point, each untested edge is present independently with conditional probability

p2.

In the second step, we reveal the set F of edges e in U present in H2 with the property

that some vertex of e ∩ I is incident with one or more other edges of H2. Let I ′ be the

set of vertices in I not incident with edges in F .

Let F denote the the σ-algebra generated by all the information revealed so far, and let

F ′ be the set of edges of H2 not yet revealed. Then F ′ consists of edges with two vertices

in C1 and r − 2 in I ′, with the corresponding subsets of I ′ disjoint. Furthermore, given F
(which determines C1 and I ′), any set F ′ of edges satisfying this description is possible.

Let Yn = |F ′|; this will be our smoothing random variable. Recalling the definition (5.2)

of ni,�,a, there are exactly n|I ′ |,|C1|,a possible sets F ′ with a edges. Let π = p2/(1 − p2). Since
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the probability of a hypergraph in the model Hr
n,p2

is proportional to π raised to the power

of the number of edges, we see that (for r � 3) the conditional distribution of Yn = |F ′|
given F is exactly the distribution Y|I ′ |,|C1|,π defined in Lemma 5.1.

Let E be the event

E = E1 ∩ {|I ′| � c′n},

where c′ is as in the definition (5.8) of E3. Note that E is F-measurable. Since every

isolated vertex of Hr
n,p is in I ′, we have

P(Ec) � P(Ec
1) + P(Ec

3) = o(1/σ0). (5.9)

When E holds, then |C1| = Θ(εn) and |I ′| = Θ(n); from (5.1) we always have π = p2/(1 −
p2) = Θ(εn−r+1). Let (ωn) be a sequence of elements of the probability space(s) on which

Hr
n,p is defined, with ωn ∈ E = En. By Lemma 5.1,3 for any such sequence (ωn) and for any

sequences yn, y
′
n with yn − y′

n = o(σ0) we have

P
(
Yn = yn | F

)
(ωn) − P

(
Yn = y′

n | F
)
(ωn) = o(1/σ0). (5.10)

Fix sequences tn, t
′
n � 0 with tn − t′n = o(σ0) and a sequence (In) of subsets of Z. Our

aim is to show that

P
(
N1 = tn, L1 − (r − 2)N1 ∈ In

)
− P

(
N1 = t′n, L1 − (r − 2)N1 ∈ In

)
= o(1/σ0). (5.11)

Let C be the component of H ⊃ H1 containing C1, and C ′ the component of Hr
n,p containing

C (and hence C1). Let

Xn = n(C) and Zn = |C| − (r − 2)n(C) = |C| − (r − 2)Xn.

Then Xn and Zn are F-measurable, so from (5.10), for any ωn ∈ E we have

P
(
Xn + Yn = tn, Zn ∈ In | F

)
(ωn) − P

(
Xn + Yn = t′n, Zn ∈ In | F

)
(ωn) = o(1/σ0).

As usual, this bound holds uniformly in ωn ∈ E = En, since we are free to choose ωn to

maximize the difference. Taking the expectation, and recalling that E is F-measurable and

P(Ec) = o(1/σ0), it follows that

P(Xn + Yn = tn, Zn ∈ In) − P(Xn + Yn = t′n, Zn ∈ In) = o(1/σ0). (5.12)

Now each edge in F ′ meets C in two vertices, and has no vertices outside C in common

with any other edge of F ′. Thus

n(C ′) = Xn + Yn and |C ′| = |C| + (r − 2)Yn,

so

|C ′| − (r − 2)n(C ′) = |C| − (r − 2)Xn = Zn.

3 For r = 2 (which is not our main focus) we cannot apply Lemma 5.1. However, in this case F ′ is simply

the set of edges of H2 with both ends in C1. This has a binomial distribution with parameters Θ(ε2n2) and

Θ(εn−1); the family of such distributions is σ0-smooth, so (5.10) holds in this case also.
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When E2 holds, then C ′ = L1. Hence, whenever E2 holds, we have

N1 = Xn + Yn and L1 − (r − 2)N1 = Zn. (5.13)

Recalling that P(E2) = 1 − o(1/σ0), our aim (5.11) follows from (5.12) and (5.13), com-

pleting the proof of Theorem 4.3.

6. Trees and forests

For m � 2, an m-cycle in a hypergraph H consists of distinct vertices v1, . . . , vm and distinct

edges e1, . . . , em such that each ei contains both vi and vi+1, with vm+1 defined to be v1.

Thus a 2-cycle consists of two edges sharing at least two vertices. Note that an m-cycle

corresponds to a cycle of length 2m in the bipartite vertex–edge incidence graph Ginc(H)

associated to H .

A hypergraph H is a tree if it is connected and contains no cycles, or, equivalently, if

H can be built up by starting with a single vertex, and adding new edges one by one so

that each meets the current hypergraph in exactly one vertex. Note that H is a tree if and

only if Ginc(H) is a tree.

By an r-tree we simply mean an r-uniform hypergraph that is a tree. An r-forest is

a vertex-disjoint union of r-trees. For A ⊂ V , an A-rooted r-forest on V is an r-forest

with vertex set V such that each component contains exactly one vertex from A; in

particular, there are |A| components. Note that A-rooted r-forests on V exist if and only if

|V | = |A| + (r − 1)k for some integer k � 0 (the number of edges). For r = 2, the formula

ann−a−1 for the number of [a]-rooted 2-forests on [n] was observed by Cayley [13] and

proved by Rényi [22]. We shall make repeated use of the following generalization to

hypergraphs, due to Selivanov [27].

Lemma 6.1. Let r � 2, a � 1 and k � 0 be integers, and set n = a + (r − 1)k. The number

Fa,k = F
(r)
a,k of [a]-rooted r-forests on [n] = {1, 2, . . . , n} satisfies

Fa,k = ank−1{k : r − 1}, (6.1)

where

{k : t} =
(kt)!

k! t!k

is the number of partitions of a set of size kt into k parts of size t.

For completeness we give a proof in the appendix to [11], since the original source is

perhaps a little obscure. (We only became aware of it from Karoński and �Luczak [17]).

One consequence of Lemma 6.1 is the following surprisingly simple bound on the

expected number of vertices at a given distance from the root set in a random [a]-rooted

r-forest. Recall that (x)y denotes the falling factorial x(x − 1) · · · (x − y + 1).

Lemma 6.2. Let r � 2, a � 1 and k, � � 0 be integers, and set n = a + (r − 1)k. Choosing

an [a]-rooted r-forest on [n] uniformly at random, the expected number of vertices at graph
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distance exactly � from [a] is equal to

(a + (r − 1)�)
(r − 1)�(k)�

n�

and is (hence) at most a + (r − 1)�.

Proof. Let N be the number of ordered pairs (F, v) where F is an [a]-rooted r-forest on

[n] and v ∈ [n] is at graph distance � from [a] in F . Since there is a unique path from v

to [a] in F , we can instead view N as the number of tuples (F, v0, e1, . . . , v�−1, e�, v�) where

F is an [a]-rooted r-forest on [n], v0 ∈ [a], and v0e1 · · · e�v� is a path in F . (The bijection

from such tuples to pairs (F, v) maps v� to v.)

With F not yet determined, there are a choices for v0, then
(

(r−1)k
r−1

)
choices for the

remaining vertices that with v0 make up e1. Then there are r − 1 choices for v1, then(
(r−1)(k−1)

r−1

)
choices for the rest of e2, and so on, giving

N1 = a(r − 1)�
(

(r − 1)k

r − 1

)
· · ·

(
(r − 1)(k − � + 1)

r − 1

)
= a(r − 1)�

((r − 1)k)!

((r − 1)(k − �))!(r − 1)!�

choices for (v0, e1, . . . , e�, v�). Now we must choose an [a]-rooted r-forest F on [n] containing

the edges e1, . . . , e�; this is the same as choosing an [S]-rooted r-forest F ′ on [n] where

S = [a] ∪ e1 ∪ · · · ∪ e� is a set of a + (r − 1)� vertices. By Lemma 6.1 we thus have

N = (a + (r − 1)�)nk−�−1 ((r − 1)(k − �))!

(k − �)!(r − 1)!k−�
N1

= (a + (r − 1)�)nk−�−1a(r − 1)�
((r − 1)k)!

(k − �)!(r − 1)!k
.

The expectation we wish to calculate is precisely N divided by the number of [a]-rooted

r-forests on [n]. By Lemma 6.1 the expectation is thus

(a + (r − 1)�)n−�(r − 1)�
k!

(k − �)!
= (a + (r − 1)�)

(r − 1)�(k)�
n�

� (a + (r − 1)�)((r − 1)k/n)�

� a + (r − 1)�,

as required.

Note that, surprisingly, k does not appear in the final upper bound in the lemma above.

7. The smoothing distribution

Given positive integers m and a, let A1 ⊂ A ⊂ V with |A1| = a, |A| = 2a and |V | =

2a + (r − 1)m, and let F be an A-rooted r-forest on V chosen uniformly at random. Let

Ym,a be the total number of edges of F in components rooted in A1. Note that F has m

edges, so 0 � Ym,a � m.
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Lemma 7.1. Let m = m(n) and a = a(n) satisfy m = o(a2) and m = Ω(a), let Yn = Ym,a, and

set σn = m3/2a−1. Then for any integers xn, yn with xn − yn = o(σn) we have

P(Yn = xn) − P(Yn = yn) = o(1/σn),

and P(Yn = xn) = O(1/σn).

In the terminology of Section 3, the sequence of distributions Ym(n),a(n) is σn-smooth.

Proof. As usual, we suppress the dependence on n in the notation, for example writing

σ for σn.

Note first that our assumptions imply that a = O(m) = o(a2), so certainly a → ∞ and

thus m → ∞. Note for later that σ/m = m1/2a−1 =
√
m/a2, so

σ = o(m).

Let pk = pn,k = P(Yn = k). Considering first the choices for the vertices outside A

appearing in the subforest rooted at A1, we see that

pk =

(
(r − 1)m

(r − 1)k

)
Fa,kFa,m−k

F2a,m
,

where Fa,k denotes the number of X-rooted r-forests on Y when X ⊂ Y with |X| = a and

|Y | = a + (r − 1)k. From now on, let us write t for r − 1, since this will appear so often

in the following calculations. By Lemma 6.1, writing � for m − k, for 0 � k � m we have

pk =

(
tm

tk

)
a(a + tk)k−1(tk)!k!−1t!−ka(a + t�)�−1(t�)!�!−1t!−�

2a(2a + tm)m−1(tm)!m!−1t!−m

=
a

2

(
m

k

)
(a + tk)k−1(a + t�)�−1

(2a + tm)m−1
. (7.1)

We shall prove the following three statements concerning functions k, k1 and k2 of n

bounded between 0 and m(n), where σ = σ(n) = m3/2a−1:

If k1 = k2 + o(σ) and k1, k2 = m/2 + O(σ) then pk1
∼ pk2

. (7.2)

If k = m/2 + O(σ) then pk = O(1/σ). (7.3)

If |k − m/2|/σ → ∞ then pk = o(1/σ). (7.4)

(As usual, we quantify over sequences here: e.g., the formal statement of (7.3) is that for any

sequence k(n) such that lim supn |k(n) − m(n)/2|/σ(n) < ∞, we have lim supn pn,k(n)σ(n) <

∞.)

Suppose for the moment that (7.2)–(7.4) hold, and consider sequences k1 = k1(n) and

k2 = k2(n) with k1 − k2 = o(σ). The lemma asserts that then

pk1
− pk2

= o(1/σ) and pk1
= O(1/σ). (7.5)

In the special case where k1 = m/2 + O(σ), the relations (7.2) and (7.3) give (7.5). In

the special case where |k1 − m/2|/σ → ∞, then also |k2 − m/2|/σ → ∞, so by (7.4) both

pk1
and pk2

are o(1/σ), and (7.5) follows. The general case now follows by a standard

subsequence argument: a counterexample would have a subsequence falling into one of

these two special cases.
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Our aim is now to prove (7.2)–(7.4). Let us first deal with the extreme values, i.e., cases

where k is very close to 0 or to m. We shall show that when k � c0a for some constant c0,

then pk+1 � pk , so if we can show that pk = o(1/σ) for k = �c0a�, then the same bound for

k < �c0a� follows. Here c0 may depend on the sequences m(n) and a(n), but not on k(n).

From (7.1) we see that for 0 � k < m we have

pk+1

pk
=

�

k + 1

(a + t(k + 1))k

(a + tk)k−1

(a + t(� − 1))�−2

(a + t�)�−1

=
�

k + 1

a + tk

a + t(� − 1)

(
1 +

t

a + tk

)k(
1 +

t

a + t(� − 1)

)−(�−1)

=
a + tk

k + 1

�

a + t(� − 1)
Θ(1),

since (1 + x)i = exp(O(ix)) = Θ(1) when x � 0 and |ix| � 1. For k � m/2, say, we have

� = m − k = Θ(m) and a + t(� − 1) = Θ(a + m) = Θ(m), so pk+1/pk = Θ((a + tk)/(k + 1)).

It follows that there exists a constant c0 such that for k � c0a we have pk+1/pk � 1, so

max
k�c0a

pk � p�c0a�. (7.6)

Since m = Ω(a), we may choose c0 small enough that �c0a� � m/4, say. In proving (7.4),

we may assume by symmetry that k � m/2. Since σ = o(m), we have |�c0a� − m/2|/σ �
m/(4σ) → ∞, so in the light of (7.6), to prove (7.4) it suffices to show that

If (m/2 − k)/σ → ∞ and k � c0a then pk = o(1/σ). (7.7)

From this point our aim is to prove (7.2), (7.3) and (7.7). Since all three statements only

involve k = k(n) such that k, � = Ω(a), from now on we impose this condition. In this case,

from (7.1) and Stirling’s formula we have

pk ∼ a

2
√

2π

mm

kk��

√
m

k�

tm + 2a

(tk + a)(t� + a)

(tk + a)k(t� + a)�

(tm + 2a)m
.

Roughly speaking, we shall write this expression as a polynomial factor times an

exponential factor. Then we expand the function inside the exponential around k = m/2

to see that pk is small when k is far from m/2, and does not change too rapidly when k is

close to m/2. The complication is that the polynomial factor ‘blows up’ as k/m approaches

0 or 1, and it is only the condition m = o(a2) that ensures that this ‘blow up’ is beaten by

the exponential factor.

Setting

x = k/m and β = a/(tm),
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and noting that by assumption β = O(1), we have

pk ∼ a

2
√

2π

√
1

x(1 − x)m

1

tm

1 + 2β

(x + β)(1 − x + β)(
x−x(1 − x)−(1−x) (x + β)x(1 − x + β)1−x

1 + 2β

)m

=
a(1 + 2β)

2
√

2πtm3/2
f(x) exp(−mg(x))

=
c

σ
f(x) exp(−mg(x)), (7.8)

where c = (1 + 2β)/(2t
√

2π) = Θ(1) is independent of k,

f(x) = x−1/2(1 − x)−1/2(x + β)−1(1 − x + β)−1, (7.9)

and

g(x) = x log x + (1 − x) log(1 − x) − x log(x + β) − (1 − x) log(1 − x + β) + log(1 + 2β).

It is easy to see that g(1/2) = 0. Moreover,

g′(x) = log x − log(1 − x) − log(x + β) + log(1 − x + β) +
β

x + β
− β

1 − x − β

is also zero at x = 1/2, and (after a little calculation) we see that

g′′(x) = β2

(
1

x(x + β)2
+

1

(1 − x)(1 − x + β)2

)
> 0. (7.10)

Since β = O(1), for 1/8 � x � 7/8, say, the bracket in (7.10) is uniformly Θ(1), so we have

g′′(x) = Θ(β2). Integrating twice, we see that for x ∈ [1/8, 7/8] we have

|g′(x)| = Θ(β2|x − 1/2|) and g(x) = Θ(β2(x − 1/2)2). (7.11)

Recalling that β = a/(tm) and σ = m3/2/a, note that

β2σ2/m2 =
a2

t2m2

m3

a2

1

m2
=

1

t2m
= Θ(m−1). (7.12)

Let k1 and k2 satisfy ki = m/2 + O(σ) and k1 − k2 = o(σ), and set xi = ki/m. Then xi =

1/2 + O(σ/m), and x1 − x2 = o(σ/m). By the Mean Value Theorem, there is some ξ =

1/2 + O(σ/m) for which

|g(x1) − g(x2)| = |g′(ξ)||x1 − x2| = O(β2|ξ − 1/2||x1 − x2|) = o(β2σ2/m2) = o(1/m),

from (7.11) and (7.12). From (7.9), since x1, x2 ∼ 1/2 we have f(x1) ∼ f(1/2) ∼ f(x2), and

it follows from (7.8) that pk1
∼ pk2

, proving (7.2). For (7.3), simply note that g(x) � 0

always, while if k = m/2 + O(σ) then x = k/m satisfies x = 1/2 + O(σ/m) = 1/2 + o(1),

so x is bounded away from 0 and 1 and (7.9) gives f(x) = O(1). Hence (7.8) gives

pk = O(1/σ), proving (7.3).

Finally, we turn to the proof of (7.7), considering k ‘far’ from m/2, but not too close to

0 or to m. First, note that since β = O(a/m) and, by assumption, m = o(a2), we have

β2m → ∞.
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Let c0a � k � m/2 with (m/2 − k)/σ → ∞ and set x = k/m, so that x < 1/2 and (1/2 −
x)/(σ/m) → ∞. If x � 1/8 then f(x) = Θ(1) while from (7.11) we have g(x) = Ω(β2) and

hence mg(x) → ∞. Thus (7.8) gives pk = o(1/σ), as required.

Suppose instead that x < 1/8; note that x = k/m � c0a/m = c1β, where c1 = c0t is a

positive constant. For y � c1β we have β = O(y) and hence y−1(y + β)−2 = Ω(y−3), so

in this range (7.10) gives g′′(y) � cβ2y−3 for some constant c > 0. It follows easily that

there is a constant c′ such that for c1β � x � 1/8 we have g(x) � c′β2x−1. (Indeed, for

c1β � y � 1/4 we have −g′(y) =
∫ 1/2

y
g′′(z)dz �

∫ 2y

y
g′′(z)dz = Ω(β2y−2), and then g(x) =∫ 1/2

x
(−g′(y))dy �

∫ 2x

x
(−g′(y))dy = Ω(β2x−1).) Hence, for c1β � x � 1/8 we have

f(x) exp(−mg(x)) = O(x−3/2) exp(−mg(x)) = O(x−3/2 exp(−c′β2mx−1)).

Since β2m → ∞, it follows that f(x) exp(−mg(x)) → 0 uniformly in this range, which with

(7.8) gives pk = o(1/σ), completing the proof of (7.7) and hence of the lemma.

With a small amount of further work, the argument above extends to show that (under

the given assumptions) Ym,a satisfies a Gaussian local limit theorem. We shall not need

this, so we omit the details.

8. Discrete duality

Recall that Hr
n,p denotes the random r-uniform hypergraph on [n] in which each of the(

n
r

)
possible edges is present independently with probability p. As in the Introduction, we

write p = p(n) as λ(n)(r − 2)!n−r+1, so λ = 1 corresponds to the critical point of the phase

transition. More generally, for any r, n and p we call

λ = pnr−1/(r − 2)! (8.1)

the branching factor of Hr
n,p. For λ > 1 recall that ρr,λ, defined in (2.1), is the survival

probability of a certain branching process associated to Hr
n,p. In particular, when r = 2

this process is just a Galton–Watson process with a Poisson offspring distribution with

mean λ; we write ρλ = ρ2,λ for its survival probability.

Given any λ > 1, define λ∗ < 1, the parameter dual to λ, by

λ∗e
−λ∗ = λe−λ. (8.2)

It is easy to check that λ∗ = λ(1 − ρλ), where ρλ = ρ2,λ, and that for λ > 1 with λ = O(1)

we have

λ∗ = 1 − Θ(λ − 1) and λ∗ = Θ(1). (8.3)

In other words, for any A > 0 there exist c, C > 0 such that λ ∈ (1, A] implies (1 − λ∗)/(λ −
1) ∈ [c, C] and λ∗ ∈ [c, 1) (recall that λ∗ < 1 by definition). The second, crude bound in

(8.3) is only relevant when λ is large.

In the regime we are interested in, we have λ = 1 + ε with ε = ε(n) bounded and

ε3n → ∞, so by the results of [18, 9], Hr
n,p is supercritical. Defining δ = δ(n) � (ε3n)−1/3

and R = Rn = [(1 − δ)ρr,λn, (1 + δ)ρr,λn] as in (4.3), by (4.5) we have

P(L1 ∈ R) = 1 − O(1/(ε3n)) = 1 − o(1). (8.4)
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We shall only consider possible values of L1 lying in R. We start with a simple calculation,

showing that if s ∈ R then Hr
n−s,p is subcritical (but not too strongly so).

Lemma 8.1. Under our Weak Assumption 2.1, for any s = s(n) ∈ R, the branching factor

λ′ = λ(Hr
n−s,p) of the random hypergraph Hr

n−s,p satisfies λ′ = 1 − Θ(ε) and λ′ = Θ(1).

Proof. Let μn = ρr,λn. Ignoring the fact that μn need not be an integer, if we define the

branching factor λ(Hr
n−μn,p

) by (8.1), with n − μn in place of n, then

λ(Hr
n−μn,p

) = (1 − μn/n)r−1λ = (1 − ρr,λ)
r−1λ = (1 − ρλ)λ = λ∗,

which is 1 − Θ(ε) by (8.3). For s ∈ R we have (n − s)/(n − μn) = 1 + O(δε) = 1 + o(ε),

so, since r is constant, λ′ = λ(Hr
n−s,p) = (1 + o(ε))r−1λ(Hr

n−μn,p
) = 1 − Θ(ε) also. To see that

λ′ = Θ(1) (i.e., is bounded away from zero), recall from (4.4) that s ∈ R implies s � (1 − c)n

for some constant c > 0. Then λ′ = (1 − s/n)r−1λ � cr−1λ � cr−1.

Note that here we do not really need δ to tend to zero: it would suffice to assume that

δ is at most some small constant depending on the upper bound on ε.

A simple consequence of the fact that Hr
n−s,p is subcritical is that it is unlikely to contain

a component with s or more vertices. We state a convenient form of this result rather

than the strongest version possible.

Lemma 8.2. Under our Weak Assumption 2.1, for any s = s(n) ∈ R, w.h.p. L1(Hr
n−s,p) <

n2/3 < s.

Proof. From either Karoński and �Luczak [18, Theorem 6] or [10, Theorem 2] (which

gives a better probability bound but a worse constant cr), there is a constant cr > 0 such

that if Hr
m,p has branching factor 1 − η where η3m → ∞, then w.h.p.

L1(Hr
m,p) � crη

−2 log(η3m) = o(m2/3).

For s ∈ R, by Lemma 8.1 the branching factor of Hr
n−s,p is 1 − η with η = Θ(ε). Since

m = n − s = Θ(n) and ε3n → ∞, we have η3m → ∞, so w.h.p. L1(Hr
m,p) < m2/3 < n2/3. The

result follows since s = Θ(εn), so s/n2/3 → ∞ and in particular s > n2/3 if n is large enough.

Let L1 be the component of Hr
n,p with the most vertices, if there is a unique such

component. In the case of ties we order (the vertex sets of) possible components arbitrarily

(e.g., by the lowest numbered vertex present), and use this order to break the tie. Of course

|L1| = L1. The following explicit version of the discrete duality principle says that we may

treat the graph outside L1 as a subcritical instance of the same hypergraph model. We

write Hs for the set of all labelled r-uniform hypergraphs with exactly s vertices. We

always assume implicitly that any conditional probability is defined: i.e., if the event being

conditioned on has probability 0, there is nothing to prove.
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Lemma 8.3. Suppose that our Weak Assumption 2.1 holds, and define R = Rn as in (4.3).

Let Q be any isomorphism-invariant property of hypergraphs, and f any isomorphism-

invariant function from hypergraphs to the non-negative reals. Then, for any s = s(n) ∈ R

and any P = P(n) ⊂ Hs, we have

P
(
Hr

n,p \ L1 has Q | L1 ∈ P
)

� (1 + o(1))P(Hr
n−s,p has Q)

and

E
(
f(Hr

n,p \ L1) | L1 ∈ P
)

� (1 + o(1))E(f(Hr
n−s,p)),

as n → ∞, with the error terms uniform over all s ∈ R and P ⊂ Hs.

The most natural case here is P = Hs, in which case we are simply conditioning on

the event L1 = s. Often we shall take P to be the set of hypergraphs with s vertices and

nullity t; then we are conditioning on the event {L1 = s, N1 = t}.

Proof. Although we have emphasized the uniformity of the error terms for clarity, this

uniformity is automatic, considering the worst-case choice of s = s(n) and P = P(n).

Without loss of generality P consists of a single hypergraph Hs with vertex set S ⊂ [n]

with |S | = s. From the definitions of Hr
n,p and of L1, the conditional distribution of

Hr
n,p \ L1 given that L1 = Hs is that of the random hypergraph H ′ = Hr

n−s,p on the vertex

set [n] \ S conditioned on the event E that

(i) H ′ contains no component with more than s vertices, and

(ii) H ′ has no s-vertex component that beats Hs in the tie-break order used in defining

L1.

By Lemma 8.2, P(E) = 1 − o(1). Hence,

P
(
Hr

n,p \ L1 has Q | L1 = Hs

)
= P

(
H ′ has Q | E

)
� P(H ′ has Q)

P(E)
= (1 + o(1))P(H ′ has Q),

proving the first statement. For the second, argue similarly, or express E(f(H)) as∫ ∞
0

P(f(H) � t)dt and apply the first statement.

A variant of the argument above gives the following result, which may be seen as

an extension of an observation of Karoński and �Luczak [18, p. 133]. By a property of

hypergraphs we simply mean a set of hypergraphs; we do not assume that this set is

closed under isomorphism. As usual, let L1 be a component of Hr
n,p with the maximal

number of vertices, chosen according to any fixed rule if there is a tie.

Lemma 8.4. Let Qs be any property of s-vertex hypergraphs, and let Ns be the expected

number of components of Hr
n,p having property Qs. Let Ubig be the event that Hr

n,p has

at most one component with more than n2/3 vertices, and set As = {Ns > 0} ∩ Ubig and

Bs = {Ns > 0} ∩ U c
big. Under our Weak Assumption 2.1 we have

P(L1 ∈ Qs) ∼ P(As) ∼ E[Ns] (8.5)
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and

P(Bs) = o(P(L1 ∈ Qs)), (8.6)

uniformly over all s ∈ R and all properties Qs, where R is defined in (4.3).

Note that Ubig holds w.h.p. by (for example) the second statement of Theorem 4.2.

Proof. Clearly

E[Ns] � P(Ns > 0) � P(L1 ∈ Qs) � P(As). (8.7)

Let N+ � Ns denote the number of components of Hr
n,p with more than n2/3 vertices. If

As holds, then Ns = 1. If As does not hold and Ns > 0, then N+ � 2. Hence

Ns � 1As
+ Ns1N+�2

and, taking expectations,

E[Ns] � P(As) + E[Ns1N+�2]. (8.8)

For S ⊂ [n] with |S | = s, let QS be the event that S is the vertex set of a component of

Hr
n,p having property Qs. Then

E[Ns1N+�2] = E

∑
S : |S |=s

1QS
1N+�2 =

∑
S

P(QS ∩ {N+ � 2})

=
∑
S

P(QS )P(N+ � 2 | QS ) =
∑
S

P(QS )P(L1(Hr
n−s,p) > n2/3)

= E[Ns]P(L1(Hr
n−s,p) > n2/3) = o(E[Ns]),

by Lemma 8.2.

From (8.8) we now obtain P(As) � (1 − o(1))E[Ns], which combined with (8.7) completes

the proof of (8.5). The final statement (8.6) follows since

P(Bs) = P(Ns > 0) − P(As) � E[Ns] − P(As).

9. Trees, paths and cycles outside the giant component

Throughout this section we assume our Weak Assumption 2.1. In other words we fix

an integer r � 2 and a function p = p(n) = (1 + ε)(r − 2)!n−r+1 where ε = ε(n) = O(1) and

ε3n → ∞. We write λ for 1 + ε, which is the branching factor of Hr
n,p as defined in (8.1).

Our next lemma concerns trees outside the giant component. As in Section 8 we consider

the hypergraph H ′ = Hr
m,p where m = n − s with s ∈ R, where R = Rn is defined as in (4.3).

Lemma 9.1. Let Tk denote the number of tree components of H ′ = Hr
n−s,p with k edges, and

T
(2)
k,� the number of ordered pairs (T ,T ′) of distinct tree components of H ′ with e(T ) = k

and e(T ′) = �. Then

μk = E[Tk] = Θ(n(k + 1)−5/2) (9.1)
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and

μk,� = E[T (2)
k,� ] = μkμ�

(
1 + O(ε(k + �)2m−1)

)
∼ μkμ�, (9.2)

uniformly in 0 � k, � � 10/ε2 and s ∈ R.

Proof. It suffices to fix sequences k = k(n), � = �(n) and s = s(n) satisfying 0 � k, � �
10/ε2 and s ∈ Rn, and prove (9.1) and (9.2) for these sequences, where in principle the

implicit constants above and in the proof that follows may depend on the choice of

the sequences. The claimed uniform bounds follow by considering appropriate worst-case

sequences.

Suppressing the dependence on n as usual, fix sequences k, � and s as above, and let

m = n − s. Note that m = Θ(n); see (4.4). We shall apply Lemma 6.1 with a = 1; recall

the notation {k : t} = (kt)!/(k!t!k) used there.

Considering first the number of choices for the k(r − 1) + 1 vertices, then the number

of trees T on the given vertex set, and finally the probability that the edges of T are

present but no other edges incident with T are, we have

μk =

(
m

k(r − 1) + 1

)
(k(r − 1) + 1)k−1{k : r − 1}pk(1 − p)tm,k−k, (9.3)

where

tm,k =

(
m

r

)
−

(
m − k(r − 1) − 1

r

)
is the number of potential hyperedges on an m-vertex set meeting a given (k(r − 1) + 1)-

vertex set at least once. Postponing the evaluation of μk for the moment, if we write a

similar formula for μk,�, then most terms agree with the corresponding terms in μkμ�.

Indeed, writing a for k(r − 1) + 1 and b for �(r − 1) + 1, it is easy to see that

μk,�

μkμ�
=

(
m − a

b

)(
m

b

)−1

(1 − p)−tm,k,� , (9.4)

where tm,k,� is the number of potential hyperedges meeting both a given set of a vertices

and a given disjoint set of b vertices. Note that

tm,k,� = ab

(
m

r − 2

)
+ O((a + b)3mr−3) = ab

mr−2

(r − 2)!
+ O((a + b)3mr−3).

Writing

λ′ = pmr−1/(r − 2)!

for the branching factor of H ′ = Hr
m,p (see (8.1)), since p = O(n−r+1) = O(m−r+1) it follows

that

ptm,k,� = λ′ab/m + O((a + b)3m−2).

Since, crudely, p = O(1/m) and ab = O((a + b)3), from this it certainly follows that

p2tm,k,� = O((a + b)3m−2), so

log
(
(1 − p)−tm,k,�

)
= ptm,k,� + O(p2tm,k,�) = λ′ab/m + O((a + b)3m−2). (9.5)
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By Lemma 8.1 we have

λ′ = 1 − Θ(ε) and λ′ = Θ(1). (9.6)

Using the formula
(
m−a
b

)
/
(
m
b

)
= exp(−ab/m + O((a + b)3/m2)), valid for a, b � m/3, say,

from (9.4)–(9.6) we see that

log

(
μk,�

μkμ�

)
=

(λ′ − 1)ab

m
+ O((a + b)3m−2) = O(ε(a + b)2m−1) = o(1),

since a + b = O(ε−2) = o(εm). This proves (9.2).

Let us temporarily adopt the convention of writing f ≈ g for f = Θ(g). Returning to

μk , for k = 0 we have μk = m(1 − p)tm,0 . Since m ≈ n, tm,0 =
(
m−1
r−1

)
≈ nr−1 and p ≈ n−r+1,

it follows that μ0 ≈ n, as required. From now on suppose that 1 � k � 10/ε2. Since

p2tm,k = O(p2kmr−1) = O(pk) and pk = o(1), from (9.3) we have

μk ∼ m

(
m − 1

k(r − 1)

)
(k(r − 1) + 1)k−2 (k(r − 1))!

k!(r − 1)!k
pk exp(−ptm,k)

≈ m(m − 1)k(r−1)
kk−2(r − 1)k−2

k!(r − 1)!k
pk exp(−ptm,k)

≈ mk−2(m − 1)k(r−1)
kk

k!(r − 2)!k
pk exp(−ptm,k),

where, as before, (x)y denotes the falling factorial x(x − 1) · · · (x − y + 1). For y � x/2,

(x − 1)y = xy exp

(
− y2

2x
+ O(y/x) + O(y3/x2)

)
.

Since m ≈ n, ε3n → ∞ and k � 10/ε2, both k/m and k3/m2 are o(1). Hence

μk ≈ mk−2

(
mr−1p

(r − 2)!

)k
kk

k!
exp

(
−ptm,k − (r − 1)2k2

2m

)
≈ mk−5/2(λ′)k exp

(
k − ptm,k − (r − 1)2k2

2m

)
, (9.7)

since kk/k! ≈ ek/
√
k.

Now

tm,k =
mr − (m − k(r − 1))r

r!
+ O(mr−1)

=
rk(r − 1)mr−1 −

(
r
2

)
k2(r − 1)2mr−2

r!
+ O(mr−1 + k3mr−3)

=
kmr−1

(r − 2)!
− k2(r − 1)2mr−2

2(r − 2)!
+ O(mr−1).

Since p = λ′(r − 2)!/mr−1, it follows that

ptm,k = λ′k − λ′ (r − 1)2k2

2m
+ O(1).
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Thus, recalling that 1 − λ′ = O(ε), that k = O(ε−2), and that ε3m → ∞, the term inside the

exponential in (9.7) is

k(1 − λ′) − (1 − λ′)
(r − 1)2k2

2m
+ O(1) = k(1 − λ′) + O(1).

Hence, from (9.7),

μk ≈ mk−5/2(λ′e1−λ′
)k.

From the second bound in (9.6), λ′ is bounded away from 0. Since (1 − x)ex = exp(O(x2))

when 0 < x < 1 is bounded away from 1, it follows that (λ′e1−λ′
)k = exp(O((1 − λ′)2k)) =

exp(O(ε2k)) ≈ 1, completing the proof of (9.1).

Corollary 9.2. Suppose that our Weak Assumption 2.1 holds, and define R = Rn as in (4.3).

There is a constant c > 0 such that, for any s = s(n) ∈ R and t = t(n) � 0,

P
(
T�ε−2�,2�ε−2�(H

r
n,p \ L1) � cε3n | L1 = s, N1 = t

)
= o(1),

where Tk,k′ (H) denotes the number components of a hypergraph H that are trees with between

k and k′ edges (inclusive).

Proof. We must be a little careful with the uniformity in this proof: the choice of c is

not allowed to depend on s = s(n) and t = t(n).

Let H ′ = Hr
n−s,p as before and, ignoring rounding to integers, let T = Tn,s = Tε−2 ,2ε−2 (H ′).

Defining μk and μk,� as in Lemma 9.1, by that lemma we have

E[T ] =

2ε−2∑
k=ε−2

μk = Θ(ε−2n(ε−2)−5/2) = Θ(ε3n), (9.8)

and

E[T (T − 1)] =

2ε−2∑
k=ε−2

2ε−2∑
�=ε−2

μk,� ∼
∑
k,�

μkμ� = E[T ]2

uniformly in the choice of s = s(n) ∈ Rn. Let a > 0 be the implicit constant in the lower

bound in (9.8), which does not depend on s. Since E[T ] � aε3n → ∞, we have E[T 2] =

E[T (T − 1)] + E[T ] ∼ E[T ]2. Hence, by Chebyshev’s inequality, P(T � aε3n/2) = 1 −
o(1) as n → ∞, uniformly in s = s(n).

The result follows by Lemma 8.3, applied with P the set of all s-vertex hypergraphs

with nullity t.

We shall need some further, simpler results about the part of Hr
n,p lying outside the giant

component. The first concerns (essentially) the sum of the squares of the component sizes;

it is perhaps in the literature, but since it is immediate, we give a proof for completeness.

Given a hypergraph H , let Ncon(H) denote the number of (ordered) pairs (v, w) of (not

necessarily distinct) vertices of H with the property that v and w are connected by a path,

i.e., are in the same component.
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Lemma 9.3. Suppose that our Weak Assumption 2.1 holds, and define R = Rn as in (4.3).

Let s = s(n) ∈ R and t = t(n) � 0. Then E[Ncon(Hr
n−s,p)] = O(n/ε) and

E
[
Ncon(Hr

n,p \ L1) | L1 = s, N1 = t
]

= O(n/ε).

Proof. By Lemma 8.3 it suffices to prove the first statement. Let H ′ = Hr
n−s,p and, for

� � 0, let J� be the number of ordered pairs of vertices v, w ∈ H ′ joined by a path in

H ′ of length �, so Ncon(H ′) �
∑

� J�. Set m = n − s. Writing a v–w path of length � as

v0e1v1e2 · · · e�v�, where the vi are distinct vertices and the ei distinct hyperedges with v0 = v,

v� = w and ei containing vi−1 and vi, there are at most m�+1 choices for the vi, then at

most
(

m
r−2

)
ways of extending each pair vi−1vi to a hyperedge; to obtain a path these edges

must be distinct, so the probability that all are present is p�. Hence,

E[J�] � m�+1 m(r−2)�

(r − 2)!�
p� = m

(
mr−1p

(r − 2)!

)�

= mλ(H ′)�,

where λ(H ′) is the ‘branching factor’ of H ′ = Hr
n−s,p, defined by (8.1). By Lemma 8.1 we

have λ(H ′) = 1 − Θ(ε), so summing over � we see that

E[Ncon(H ′)] � m(1 − λ(H ′))−1 = O(n/ε),

as claimed.

By similar arguments, one can show that the expected number of vertices on cycles

is O(ε−1), and that the expected number of vertices in components containing cycles is

O(ε−2). We do not need these bounds here.

We finish this section by considering complex components, i.e., ones with nullity at least

2. Karoński and �Luczak [18] prove a version of the following lemma for the ‘size model’

Hr
n,m. We give a (more detailed) proof for Hr

n,p for completeness.

Lemma 9.4. Suppose that our Weak Assumption 2.1 holds, and define R = Rn as in (4.3).

The expected number of complex components of H ′ = Hr
n−s,p is O(1/(ε3n)) = o(1), for any

s = s(n) ∈ R.

Proof. Writing Ginc(H) for the bipartite vertex–edge incidence graph of a hypergraph

H , it is easy to check that n(H) = n(Ginc(H)). A minimal connected graph with nullity

at least 2 clearly has nullity exactly 2 (otherwise delete an edge in a cycle), and is easily

seen to be either a θ-graph, consisting of two distinct vertices joined by three internally

vertex-disjoint paths, or a dumbbell, i.e., two edge-disjoint cycles connected by a path of

length at least 0. (The cycles are vertex-disjoint unless the connecting path has length 0.)

Up to isomorphism, there are O(�2) such graphs with � edges: having chosen whether

the graph is of the θ or dumbbell type, it is specified by choosing the lengths of three

paths/cycles, constrained to sum to �.

Let G� denote the set of isomorphism classes of �-edge bipartite graphs of the form

above, where we distinguish the vertex class A corresponding to hypergraph vertices from

the class B corresponding to hypergraph edges; thus |G�| = O(�2). If H is a connected
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hypergraph with n(H) � 2, then n(Ginc(H)) � 2, so Ginc(H) contains some G ∈
⋃

� G� as a

subgraph. If G has vertex partition A ∪ B, with A = {a1, . . . , ak} and B = {b1, . . . , bt}, then

in particular H has a subgraph H0 consisting of t hyperedges with Ginc(H0) containing

G as a subgraph. Fixing G for the moment, let us estimate the expected number of such

subgraphs H0 present in H ′ = Hr
n−s,p.

Writing m = n − s, there are m(m − 1) . . . (m − k + 1) � mk choices for the vertices of H ′

corresponding to a1, . . . , ak . Let di be the degree of bi in G. For each 1 � i � t we must

choose r − di further vertices (other than those already specified by the neighbours of

bi in G) to complete the hyperedge corresponding to bi. For each i there are at most

mr−di/(r − di)! ways of doing this. Since all but at most two vertices of G have degree 2,

and
∑

i di = e(G) = �, this gives in total

O

(
mrt−�

(r − 2)!t

)
choices. Finally, the probability that the resulting subgraph H0 is present in H ′ is exactly

pt. Hence, the expected number of such subgraphs H0 corresponding to a particular G is

bounded by a constant times

mk+rt−�

(r − 2)!t
pt = mk+t−�

(
mr−1p

(r − 2)!

)t

= m−1λ(H ′)t,

where in the last step we used the fact that G has nullity 2, so k + t − � = |G| − e(G) = −1,

and the definition of the branching factor λ(H ′).

Since G has either two vertices of degree 3 or one of degree 4, and all other vertices

have degree 2, we have 2t � � =
∑

i di � 2t + 2. Hence t � �/2 − 1. Thus, summing over

the O(�2) choices of G ∈ G� and then over � we see that the expectation μ of number of

complex components of H ′ satisfies

μ = O

(∑
��2

m−1�2λ(H ′)�/2−1

)
= O

(∑
��2

m−1�2λ(H ′)�/2

)
,

using the bound λ(H ′) = Θ(1) from Lemma 8.1 in the last step. Now λ(H ′) = 1 − Θ(ε) by

Lemma 8.1; hence λ(H ′)1/2 = 1 − Θ(ε). Since∑
��2

�2x� � 2
∑
��0

(� + 1)(� + 2)x�/2 = 2(1 − x)−3

for 0 � x < 1, it follows that μ = O(m−1ε−3) = O(1/(ε3n)), as claimed.

Of course, instead of considering vertex–edge incidence graphs, we could directly count

the expected number of minimal complex hypergraphs present in Hr
n−s,p. However, there

are significantly more classes of minimal complex hypergraphs than minimal complex

graphs, because the special (degree more than 2) vertices of the corresponding bipartite

incidence graph may correspond to vertices or edges of the hypergraph.
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Lemma 9.5. Suppose that our Weak Assumption 2.1 holds. Let Ucx be the event that L1 is

the unique complex component of Hr
n,p. Then for any s = s(n) ∈ R and t = t(n) � 2 we have

P
(
U c

cx | L1 = s, N1 = t
)

= O(1/(ε3n)).

Furthermore, the probability that Hr
n,p \ L1 has a complex component is O(1/(ε3n)).

Proof. Let E be the event that Hr
n,p \ L1 has at least one complex component. By

Lemmas 8.3 and 9.4, for s ∈ R and t′ � 0 we have

P
(
E | L1 = s, N1 = t′

)
= O(1/(ε3n)). (9.9)

Since N1 = t � 2 implies that L1 is complex, the first statement follows.

Since (9.9) holds for all t′, for any s ∈ R we have

P(E | L1 = s) = O(1/(ε3n)).

Recalling from (4.5) that P(L1 /∈ R) = O(1/(ε3n)), it follows that P(E) = O(1/(ε3n)).

10. Extended cores in hypergraphs

The strategy of our proof of Theorem 2.3 is as follows. We shall randomly mark a small

(order ε2) fraction of the vertices of H = Hr
n,p, and define the extended core C+(H) by

repeatedly deleting edges in which at least r − 1 vertices are unmarked and are contained

in no other edges. We shall show that, conditional on the event {L1 = s, N1 = t}, where s

and t are in the typical range, certain events are likely to hold. In particular, it is likely

that the largest component C+
1 of C+(H) is a subgraph of the largest component of H ,

that the number a1 of vertices in C+
1 is Θ(ε2n), and that the number a0 of isolated vertices

in C+(H) \ C+
1 is also Θ(ε2n). We condition on C+(H), and pick a = min{a0, a1} vertices

of C+
1 and a isolated vertices of C+(H) \ C+

1 . We also condition on the set V of vertices

joined by paths in H to the selected vertices, which we show satisfies |V | = Θ(εn) with

high probability. Then we show that the conditional distribution of the number of vertices

in V that are joined by paths to C+
1 has a smooth distribution; it is this number that will

play the role that Yn plays in the proof of Theorem 3.4.

Turning to the details, by the core C(H) of a hypergraph H we mean the (possibly

empty) hypergraph formed from H by repeatedly deleting isolated vertices and hyperedges

e in which at most one vertex is in a hyperedge other than e. Equivalently, C(H) is the

maximal sub-hypergraph of H without isolated vertices in which every edge contains

at least two vertices in other hyperedges. Note that this is only one of several possible

generalizations of the concept of the core of a graph [8]; another natural possibility is

to take the maximal sub-hypergraph with minimum degree at least 2. A hypergraph H

consists of its core, tree components, and the ‘mantle’, made up of trees each of which

meets the core in a single vertex. It is a part of the mantle that we shall use in our

smoothing argument.

Note that the core of H and that of its bipartite vertex–edge incidence graph Ginc(H)

correspond in a natural way, except that in the latter, any vertices corresponding to

vertices of C(H) that are in a single edge of C(H) are deleted.
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As discussed in Section 3, we would like to ‘detach and reattach’ the trees attached not

only to the core, but also to an additional set of vertices of comparable size. To achieve

this, we define an ‘extended core’, essentially by artificially placing a suitable number of

extra vertices into the core; we shall call these vertices ‘marked’ vertices.

Let (H,V ∗) be a marked hypergraph: a hypergraph H = (V , E) together with a subset

V ∗ of V . The vertices in V ∗ will be called marked vertices. The extended core C+(H,V ∗) is

the marked sub-hypergraph obtained by repeatedly deleting unmarked isolated vertices,

and hyperedges in which all or all but one vertices are unmarked and have degree 1.

Equivalently, C+(H,V ∗) is the maximal sub-hypergraph in which every edge contains at

least two vertices that are either marked or in at least one other edge, and all isolated

vertices are marked. Note that the deletion operation defining the extended core preserves

connectivity, so the extended core of a connected hypergraph H is either connected or, if

H is a tree with no marked vertices (an ‘unmarked tree’), empty. Of course, C+(H,V ∗) is

the union of the extended cores of the components of H .

Proposition 10.1. Any marked hypergraph (H,V ∗) is the union of its extended core C+ =

C+(H,V ∗), a set {Tv}v∈V (C+) of trees, each with with v ∈ Tv , and a possibly empty set {Ui}
of trees, with the vertex sets V (Tv) \ v and V (Ui) disjoint from each other and from V (C+).

In other words, noting that by definition all vertices outside C+(H,V ∗) are unmarked,

we may reconstruct (H,V ∗) from its extended core by adding disjoint trees to each vertex

v of the extended core, unmarked expect possibly at v, and possibly some further disjoint

unmarked trees. Later we shall refer to the set M+ =
⋃

v∈C+(H,V ∗)(V (Tv) \ v) as the (vertex

set of) the extended mantle of (H,V ∗).

Proof. Simply reverse the edge-deletion algorithm defining the extended core.

In this section and the next it will be convenient (though not essential) to assume that

ε → 0, i.e., our Standard Assumption 2.2, as in Theorem 4.4 whose proof we are preparing

for. We also consider a constant 0 < η < 1/100 whose role will be explained at the start

of the next section. Any implicit constants or functions may depend on the choice of the

functions ε = ε(n) and the constant η > 0. As we shall see in Section 11, this will cause

no problems when we come to apply the results. Thus, in this section, we may regard

ε = ε(n) and η > 0 as given, satisfying the following condition which we state for ease of

reference.

Assumption 10.2. The integer r � 2 and real number 0 < η < 1/100 are fixed. The

functions p(n), λ(n) and ε(n) are related by λ = 1 + ε and p = λ(r − 2)!n−r+1. Moreover, as

n → ∞, we have ε3n → ∞ and ε → 0.

With η > 0 and ε(n) given as above, set

α =
η

100r
. (10.1)
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We shall mark the vertices of our random hypergraph H = Hr
n,p independently with

probability

pmark = αε2 = αε(n)2.

We shall treat Hr
n,p as a marked hypergraph without explicitly indicating the set V ∗

of marked vertices in the notation. Let C+(L1) be the extended core of the marked

hypergraph L1, where, as usual, L1 is the largest component of Hr
n,p. Thus C+(L1) is

a component of C+(Hr
n,p), except in the unlikely event that L1 is an unmarked tree, in

which case C+(L1) = ∅. Recall that L1 = |L1|. The next few lemmas gather properties

of C+(Hr
n,p) and its ‘mantle’ that we shall need. A key point is that these results hold

conditional on the giant component L1 having a specific order s and nullity t, provided

s is in the typical range R defined in (4.3). For this reason they do not obviously follow

from ‘global’ results saying that w.h.p. the (extended) core has some property. Another

key point is that we can afford to give up constant factors in the estimates of the size

of the extended core and of its mantle. Throughout the rest of this section, p, λ, ε and η

satisfy Assumption 10.2, and we define R as in (4.3). All new constants introduced below

may depend on the choice of the function ε = ε(n) and of η.

Lemma 10.3. Let r � 2, η > 0 and ε = ε(n) satisfying Assumption 10.2 be given. Then there

is a constant c1 > 0 such that, for n large enough, for any s = s(n) ∈ R and t = t(n) � 1 we

have

P
(
|C+(L1)| > c1ε

2n | L1 = s, N1 = t
)

� 1 − η. (10.2)

Proof. We shall condition not only on the event {L1 = s, N1 = t}, but also on the vertex

set of L1 and on the entire hypergraph structure of its core C(L1). The extended core

contains the core; if the core is not already large enough, we shall show that with

conditional probability at least 1 − η, the interaction of the marked vertices with the core

generates an extended core of at least the required size.

Turning to the details, by (4.4) there is a constant c0 > 0 that depends only on the

function ε(n), such that

s ∈ Rn implies s � c0εn. (10.3)

We shall prove (10.2) with

c1 =
αc0

4
=

ηc0

400r
. (10.4)

First, by Chebyshev’s inequality, if X has a binomial distribution with mean μ � 8/η

(and so variance less than μ) then P(X � μ/2) � 1 − η/2. Hence, from (10.3) and the

assumption ε3n → ∞, there is an n0 such that for all n � n0

s ∈ Rn implies P
(
Bin(s, αε2) � αε2s/2

)
� 1 − η/2. (10.5)
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By assumption ε = ε(n) satisfies ε → 0 and ε3n → ∞. Hence, increasing n0 if necessary, for

all n � n0 we have

ε � 1/100 and ε3n � 8r/c1. (10.6)

From now on, let n � n0, s ∈ Rn and t � 1 be given. We condition on the event E that

L1 = s, N1 = t, the vertex set of L1 is some specific set V1 of s vertices, and the usual

(non-extended) core C(L1) is some particular hypergraph with vertex set V2 ⊂ V1. We

write a = |V2|. Our aim is to show that

P
(
|C+(L1)| � c1ε

2n | E
)

� η. (10.7)

Since L1 and C(L1) have the same nullity, we may assume that C(L1) has nullity t; in fact,

we only need the trivial consequence that C(L1) is not empty.4 Since C+(L1) ⊃ C(L1), if

a > c1ε
2n then the conditional probability in (10.7) is 0. Thus we may assume that

1 � a � c1ε
2n. (10.8)

Relabelling, let us take the vertex set of L1 to be [s] and that of its core to be [a] ⊂ [s].

From the definition of the core, L1 is the union of its core and an [a]-rooted r-forest F

on [s]. Since this forest F does not affect the core, after conditioning on E as above, F is

uniformly random on all such forests. Recall that we mark vertices independently with

probability αε2, where α is given in (10.1). Since L1 and its core C(L1) are defined without

reference to the set V ∗ of marked vertices, each vertex of [s] is marked independently of

the others and of the random forest F .

Set � = �ε−1�. Call a marked vertex v ∈ L1 bad if either

(i) it is at distance at most � from [a] = V (C(L1)) or

(ii) it is joined to another marked vertex by a path in F = L1 − C(L1) of length at most

2�.

If v is not bad, we call it good.

Every marked vertex in L1 is on a path to the core C(L1). The union of these paths

is a subgraph F∗ of the forest F , and C+(L1) = C(L1) ∪ F∗, with each component of F∗

meeting C(L1) in a single vertex. For each good marked vertex v, consider the first �

edges of the path to the core starting at v: these shortened paths are necessarily disjoint,

so |C+(L1)| is at least � times (in fact, at least (r − 1)� times) the number of good marked

vertices. As the number of marked vertices in L1 has the binomial distribution Bin(s, αε2),

by (10.5) the probability that there are at least αε2s/2 marked vertices in L1 is at least

1 − η/2. We claim that, conditional on E , the expected number of bad marked vertices

is at most ηαε2s/8. Assuming this then, by Markov’s inequality, with probability at least

1 − η/2 there are at most αε2s/4 bad marked vertices, and hence with probability at least

4 In proving Theorem 2.4, we do not condition on the nullity n(L1). This means we cannot a priori assume

that C(L1) is non-empty. However, it is immediate from the formulae given by Karoński and �Luczak

[17, Theorem 9] for the number of connected hypergraphs on s vertices with a given small excess that

P(n(L1) = 0 | L1 = s) = o(P(n(L1) = r − 1 | L1 = s)), so P(n(L1) = 0 | L1 = s) = o(1). Hence we can indeed

assume that a � 1.

https://doi.org/10.1017/S0963548315000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000309


62 B. Bollobás and O. Riordan

1 − η there are at least αε2s/2 − αε2s/4 = αε2s/4 good marked vertices. But then, recalling

(10.3) and (10.4),

|C+(L1)| � �αε2s/4 � αεs/4 � αc0ε
2n/4 = c1ε

2n.

To prove the claim, let v be a vertex in [s] = V (L1) chosen uniformly at random. We

must show that the probability that v is a bad marked vertex is at most ηαε2/8. So

first condition on the event that v is marked; it remains to show that the conditional

probability that (i) or (ii) holds is at most η/8.

For (i), this conditional probability is exactly 1/s times the expectation μ of the number

of vertices in [s] within distance � of [a]. From Lemma 6.2 and (10.8),

μ �
∑

0�j��

(a + (r − 1)j) � 2a� + 2r�2 � 2c1ε
2n� + 2r�2.

Since n � n0, from (10.6) we have � = �ε−1� � 2ε−1, say, and 8r/(ε3n) � c1. Thus

μ � 4c1εn + 8rε−2 � 5c1εn =
ηc0εn

80r
� ηs

80r
,

recalling (10.3). Hence the conditional probability μ/s that (i) holds is at most η/(80r) <

η/16.

For (ii), the components of the forest F give a partition of the vertex set [s] of L1 into

a parts (some of which may be singletons). Let us condition on the vertex v and on this

partition. The component T of F containing v is then a uniformly random r-tree on its

vertex set X. Viewing v as the root, we can regard this r-tree as a {v}-rooted r-forest, and

then by Lemma 6.2 the expected number of vertices w �= v joined to v by paths in F (and

hence in T ) of length at most 2� is at most∑
1�j�2�

(1 + (r − 1)j) � 4r�2 = 4r�1/ε�2.

Hence the probability that one or more such vertices are marked is at most 4r�1/ε�2αε2.

From (10.6) and (10.1) this probability is at most 5rα � η/16. Thus the conditional

probability that (i) or (ii) holds is at most η/8, completing the proof of the claim and

hence of the lemma.

We have shown that with high (conditional) probability, the extended core C+(L1) of

the largest component is not too small. Roughly speaking, our next aim is to show that

with high probability the rest of the extended core, i.e., C+(Hr
n,p) \ C+(L1) = C+(Hr

n,p \ L1)

is neither too small nor too big. While this is not too hard, it turns out that we can avoid

some work by considering instead the set

I = {isolated vertices in the hypergraph C+(Hr
n,p \ L1)}. (10.9)

By definition, an isolated vertex in C+(Hr
n,p \ L1) is marked (otherwise it would be deleted

in defining the extended core). By Proposition 10.1, each v ∈ I corresponds to a tree

component of Hr
n,p \ L1 containing exactly one marked vertex, namely v.
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Lemma 10.4. Let r � 2, η > 0 and ε = ε(n) satisfying Assumption 10.2 be given. Then there

is a constant c2 > 0 such that, for any s = s(n) ∈ R and t = t(n) � 0,

P
(
c2ε

2n � |I| � 2αε2n | L1 = s, N1 = t
)

= 1 − o(1).

Proof. The upper bound on |I| is trivial. Indeed, any vertex of I is marked, by the

definition of the extended core. Given that L1 = s, and any further information about L1,

the number of marked vertices in Hr
n,p \ L1 has the binomial distribution Bin(n − s, αε2),

with mean at most αε2n → ∞, so with high probability this number is at most 2αε2n.

Turning to the lower bound, by Lemma 8.3 it suffices to show that w.h.p. H ′ = Hr
n−s,p

(with vertices marked independently with probability αε2) has at least c2ε
2n isolated

vertices in its extended core. An elementary first and second moment calculation (or the

case k = 0 of Lemma 9.1) shows that w.h.p. H ′ has Θ(n) isolated vertices. Since each is

marked independently with probability αε2 and, if marked, is an isolated vertex of C+(H ′),

the result follows from concentration of the binomial distribution.

Let H be a hypergraph with extended core C+(H). We define the mantle M+(H) to be

the set of vertices of H not in C+(H) but connected to it by paths. Thus C+(H) ∪ M+(H)

includes all vertices of H except those in tree components with no marked vertices. By

Proposition 10.1, each w ∈ M+(H) is connected by a path in the mantle to a unique

vertex v ∈ C+(H); for A ⊂ V (C+(H)) we write M+(A) for the set of w ∈ M+(H) whose

corresponding core vertex v is in A.

Lemma 10.5. Let r � 2, η > 0 and ε = ε(n) satisfying Assumption 10.2 be given. Then there

is a constant c3 > 0 such that, for any s = s(n) ∈ R and t = t(n) � 0, we have

P
(
|M+(I)| � c3εn | L1 = s, N1 = t

)
= 1 − o(1).

Proof. Condition on the event that L1 = s and N1 = t. From Corollary 9.2, with

conditional probability 1 − o(1) the hypergraph Hr
n,p \ L1 contains at least cε3n tree

components each having between �ε−2� and 2�ε−2� edges, and so Θ(ε−2) vertices. Having

revealed the graph Hr
n,p, for each such tree, the probability that it contains exactly one

marked vertex is at least some constant c′ > 0. So the conditional distribution of the

number X of such trees containing exactly one marked vertex stochastically dominates a

Binomial distribution with mean cc′ε3n. Since ε3n → ∞, it follows that w.h.p. X � cc′ε3n/2.

Since each tree counted by X contains at least 1 + (r − 1)�ε−2� vertices, and so contributes

at least (r − 1)�ε−2� � ε−2 vertices to M+(I), the result follows.

Lemma 10.6. Let r � 2, η > 0 and ε = ε(n) satisfying Assumption 10.2 be given. Then there

is a constant c4 > 0 such that, for n large enough, for every s ∈ R and t � 0 we have

P
(
|M+(I)| � c4εn | L1 = s, N1 = t

)
� 1 − η.
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Proof. Given a marked hypergraph H , let X(H) denote the number of vertices v of H

with the property that v is joined to some marked vertex of H by a path in H . Note that

every vertex of M+(I) has this property in H− = Hr
n,p \ L1, so |M+(I)| � X(H−). Hence,

by Markov’s inequality, it suffices to show that E[X(H−) | L1 = s, N1 = t] = O(εn).5 Now

X(H−) is at most the number of ordered pairs (v, w) of vertices of H− with v marked and

v, w joined by a path, so

E[X(H−) | L1 = s, N1 = t] � αε2
E[Ncon(H−) | L1 = s, N1 = t]

which, by Lemma 9.3, is O(ε2n/ε) = O(εn).

11. The core smoothing argument

In this section we prove Theorem 4.4; this is all that remains to complete the proof of

Theorem 2.3. The strategy that we follow is outlined at the start of Section 10. Recall that

we always relate p = p(n) and ε = ε(n) by

λ(n) = 1 + ε(n) and p(n) = λ(n)(r − 2)!n−r+1.

Define R = Rn as in (4.3); in this section we shall consider sequences (xn), (yn) and (tn) of

integers such that

tn � 2, xn, yn ∈ Rn, xn − yn = o(
√

n/ε), and xn ≡ yn ≡ 1 − tn mod r − 1. (11.1)

(The congruence condition arises since otherwise there are no r-uniform hypergraphs with

nullity tn and xn or yn vertices.) The following lemma captures (a particular form of) what

is needed to prove Theorem 4.4. Here α ± β denotes a quantity in the range [α − β, α + β].

Lemma 11.1. Suppose that p(n) satisfies our Standard Assumption 2.2, that 0 < η < 1/100

is constant, and that the sequences (xn), (yn) and (tn) satisfy (11.1). Then

P(L1 = yn, N1 = tn) = O(1/(εn)), (11.2)

and, for n large enough,

P(L1 = xn,N1 = tn) = (1 ± 30η)
(
P(L1 = yn, N1 = tn) ± η/(εn)

)
. (11.3)

As usual, the implicit constant in (11.2) may depend on all choices so far, i.e., on the

sequences (p(n)), (xn), (yn) and (tn) and constants r and η, just of course not on n. (See

Remark 2.7.) The same applies to the implicit constant n0 in ‘for n large enough’.

Before proving Lemma 11.1, which will take most of the section, we show that it implies

Theorem 4.4.

Proof of Theorem 4.4, assuming Lemma 11.1. Theorem 4.4 asserts that, given r � 2, a

sequence (p(n)) (and hence ε(n)) satisfying Assumption 2.2, and sequences (xn), (yn) and

5 We need this bound to hold uniformly over s ∈ Rn and t � 0; for this we just consider the worst-case s(n)

and t(n).
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(tn) satisfying (11.1), we have

P(L1 = xn,N1 = tn) − P(L1 = yn, N1 = tn) = o(1/(εn)). (11.4)

In proving this we may of course fix r � 2, (p(n)), (xn), (yn) and (tn) as above, and

0 < δ � 1, say. Then we must show that for all large enough n (depending on all choices

so far), we have ∣∣∣P(L1 = xn,N1 = tn) − P(L1 = yn, N1 = tn)
∣∣∣ � δ/(εn). (11.5)

By the first part of Lemma 11.1, applied with η = 1/200, say, there is a constant C

(which may depend on all choices so far) such that P(L1 = yn, N1 = tn) � C/(εn). We may

assume C > 1. Let η = δ/(60C) � δ/4. By the second part of Lemma 11.1, if n is large

enough then

P(L1 = xn,N1 = tn) = (1 ± 30η)
(
P(L1 = yn, N1 = tn) ± δ/(4εn)

)
.

Since (1 + 30η) � 2, this gives

P(L1 = xn,N1 = tn) = P(L1 = yn, N1 = tn) ±
(
30ηC/(εn) + δ/(2εn)

)
,

which implies (11.5) since 30ηC = δ/2.

It remains to prove Lemma 11.1. In doing so we may of course fix r � 2, sequences (p(n)),

(xn), (yn), (tn), and a real number 0 < η < 1/100 such that our Standard Assumption 2.2

holds, as does (11.1). Any new constants introduced may depend on these choices. Note

that Assumption 10.2 of Section 10 holds.

Define the largest component L1 of Hr
n,p as before, and the extended core C+(Hr

n,p) and

the set I as in Section 10 (see (10.9)). Define R as in (4.3). By (4.4), there are constants

c0 > 0 and c5 such that, for n large,

R = [(1 − δ)ρr,λn, (1 + δ)ρr,λn] ⊂ [c0εn, c5εn].

Set

c = min{c0, c1, c2, c3} and C = max{c4, c5},

where the constants ci, 1 � i � 4, are as in Lemmas 10.3–10.6.

Let A be the event that the following conditions hold:

(i) |C+(L1)| � cε2n,

(ii) cε2n � |I| � 2αε2n,

(iii) |M+(I)| � cεn,

(iv) |M+(I)| � Cεn and

(v) cεn � |C+(L1)| + |M+(C+(L1))| � Cεn.

Claim 11.2. For n sufficiently large, for any s ∈ R and any t � 2 we have

P(A | L1 = s, N1 = t) � 1 − 3η. (11.6)
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Proof. Lemmas 10.3, 10.4, 10.5 and 10.6 imply that properties (i)–(iv) hold with condi-

tional probability at least 1 − (2η + o(1)) � 1 − 3η for n large. Whenever (i) holds then in

particular C+(L1) is not empty. But then by, Proposition 10.1, |C+(L1)| + |M+(C+(L1))| =

|L1| = L1 = s ∈ R, so (v) holds.

As before, let Ucx be the event

Ucx = {L1 is the unique complex component of Hr
n,p},

so Ucx holds w.h.p. by Lemma 9.5. Let C+
1 be the component of C+(Hr

n,p) with the highest

nullity/excess, chosen according to any fixed rule if there is a tie, and let I ′ be the set

of isolated vertices of C+(Hr
n,p) \ C+

1 . Note that if Ucx holds, then C+(Hr
n,p) has a unique

complex component, and we have C+
1 = C+(L1) and so I ′ = I . We shall define an event B

that is closely related to A, but defined using C+
1 and I ′ in place of C1 and I . The point is

that we would like to condition on the extended core (and some further information), and

then use the remaining randomness concerning which parts of the mantle are joined to the

largest component as our smoothing distribution. But until this remaining randomness

has been revealed, we do not know which component is largest, so we cannot easily

condition on A.

Let a1 = |C+
1 |, a0 = |I ′|, and a = min{a1, a0}. Given the entire extended core, pick sets

A1 ⊂ V (C+
1 ) and A0 ⊂ I ′ with |A1| = |A0| = a, for example by choosing in each case the

first a eligible vertices in a fixed order. (This is mostly a convenience; with a little more

work we could work directly with C+
1 and I ′.) Let B be the event that the following hold:

(I) cε2n � a � 2αε2n and

(II) cεn/2 � |M+(A1 ∪ A0)| � 2Cεn.

Claim 11.3. If n is large enough, then whenever A ∩ Ucx holds, so does B.

Proof. Suppose that A ∩ Ucx holds. Then, since Ucx holds, C+
1 = C+(L1). Since |C+(L1)| �

cε2n by condition (i) of A, we have a1 � cε2n. Also, a0 = |I ′| = |I| is between cε2n and 2αε2n

by (ii). Since a = min{a1, a0}, this gives (I). Consider next the upper bound in (II). Since Ucx

holds, A1 ∪ A0 ⊂ C+
1 ∪ I ′ = C+(L1) ∪ I , so M+(A1 ∪ A0) ⊂ M+(C+(L1)) ∪ M+(I), and (iv)

and (v) imply |M+(A1 ∪ A0)| � 2Cεn. For the lower bound we have two cases: if a0 � a1

then A0 = I ′ = I so |M+(A1 ∪ A0)| � |M+(A0)| = |M+(I)| � cεn by (iii). If a1 � a0 then

A1 = C+
1 = C+(L1), so from (v) we have

|M+(A1 ∪ A0)| � |M+(C+(L1))| � cεn − a1 = cεn − a � cεn − 2αε2n,

by (I). Since α � 1 and ε → 0, if n is large enough then it follows that |M+(A1 ∪ A0)| �
cεn/2, so (II) holds.

At this point the reader may forget the definition of A; we work with B from now on.

https://doi.org/10.1017/S0963548315000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000309


Counting Connected Hypergraphs via the Probabilistic Method 67

Claim 11.4. For n sufficiently large, for any s ∈ R and any t � 2 we have

P(B ∩ Ucx | L1 = s, N1 = t) � 1 − 4η, (11.7)

P(B) � 1 − 5η (11.8)

and

P(B) � 1/2. (11.9)

Proof. For any s ∈ R and t � 2, by Lemma 9.5,

P(Ucx | L1 = s, N1 = t) = 1 − o(1). (11.10)

Since A ∩ Ucx implies B, it follows from this and (11.6) that, if n is large enough, then

(11.7) holds. In turn, we deduce that

P(B) � P(B ∩ Ucx) � (1 − 4η)P(L1 ∈ R, N1 � 2).

Since L1 ∈ R w.h.p. (from (8.4)) and (by Theorem 4.1, say) N1 � 2 w.h.p., it follows that

P(B) � 1 − 4η − o(1). Hence (11.8) holds for n large enough. Of course (11.9) (stated only

for convenient reference later) follows, since η � 1/100.

We now have the pieces in place to complete the proof of Lemma 11.1 and hence of

Theorem 4.4.

Proof of Lemma 11.1. We start by revealing the following partial information about

our random marked hypergraph H = Hr
n,p. First reveal C+(H), and in particular which

vertices are marked. Define C+
1 , A1 and A0 as above, noting that these depend only on

C+(H). Reveal M+(A1 ∪ A0), the set of non-core vertices joined by paths to A1 ∪ A0. Also

(although this is not necessary), reveal all hyperedges outside C+(H) ∪ M+(A1 ∪ A0). We

write F = Fn for the σ-algebra generated by the information revealed so far. Note that

the event B defined above is F-measurable.

What have we not yet revealed? Let F be the subgraph of H induced by V =

A1 ∪ A0 ∪ M+(A1 ∪ A0) with any edges inside A1 ∪ A0 removed (these removed edges are

in C+(H)). By Proposition 10.1 and the definition of M+(A1 ∪ A0), the hypergraph F is

an (A1 ∪ A0)-rooted r-forest on V . Moreover, replacing one such forest by another does

not affect C+(H), or indeed any information revealed earlier. Thus, conditional on F , the

distribution of F is uniform over all (A1 ∪ A0)-rooted r-forests on V ; this uniform choice

of the forest F is the only remaining randomness.

When B holds, |A1| = |A0| = a = Θ(ε2n), while m = e(F) = |M+(A1 ∪ A0)|/(r − 1) =

Θ(εn). Since ε = O(1) we have m = Ω(a). Also, a2/m = Θ(ε3n) → ∞, so m = o(a2). Hence

the conditions of Lemma 7.1 are satisfied. Let Yn = |M+(A1)| be the number of vertices

in V \ (A1 ∪ A0) joined to A1 (rather than to A0). Since m3/2a−1 = Θ(
√
n/ε), Lemma 7.1

tells us that when B holds and x′
n − y′

n = o(
√

n/ε), then

P(Yn = x′
n | F) − P(Yn = y′

n | F) = o(
√

ε/n) (11.11)
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and

P(Yn = y′
n | F) = O(

√
ε/n). (11.12)

Let C∗ be the component of H = Hr
n,p containing C+

1 , and let L∗ = |C∗| and N∗ denote

the order and nullity of C∗. Since C∗ consists of C+
1 with a forest attached, N∗ is also the

nullity of C+
1 and so is an F-measurable random variable. Let E denote the event that

Hr
n,p \ L1 has a complex component, so {N∗ = tn} ⊂ {N1 = tn} ∪ E . Theorem 2.5 implies

that P(N1 = tn) = O((ε3n)−1/2). By the last part of Lemma 9.5, we have P(E) = O(1/(ε3n)),

so

P(N∗ = tn) � P(N1 = tn) + P(E) = O((ε3n)−1/2).

It follows from this and (11.9) that

P(N∗ = tn | B) � 2P(N∗ = tn) = O((ε3n)−1/2). (11.13)

Given F , the only uncertainly (i.e., not-yet-revealed information) affecting L∗ is which

vertices of M+(A1 ∪ A0) join to A1 rather than to A0. Thus we may write L∗ as Xn + Yn

where Xn is F-measurable and Yn is defined as above. Hence, when B holds,

P(L∗ = xn | F) − P(L∗ = yn | F)

= P(Yn = xn − Xn | F) − P(Yn = yn − Xn | F) = o(
√

ε/n), (11.14)

by (11.11) with x′
n = xn − Xn and y′

n = yn − Xn. Taking the expectation6 over the F-

measurable event B ∩ {N∗ = tn}, it follows that

P(L∗ = xn,N
∗ = tn | B) − P(L∗ = yn, N

∗ = tn | B)

= o
(√

ε/n P(N∗ = tn | B)
)

= o(1/(εn)), (11.15)

where the last step is from (11.13). Similarly, from (11.12) and (11.13) we see that

P(L∗ = yn, N
∗ = tn | B) = O

(√
ε/n P(N∗ = tn | B)

)
= O(1/(εn)). (11.16)

It remains to remove the conditioning, and to replace L∗ by L1.

Recall that when Ucx holds, then C+
1 = C+(L1), so C∗ = L1, and hence L1 = L∗ and

N1 = N∗. Let s = s(n) ∈ R, and let t = t(n) � 2. If (L∗, N∗) = (s, t) but (L1, N1) �= (s, t),

then there is a component with s vertices and nullity t which is not the unique largest

component. By Lemma 8.4 (in particular from (8.6)), we thus have

P
(
(L∗, N∗) = (s, t), (L1, N1) �= (s, t)

)
= o

(
P((L1, N1) = (s, t))

)
.

Using (11.7) for the first inequality, and recalling that

{L1 = s, N1 = t} ∩ B ∩ Ucx = {L∗ = s, N∗ = t} ∩ B ∩ Ucx,

6 Again, this requires a uniform bound, but we have that by considering the worst-case ωn ∈ B in (11.11) and

(11.14).
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we have

(1 − 4η)P(L1 = s, N1 = t) � P({L1 = s, N1 = t} ∩ B ∩ Ucx)

= P({L∗ = s, N∗ = t} ∩ B ∩ Ucx)

� P({L∗ = s, N∗ = t} ∩ B)

� P(L∗ = s, N∗ = t)

� P(L1 = s, N1 = t)

+ P(L∗ = s, N∗ = t, (L1, N1) �= (s, t))

= (1 + o(1))P(L1 = s, N1 = t).

Hence, for n large,

P({L∗ = s, N∗ = t} ∩ B) = (1 ± 4η)P(L1 = s, N1 = t). (11.17)

Relations (11.17) and (11.8) imply that

P(L∗ = s, N∗ = t | B) =
P({L∗ = s, N∗ = t} ∩ B)

P(B)
= (1 ± 10η)P(L1 = s, N1 = t), (11.18)

since 0 < η < 1/50. Applying (11.18) (backwards) with s = xn and t = tn, then (11.15),

then (11.18) with s = yn and t = tn, we deduce that

P(L1 = xn,N1 = tn) = (1 ± 10η)−1
(
(1 ± 10η)P(L1 = yn, N1 = tn) + o(1/(εn))

)
.

Since 0 < η < 1/30 this implies (11.3) for n large enough. Similarly, from (11.18) and

(11.16) we deduce (11.2), completing the proof of Theorem 4.4.

Finally, let us comment briefly on the proof of Theorem 2.4. The arguments in this

section and the previous one can be modified to prove Theorem 2.4, by omitting all

conditioning on N1, and replacing the quantity 1/(εn) where it appears as the order of a

point probability (for example in (11.15) and (11.16)) by
√
ε/n, which is (within a constant

factor) the probability that L1 takes a given typical value. At almost all points nothing

needs to be added to the argument. Two exceptions are in the proof of Lemma 10.3, and

that in place of (11.10) we need P(Ucx | L1 = s) = 1 − o(1). See the footnote to the proof

of Lemma 10.3 for an argument covering both of these.

12. Proof of Theorem 1.1

In this section we shall deduce Theorem 1.1 from Theorem 2.3. The only additional result

needed for this is Lemma 8.4; however, the formulae are rather messy and we will devote

some space to calculations aimed at simplifying them.

Proof of Theorem 1.1. Let r � 2 be fixed, and suppose that t = t(s) → ∞ as s → ∞;

our aim is to give an asymptotic formula for the number Cr(s, t) of connected r-uniform

hypergraphs on [s] having nullity t. From (1.1) the number m of edges of any such

hypergraph satisfies

m =
s + t − 1

r − 1
.
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In particular, we must have s + t congruent to 1 modulo r − 1 for Cr(s, t) to be non-zero.

We assume this from now on. We also assume that t = o(s) and t → ∞. More precisely, we

fix a function t = t(s) with these properties; we shall define a number of other quantities

in terms of s and t. Except where otherwise specified, all limits and asymptotic notation

then refer to s → ∞.

The function Ψr(x) defined in (1.2) is continuous on (0, 1) and tends to 0 as x → 0 and

to infinity as x → 1. Also, as mentioned in the Introduction, Ψr(x) is strictly increasing

on (0, 1); hence, for s large enough that t � 2, the equation (1.4) has a unique positive

solution ρ = ρ(s). Expanding about x = 0 we see that

Ψr(x) =
r − 1

12
x2 + O(x3),

uniformly in 0 < x � 1/2, say. Thus

ρ ∼ 2

√
3

r − 1

t

s
(12.1)

as s → ∞.

Define

ρ2 = ρ2(s) = 1 − (1 − ρ)r−1 (12.2)

and

λ = λ(s) =
− log(1 − ρ2)

ρ2
=

−(r − 1) log(1 − ρ)

1 − (1 − ρ)r−1
. (12.3)

Note that λ > 1; comparing (12.2) and (12.3) with (2.1) and (2.2) we see that in the

notation of the rest of the paper,

ρ2 = ρλ = ρ2,λ and ρ = ρr,λ.

As s → ∞, from (12.1) we have ρ = ρ(s) → 0. Thus, from (12.2), ρ2 ∼ (r − 1)ρ. Hence

λ = 1 + ρ2/2 + O(ρ2
2)

and

ε = λ − 1 ∼ ρ2

2
∼ r − 1

2
ρ ∼

√
3(r − 1)

t

s
→ 0. (12.4)

Set

n = n(s) = �s/ρ� and p = p(s) = λ
(r − 2)!

nr−1
.

Since ρ → 0 as s → ∞, certainly n → ∞ and n ∼ s/ρ. Hence, from (12.4),

εn ∼ r − 1

2
s.

From (12.4) we also have ε → 0. In addition,

ε3n = ε2(εn) = Θ((t/s)s) = Θ(t) → ∞.

Hence our Standard Assumption 2.2 is satisfied, i.e., we have the conditions needed to

apply Theorem 2.3. (Of course, here we consider a sequence (n(s), ε(s))s�1 of values rather
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than a sequence (n, ε(n))n�1. This causes no problems since we can pass to subsequences

on which n(s) is strictly increasing.)

We have chosen the parameters n and p so that the ‘typical’ order and nullity of the

largest component of Hr
n,p will be very close to s and t, respectively. More precisely, for

the ‘typical’ number ρr,λn of vertices we have

ρr,λn = ρn = ρ�s/ρ� = s + O(ρ) = s + O(ε).

For the nullity, recalling (2.4) and (12.3) we see that the formula (1.2) defining Ψr may be

written as

Ψr(ρr,λ) = ρ∗
r,λ/ρr,λ. (12.5)

Indeed, this is how we arrived at this formula. Since ρr,λ = ρ it follows using (1.4) that

ρ∗
r,λn = Ψr(ρ)ρn =

t − 1

s
ρn = t − 1 + O(ε3) = t + O(1).

The standard deviations σn and σ∗
n appearing in Theorem 2.3 tend to infinity, so certainly

we have s = ρr,λn + o(σn) and t = ρ∗
r,λn + o(σ∗

n). Hence, by Theorem 2.3, and in particular

the formula (2.8) (with a = b = 0),

P
(
L1(Hr

n,p) = s, N1(Hr
n,p) = t

)
∼

√
6

8π

(r − 1)2

εn
∼

√
6

4π

r − 1

s
. (12.6)

On the other hand, applying Lemma 8.4 with Qs the set of all r-uniform hypergraphs

with s vertices and nullity t, writing Ns,t for the number of components of Hr
n,p with the

property Qs, we have

P
(
L1(Hr

n,p) = s, N1(Hr
n,p) = t

)
∼ E[Ns,t]. (12.7)

By linearity of expectation,

E[Ns,t] =

(
n

s

)
Cr(s, t)p

m(1 − p)(
n
r)−(n−s

r )−m. (12.8)

Combining (12.6)–(12.8) we see that

Cr(s, t) ∼
√

6

4π

r − 1

s

(
n

s

)−1

p−m(1 − p)−
(
(nr)−(n−s

r )−m
)
. (12.9)

In the rest of this section we simplify this formula, in particular by showing that we can

replace n = �s/ρ� by s/ρ, for example.

Working in terms of n and ε (the more familiar parameters from the bulk of the paper),

we have

s = Θ(εn), t = Θ(ε3n), m = Θ(εn), p = O(n−r+1) = O(n−1).

It follows immediately that pm = o(1), so (1 − p)m ∼ 1. Also,

r!

(
n

r

)
= n(n − 1) · · · (n − r + 1) = nr −

(
r

2

)
nr−1 + O(nr−2)
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and

r!

(
n − s

r

)
= (n − s)r −

(
r

2

)
(n − s)r−1 + O(nr−2) = (n − s)r −

(
r

2

)
nr−1 + O(snr−2).

Subtracting, we see that(
n

r

)
−

(
n − s

r

)
=

nr − (n − s)r

r!
+ O(snr−2) =

nr − (n − s)r

r!
+ o(nr−1) = o(nr).

Since log
(
(1 − p)k

)
= −pk + O(p2k), it follows easily that

a = − log
(
(1 − p)(

n
r)−(n−s

r )−m
)

= p
nr − (n − s)r

r!
+ o(1)

=
λn

r(r − 1)
(1 − (1 − s/n)r) =

λs

r(r − 1)
f(s/n),

where f(x) = x−1(1 − (1 − x)r). Since f′(x) = O(1) for x = O(1) and s/n − ρ = O(ε/n) we

have f(s/n) − f(ρ) = O(ε/n), so sf(s/n) − sf(ρ) = O(ε2) = o(1). Hence

a =
λs

r(r − 1)
f(ρ) + o(1).

From (1.2), (12.3) and (1.4) it follows that

a = s
Ψr(ρ) + 1

r − 1
+ o(1) = s

(t − 1)/s + 1

r − 1
+ o(1) =

s + t − 1

r − 1
+ o(1) = m + o(1).

From (12.9) we now obtain the formula

Cr(s, t) ∼
√

6

4π

r − 1

s
emp−m

(
n

s

)−1

.

By Stirling’s formula,(
n

s

)−1

∼
√

2π

√
s(n − s)

n

ss(n − s)n−s

nn
∼

√
2πs

(
s

n

)s(
1 − s

n

)n−s

.

Since s = ρn + O(ε), we have s/n = ρ(1 + O(1/n)). Also, 1 − s/n = (1 − ρ)(1 + O(ε/n)),

and it follows that (
n

s

)−1

∼
√

2πsρs(1 − ρ)s(1−ρ)/ρ.

Using again that s/n = ρ(1 + O(1/n)), and that m = O(εn) = o(n), we have

p−m =
n(r−1)m

λm(r − 2)!m
∼ s(r−1)m

λm(r − 2)!mρ(r−1)m
.

Next, we shall eliminate λ from this expression. From (1.4), (12.5) and (2.4) we have

(r − 1)m

s
=

s + t − 1

s
= 1 + Ψr(ρ) = 1 +

ρ∗
r,λ

ρ
=

λ

rρ

(
1 − (1 − ρ)r

)
.

Hence

λm = ((r − 1)m/s)mrmρm
(
1 − (1 − ρ)r

)−m
.
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Putting the pieces together we obtain the asymptotic formula

Cr(s, t) ∼
√

6

4π

r − 1

s
em

s(r−1)m

λm(r − 2)!mρ(r−1)m

√
2πsρs(1 − ρ)s(1−ρ)/ρ

=

√
3

2
√
π

r − 1√
s
em

s(r−1)m

λm(r − 2)!mρ(r−1)m
ρs(1 − ρ)s(1−ρ)/ρ

=

√
3

2
√
π

r − 1√
s
em

(1 − (1 − ρ)r)ms(r−1)m

((r − 1)m/s)mrmρm(r − 2)!mρ(r−1)m
ρs(1 − ρ)s(1−ρ)/ρ

=

√
3

2
√
π

r − 1√
s
em

(1 − (1 − ρ)r)msrm

mmr!mρrm
ρs(1 − ρ)s(1−ρ)/ρ, (12.10)

proving the main formula (1.3) of Theorem 1.1.

Turning to (1.5), let

N =

(
s

r

)
=

s(s − 1) · · · (s − r + 1)

r!
=

sr

r!
e−(r2)/s+O(s−2).

Since m ∼ s/(r − 1), it follows that

Nm ∼ srm

r!m
e−(r2)m/s ∼ srm

r!m
e−r/2.

Since N = Θ(sr), for r � 3 we have m2 = o(N), and it follows that(
N

m

)
=

N(N − 1) · · · (N − m + 1)

m!
∼ Nm

m!
.

On the other hand, if r = 2 then m ∼ s and N ∼ s2/2, so(
N

m

)
=

Nm

m!
e−(m2)/N+o(1) ∼ e−1N

m

m!
.

We may write the last two formulae together as
(
N
m

)
∼ e−1r=2Nm/m!, where 1A denotes

the indicator function of A. Hence, using Stirling’s formula, and recalling that m =

(s + t − 1)/(r − 1) ∼ s/(r − 1),(
N

m

)
∼ e−r/2−1r=2

√
2πm

emsrm

mmr!m
∼ e−r/2−1r=2√

2πs/(r − 1)

emsrm

mmr!m
.

From this and (12.10) we obtain the expression

Pr(s, t) ∼ er/2+1r=2
√

2πs/(r − 1)

√
3

2
√
π

r − 1√
s

(1 − (1 − ρ)r)m

ρrm
ρs(1 − ρ)s(1−ρ)/ρ

= er/2+1r=2

√
3(r − 1)

2

(
1 − (1 − ρ)r

ρr

)m(
ρ(1 − ρ)(1−ρ)/ρ

)s
,

completing the proof.
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[17] Karoński, M. and �Luczak, T. (1997) The number of connected sparsely edged uniform

hypergraphs. Discrete Math. 171 153–167.
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[23] Sato, C. M. (2013) Core structures in random graphs and hypergraphs. PhD thesis, Department

of Combinatorics and Optimization, University of Waterloo.

https://uwspace.uwaterloo.ca/handle/10012/7787

https://doi.org/10.1017/S0963548315000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000309


Counting Connected Hypergraphs via the Probabilistic Method 75

[24] Sato, C. M. and Wormald, N. Asymptotic enumeration of sparse connected 3-uniform

hypergraphs. arXiv:1401.7381

[25] Schmidt-Pruzan, J. and Shamir, E. (1985) Component structure in the evolution of random

hypergraphs. Combinatorica 5 81–94.

[26] Scott, A. and Tateno, A. On the number of triangles in a random graph. Manuscript.

[27] Selivanov, B. I. (1972) Enumeration of homogeneous hypergraphs with a simple cycle structure.

Kombinatorny̆ı Anal. 2 60–67.

[28] Wright, E. M. (1977) The number of connected sparsely edged graphs. J. Graph Theory 1

317–330.

[29] Wright, E. M. (1978) The number of connected sparsely edged graphs II: Smooth graphs and

blocks. J. Graph Theory 2 299–305.

[30] Wright, E. M. (1980) The number of connected sparsely edged graphs III: Asymptotic results.

J. Graph Theory 4 393–407.

[31] Wright, E. M. (1983) The number of connected sparsely edged graphs IV: Large nonseparable

graphs. J. Graph Theory 7 219–229.

https://doi.org/10.1017/S0963548315000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000309

