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The goal of property testing is to quickly distinguish between objects which satisfy a

property and objects that are ε-far from satisfying the property. There are now several

general results in this area which show that natural properties of combinatorial objects can

be tested with ‘constant’ query complexity, depending only on ε and the property, and not

on the size of the object being tested. The upper bound on the query complexity coming

from the proof techniques is often enormous and impractical. It remains a major open

problem if better bounds hold.

Maybe surprisingly, for testing with respect to the rectangular distance, we prove there

is a universal (not depending on the property), polynomial in 1/ε query complexity bound

for two-sided testing hereditary properties of sufficiently large permutations. We further

give a nearly linear bound with respect to a closely related metric which also depends

on the smallest forbidden subpermutation for the property. Finally, we show that several

different permutation metrics of interest are related to the rectangular distance, yielding

similar results for testing with respect to these metrics.

2010 Mathematics subject classification: Primary 68W20

Secondary 68R05, 05D40, 05A05, 68R15

1. Introduction

Traditionally, algorithms that run in time polynomial in the input size were considered

fast. However, as the desired input size has increased, this notion of fast is sometimes

insufficient. Some examples include in algorithmic problems on networks like the internet

or the brain, or in ranking websites for search algorithms, in which the structures being

studied have billions of elements and are often not well understood. In order to handle

such large structures, sublinear time algorithms are desired. One would not expect such

algorithms to be able to determine properties of the structures with certainty. This is

where property testing comes in.

† Research partially supported by a Packard Fellowship, by NSF Career Award DMS-1352121 and by an

Alfred P. Sloan Fellowship.
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The goal of property testing is to quickly distinguish between objects which satisfy a

property and objects that are ε-far from satisfying the property. The study of this notion

was initiated by Rubinfield and Sudan [28]. Subsequently, Goldreich, Goldwasser and

Ron [17] began the investigation of property testers for combinatorial objects. There are

now several quite general results in this area which show that properties can be tested

with ‘constant’ query complexity, depending only on ε and the property, and not on the

size of the object being tested. A property P is one-sided testable if there is a function q(ε)

and a randomized algorithm with query complexity q(ε) which, on an input which has

property P , correctly outputs that the object has property P , and on input that is ε-far

from satisfying P , correctly outputs with probability at least 2/3 that the object is ε-far

from satisfying P . Property P is two-sided testable if it correctly outputs in either case with

probability at least 2/3. Note that if an input neither satisfies P nor is ε-far from P , it has

no guarantee on the output. An exemplary result in this area, due to Alon and Shapira

[4], states that every hereditary graph property is one-sided testable. However the query

complexity bound it gives is at least of wowzer type in 1/ε, which is one level higher in

the Ackermann hierarchy than the tower function, as it uses the strong regularity lemma.

Enormous bounds like this on the query complexity are typical of many general results

in this area and is a major drawback as the bounds are impractical. Besides regularity

methods, which often give tower-type or worse estimates, some of the other results in this

area are established using compactness arguments and thus yield no bound. There are

some examples of progress on quantitative bounds for property testing. See, for example,

[1, 3, 5, 6, 13]. However, it remains a major open problem if better bounds hold for the

various property testing results.

In this paper, we address this problem for permutations. To properly understand our

results, it is important to try to first determine what is a good notion (or notions) of

distance between combinatorial objects. This is because we need to understand which

metric we are using when we say that two objects are ε-far from each other in this

metric. For graphs, the edit distance, which is the fraction of pairs which one needs to

add or delete edges from in order to turn one graph into the other, is quite natural,

and it is not surprising that it is the most studied with regard to graph property testing.

For permutations, there are now several important metrics that naturally arise in ranking

problems in statistics. See, for example, the book by Diaconis [9]. This makes it less clear

for which metrics permutation property testing should be applied.

An early paper of Cooper [7] develops an analogue of Szemerédi’s regularity lemma for

permutations† and deduces a permutation removal lemma. Typically, removal lemmas are

equivalent to saying that certain properties of combinatorial objects are one-sided testable

with respect to some metric. However, Cooper’s permutation removal lemma does not

give such a metric and so does not actually translate to a result in property testing.

Since Cooper’s work, there are now two different notions of distance which have

been studied for permutation property testing, the rectangular distance (or cut distance)

† This regularity lemma was subsequently improved upon by Hoppen, Kohayakawa and Sampaio [19] and

with much better quantitative estimates by Fox, Lovász and Zhao [14].
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and Kendall’s tau distance. The rectangular distance for permutations is an analogue of

the Frieze–Kannan cut distance for graphs, which has played an important role in the

development of the weak regularity lemma, graph limits and approximation algorithms

for graphs. See, for example, the book by Lovász [25] and the paper [14].

A permutation π of length n is a bijection from [n] := {1, 2, . . . , n} to itself. We can

represent π as n points in the plane with the coordinates of the ith point being (i, π(i)).

The rectangular (cut) distance between two permutations π1, π2 of length n is defined to

be

ρr(π1, π2) =
1

n
max
S,T

||π1(S) ∩ T | − |π2(S) ∩ T ||,

where the maximum is over all sub-intervals S, T of [n]. Thus, the rectangular distance is

the normalized maximum discrepancy in rectangles between the number of points of the

form (i, π1(i)) and the number of points of the form (i, π2(i)). While the rectangular distance

is defined globally, through a counting lemma, it can be shown that two permutations

have small rectangular distance if and only if they have roughly the same densities of all

small subpermutations. This is an analogue of similar results for graphs; see [25] and [20]

for details on these results for graphs and permutations, respectively.

A copy of a permutation σ of length k in a permutation π of length n is a subsequence

of π that has the same order type as σ. That is, a copy of σ in π is a sequence of integers

1 � i1 < i2 < · · · < ik � n such that π(ij) < π(i�) if and only if σ(j) < σ(�). If π contains

a copy of σ, then we say that σ is a subpermutation of π. If π does not contain a copy

of σ, then we say that π avoids σ or is σ-free. A permutation property is just a family of

permutations. A permutation property P is hereditary if it is closed under subpermutations,

that is, if every subpermutation of a permutation in P is also in P . Hoppen, Kohayakawa,

Moreira and Sampaio [21] proved that every hereditary permutation property is one-sided

testable with respect to the rectangular distance. Their proof uses a compactness argument

and does not give any bound on the query complexity. They also conjectured a stronger

result that hereditary permutation properties are strongly testable, that is, they can be

tested with respect to Kendall’s tau distance: for two permutations π1, π2 of length n,

ρKT(π1, π2) =
1(
n
2

) |{(i, j) such that π1(i) < π1(j), π2(i) > π2(j), i, j ∈ [n]}|.

Alternatively, Kendall’s tau distance between π1, π2 can also be defined as the minimum

number of adjacent transpositions (i.e. swapping the y-coordinates of the points (i, π(i))

and (i+ 1, π(i+ 1))) required to turn π1 into π2, and normalized by dividing by
(
n
2

)
. This

conjecture is stronger because the rectangular distance is small if Kendall’s tau distance

is small, but the converse is not true. For example, for two random permutations of

length n almost surely have rectangular distance o(1), but Kendall’s tau distance Ω(1).

The nice conjecture of Hoppen, Kohayakawa, Moreira and Sampaio [21] was verified by

Klimošová and Král’ [23]. However, even for the property of being σ-free for some fixed

permutation σ, the bound on the query complexity is enormous, of Ackermann type in
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1/ε, and hence not primitive recursive.‡ In another work [15], we prove that there is a

polynomial in 1/ε bound for one-sided testing σ-freeness, where the exponent depends on

σ. The result generalizes to show that hereditary properties are one-sided testable with

respect to Kendall’s tau distance, and for typical properties, it gives a polynomial bound.

Another important permutation metric is Spearman’s footrule distance. For two

permutation π1, π2 : [n] → [n], their Spearman’s footrule distance is

D(π1, π2) =
1(
n
2

) n∑
i=1

|π1(i) − π2(i)|.

A fundamental result of Diaconis and Graham [10] states that

ρKT(π1, π2) � D(π1, π2) � 2ρKT(π1, π2).

Thus Kendall’s tau distance and Spearman’s footrule distance are within a factor of two,

and so testing with respect to Kendall’s tau distance is essentially equivalent to testing

with respect to Spearman’s footrule distance.

Maybe surprisingly, for testing with respect to the rectangular distance, we prove that

there is a universal (not depending on the property), polynomial in 1/ε query complexity

bound for two-sided testing of hereditary properties of sufficiently large permutations.

One drawback of the definition of the rectangular distance is that it is global, whereas

with Kendall’s tau distance, we see that we can make sequential local moves in order to

get from one permutation to the other. We study a new distance for permutations, whose

general form is called earth mover’s distance in statistics. It turns out to be quite natural

and defined based on local moves, yet we prove it is small if and only if the rectangular

distance is small.

Definition 1.1 (planar tau distance). We say that σ is obtained from π by a planar simple

transposition if there is an integer 1 � i < |π| − 1 such that σ is the same as π except

σ(i) = π(i+ 1), σ(i+ 1) = π(i), or σ−1(i) = π−1(i+ 1), σ−1(i+ 1) = π−1(i). The planar tau

distance ρPT(π1, π2) between two permutations π1, π2 of length n is defined as 1/
(
n
2

)
times

the minimum number of planar simple transpositions needed to transform π1 into π2.

The 1/
(
n
2

)
factor in the definition is the proper normalization in order to guarantee that

this distance is always at most one. We can also define the planar tau distance in terms

of Kendall’s tau distance, since the planar tau distance allows for adjacent transpositions

in both the horizontal and vertical directions. Thus

ρPT(π1, π2) = min
bijection θ:[n]→[n]

ρKT(id, θ) + ρKT(π1, π2 ◦ θ).

It is also useful and interesting to define a planar analogue of Spearman’s footrule

distance.

‡ In the conference version of [23], it is incorrectly stated that the proof gives a double exponential bound for

testing σ-freeness.

https://doi.org/10.1017/S096354831800024X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800024X


Fast Property Testing and Metrics for Permutations 543

Definition 1.2 (Earth mover’s distance (for permutations)). The earth mover’s distance

between two permutations π1, π2 of length n is defined as

ρEMD(π1, π2) =
1(
n
2

) min
bijection θ:[n]→[n]

( n∑
i=1

|i− θ(i)| + |π1(i) − π2(θ(i))|
)
,

where the minimum is over all bijections θ : [n] → [n].

This is the sum of L1 distances between a point in π1 and the point in π2 that it maps

to under θ. We can treat θ as a permutation. Thus the earth mover’s distance is equivalent

to

ρEMD(π1, π2) = min
bijection θ:[n]→[n]

D(id, θ) + D(π1, π2 ◦ θ).

When θ is the identity permutation id, we obtain ρPT(π1, π2) � ρKT(π1, π2) and

ρEMD(π1, π2) � D(π1, π2). Thus, the planar metrics are at most their classical analogues.

The earth mover’s distance is a special case of more general metrics that have been

extensively studied before in other contexts. It is called the earth mover’s distance or

the Monge–Kantorovich norm in computer science, and was first introduced by Monge

[27] in 1781 as a central concept in transportation. It is a natural way of measuring

the similarity between two digital images (see e.g. [29]). In the case of permutations, the

digital image has a single one in each row and column. In analysis, it is known as the

Wasserstein metric. It is also a special case of the minimum weighted matching problem

(see e.g. [30]).

By the definitions of the planar tau distance through Kendall’s tau distance and the earth

mover’s distance through Spearman’s footrule distance, and by the Diaconis–Graham

inequality, we therefore get the following planar analogue of the Diaconis–Graham

inequality, which was pointed out by Diaconis [8].

Corollary 1.3.

ρPT(π1, π2) � ρEMD(π1, π2) � 2ρPT(π1, π2).

The following result shows that the planar tau distance is small if and only if the

rectangular distance is small. Together with the previous result, it shows that testing

with respect to any of these metrics is the same up to a quadratic change in the testing

parameter ε.

Theorem 1.4. For any two permutations π1, π2 of length n, we have

1

8
ρr(π1, π2)

2 � ρEMD(π1, π2) � 48ρr(π1, π2)
1/2.

Thus the new planar metrics share many of the advantages of both the rectangular

distance and Kendall’s tau distance. This result and other results relating permutation

metrics are proved in the full version of this paper.
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Figure 1. Blow-up of a permutation. In this example, α′ (the permutation in black) is a blow-up of α (the

permutation in red), with the four blocks being four grey squares. The first, second, third and fourth points in

α blow-up into blocks of sizes three, four, two and one respectively.

Definition 1.5 (blow-up of a permutation). A permutation α′ is a blow-up of another

permutation α if and only if we can find positive integers 1 = k1 < k2 < · · · < k|α|+1 =

|α′| + 1 with the following property. If i1, i2 � |α′| satisfy that kj1 � i1 < kj1+1 and kj2 �
i2 < kj2+1 with j1 �= j2, then α′(i1) > α′(i2) if and only if α(j1) > α(j2).

Intuitively, it means that each point (i, α(i)) blows up into a block {(i′, α′(i′)), ki � i′ <

ki+1}. The ith block is of size ki+1 − ki. Notice that we did not specify the permutation

within each block. Figure 1 is an example of a blow-up α′ of a permutation α.

A k-blow-up of α is a blow-up of α where each block has size k. We next define some

important parameters for the property P related to blow-ups of permutations. Since we

work with a single property P , we leave it out of the notation to make the notation

simpler.

Definition 1.6 (blow-up parameter for P). Given a permutation α, let k∗(α) be the

minimum positive integer k (if it exists) such that no k-blow-up of α is in P . If no

such integer k exists, that is, for every k there is a k-blow-up of α which is in P , then we

define k∗(α) = ∞. Given a positive integer T , let k∗(T ) be the maximum of k∗(α) over all

permutations α of length T for which k∗(α) < ∞. If no such α exists, that is, k∗(α) = ∞
for all permutations α of length T , then we define k∗(T ) = ∞.

Note that if P is hereditary and has a forbidden subpermutation of length at most T ,

then it has a forbidden subpermutation α of length T , and α is a 1-blow-up of itself and

is not in P , which implies that k∗(T ) is finite in this case.

We give a nearly linear bound for the query complexity for testing P which depends

on the smallest forbidden subpermutation for the property. We first need an important

definition. A 0–1 matrix A contains another 0–1 matrix B if there is a submatrix A′ of A

of the same size as B such that for every one entry of B, the corresponding entry of A′

is a one. For a permutation σ, the extremal number ex(n, σ) is the maximum number of
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one entries in an n× n matrix with entries 0 or 1 which does not contain the permutation

matrix of σ. Füredi and Hajnal [16] conjectured that for each permutation σ, the limit

c(σ) := lim
n→∞

ex(n, σ)

n

exists. Klazar [22] proved that the Füredi–Hajnal conjecture implies the well-known

Stanley–Wilf conjecture. A celebrated result of Marcus and Tardos [26] verifies the Füredi–

Hajnal conjecture, and hence the Stanley–Wilf conjecture. It shows that c(σ) = 2O(|σ| log |σ|).

The first author [12] improved the bound to c(σ) = 2O(|σ|), and showed that c(σ) = 2|σ|Ω(1)

for almost all permutations σ of a given order. The constant c(σ) is known as the

Füredi–Hajnal constant of σ. The fact that ex(n, σ) is superadditive in n implies that

ex(n, σ) � c(σ)n for all n.

Theorem 1.7. For each proper hereditary permutation property P and ε > 0, let

C = C(P) = 1000c(σ), where c(σ) is the Füredi–Hajnal constant of a smallest forbidden

subpermutation σ for P . Let

M = M(ε) =

(
2000C

ε

)
log2(ε/2), n0 = n0(M, ε) = 32M5k∗(M)/ε3.

There is a two-sided tester for P with respect to the planar tau distance of query complexity

M for permutations of size at least n0.

The tester works as follows. Let M be as specified in Theorem 1.7. For a permutation π,

we pick a subpermutation π′ of π of sizeM uniformly at random; call it anM-sample. That

is, we pick a subset S ⊂ [n] of size M uniformly at random, and π′ is the subpermutation

of π induced on S . If, for all integers k, there exists a k-blow-up of π′ ∈ P , our algorithm

outputs ‘π is in P ’. If there exists an integer k such that no k-blow-up of π′ is in P , our

algorithm outputs ‘π is not in P ’. We remark that the constant dependence can sometimes

be improved by using extremal properties of the family of forbidden subpermutations

rather than just the smallest forbidden subpermutation.

The next theorem gives a universal quadratic bound (not depending on the property)

on the query complexity for testing sufficiently large permutations.

Theorem 1.8. For any hereditary permutation property P and ε > 0, let M = M(ε) =

20000/ε2 and n0 = n0(M, ε) = 32M5k∗(M)/ε3. There is a two-sided tester for P with respect

to the planar tau distance of query complexity M for permutations of size at least n0.

Theorems 1.7 and 1.8 are both with respect to two-sided testing. For one-sided testing,

we can still get reasonably good bounds, as stated in Theorem 1.9, by showing that

very likely a permutation has the property that it is close to a blow-up of a random

subpermutation α and a somewhat larger random subpermutation π′ very likely contains

a k∗(|α|)-blow-up of α. These bounds are polynomial in 1/ε as long as the blow-up

parameter k∗(M) for P is bounded above by a polynomial in M. In particular, for almost

all permutations σ of length s, we get a universal bound for testing σ-freeness. This is

because almost all permutations σ of length s have no sub-interval of length three whose
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Figure 2. Permutation representation in [0, 1]2. This is an example of the permutation 8, 2, 7, 6, 4, 5, 3, 1, 9, 10.

image is an interval of length three, and hence k∗ is at most three for the property of

being σ-free.

Theorem 1.9. Let P be a hereditary permutation property and ε > 0. Let M1(ε),M2(ε) be

the value M in terms of ε in Theorems 1.7 and 1.8, respectively. Let n0(M, ε)=32M5k∗(M)/ε3.

Let

M ′ = min(n0(M1(ε/2), ε/2), n0(M2(ε/2), ε/2)).

There is a one-sided tester for P with respect to the planar tau distance of query complexity

M ′ for permutations of size at least M ′.

Finally, we show that several different permutation metrics of interest are closely related

to the cut metric, yielding similar results for testing with respect to these metrics.

We often consider the input permutation π of length n as a collection of points

(i/n, π(i)/n) in the unit square [0, 1]2 := [0, 1] × [0, 1]. See Figure 2 for an example.

If we are testing for a hereditary permutation property P , and we know that the

following hold:

• there is a permutation σ �∈ P (or even if large blow-ups of σ are not in P),

• there are |σ| rectangles whose horizontal intervals are disjoint and whose vertical

intervals are disjoint,

• each of the rectangles contains a significant fraction of the points corresponding to π,

and

• if we pick one point from each of the rectangles, then we form a copy of σ,

then a large sample of points from π will likely have many points in each rectangle

and thus contain a large blow-up of σ and certify that π �∈ P . This simple idea is very

important for our various property testing algorithms, and is demonstrated in Figure 3.

2. Equivalence between different metrics on permutations

We next define several different metrics between permutations of the same length. Each

of the metrics we use here is normalized such that the maximum distance between

two permutations cannot exceed 1. We then study properties of these metrics and

the relationships between them. Each of these metrics has the property that if two
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Figure 3. Illustration of a permutation containing a large blow-up. The black dots denote the points in π;

while the red crosses are the points being picked by the M-sample.

permutations have small distance in one metric, they also have small distance in the other

metrics. Furthermore, for two permutations to have small distance in any of these metrics

is equivalent to having, for each small permutation μ, roughly the same density of μ as a

subpermutation.

Recall that we sometimes view the permutation π of length n as the collection of

points (i, π(i)) with i ∈ [n] or, normalized, as the collection of points (i/n, π(i)/n) ∈ [0, 1]2.

It should be clear from the context which is used. Viewing a permutation as a collection

of points in [0, 1]2, given any rectangle S ⊂ [0, 1]2, let S(π) be the number of points of π

inside S (including the boundary).

Definition 2.1. Let π1, π2 be permutations of length n.

(1) Rectangular distance, or cut distance. The rectangular (cut) distance between π1, π2 is

defined as

ρr(π1, π2) =
1

n
max

I,J intervals ⊂[0,1]
|(I × J)(π1) − (I × J)(π2)|,

where the maximum is over all closed intervals I ⊂ [0, 1] and J ⊂ [0, 1].

(2) Dyadic distance. A closed interval I ⊂ [0, 1] is called a dyadic interval if there exist

positive integers i, k such that I = [i/2k, (i+ 1)/2k]. The dyadic distance between π1, π2
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is defined as

ρd(π1, π2) =
1

n
max

I,J dyadic intervals
|(I × J)(π1) − (I × J)(π2)|,

where the maximum is over all intervals I ⊂ [0, 1] and J ⊂ [0, 1] and I, J are dyadic

intervals.

(3) Square distance. The square distance between π1, π2 is defined as

ρs(π1, π2) =
1

n
max
I,J

|(I × J)(π1) − (I × J)(π2)|,

where the maximum is over all intervals I ⊂ [0, 1] and J ⊂ [0, 1] and |I | = |J|. Thus

I × J is a square in [0, 1]2.

(4) Dyadic square distance. The dyadic square distance between π1, π2 is defined as

ρds(π1, π2) =
1

n
max

I,J dyadic intervals,|I |=|J|
|(I × J)(π1) − (I × J)(π2)|,

where the maximum is over all dyadic squares I × J , which means I, J are dyadic

intervals and |I | = |J|.
(5) Earth mover’s distance. The earth mover’s distance between π1, π2 is defined as

ρEMD(π1, π2) =
1(
n
2

) min
n-permutation θ

( n∑
i=1

|i− θ(i)| + |π1(i) − π2(θ(i))|
)
,

where the minimum is over all permutations θ : [n] → [n] of length n. This is the sum

of L1 distances between a point in π1 and the point in π2 that it maps to under θ.

(6) Planar tau distance. A permutation σ can be obtained from a permutation π of the

same length by a planar simple transposition if there exists an integer 1 � i < |π| − 1

such that σ is the same as π except either σ(i) = π(i+ 1), σ(i+ 1) = π(i), or σ−1(i) =

π−1(i+ 1), σ−1(i+ 1) = π−1(i). The planar tau distance between π1, π2, denoted as

ρPT(π1, π2), is the minimum number of planar simple transpositions required to

transform π1 into π2, and then normalized by 1/
(
n
2

)
. Restated, the planar tau distance

between π1 and π2 is the normalized (so divided by 1/
(
n
2

)
) minimum number of

consecutive row or column swaps needed to obtain the permutation matrix of π2 from

the permutation matrix of π1. Recall that the permutation matrix of a permutation π

of length n is an n× n matrix Mπ with Miπ(i) = 1 for each i ∈ [n], and the remaining

entries are 0.

We first make several remarks about these metrics. For two permutations of length

n, their planar tau distance is at most their Kendall’s tau distance, as Kendall’s tau

distance is defined in the same way but is more restrictive on the allowed moves (only

allowing consecutive column swaps). Similarly, their earth mover’s distance is at most

their Spearman’s tau distance, as taking θ to be the identity permutation of length n,

we obtain Spearman’s footrule distance. Summarizing, the planar distances are at most

their classical variants. We also recall Corollary 1.3, which shows that ρPT(π1, π2) �
ρEMD(π1, π2) � 2ρPT(π1, π2). Thus the planar tau distance and earth mover’s distance are

within a factor of two of each other.
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Also, it is worth discussing the complexity of computing these metrics for two

permutations of length n. The rectangular distance is defined as the minimum over

O(n4) choices of pairs of intervals, while the square distance is only over O(n3) choices

of pairs of intervals, and the dyadic distance and the dyadic square distance is defined

only over O(n2) choices of pairs of intervals. Hence, the dyadic distances appear to be

considerably faster to determine exactly.

If we only want to approximate these distances, we can do a much faster computation.

Two squares whose horizontal and vertical intervals differ in endpoints by at most ε/8

in each coordinate differ by at most ε/2 in the fraction of points of the permutation

in the rectangle for a given permutation. Hence, by considering only multiples of ε/8

as possible endpoints, we can approximate the rectangular distance within ε using only

O(ε−4) rectangles. Similarly, we can approximate within ε the square distance by using at

most O(ε−3) squares, and the dyadic distance or the dyadic square distance within ε using

only O(ε−2) dyadic rectangles. Thus, these distances can be determined or approximated

rather quickly, with the dyadic distances being the fastest to approximate.

On the other hand, while very natural, the earth mover’s distance is defined as the

minimum over n! permutations, which requires a huge computation. Similarly, it is

unclear if there is an efficient algorithm for computing the planar tau distance efficiently.

However, it is possible to efficiently approximate these planar distances. By partitioning

into boxes of side length about ε/4, just using the information about the fraction of points

in each box, by considering roughly the fraction of points in each box that match up to

points in other boxes, it is possible to show that one can compute the planar tau distance

and the earth mover’s distance each within ε in time which is a function only of ε.

We next prove Theorem 1.4, which states that for any two permutations π1, π2 of length

n, we have

1

8
ρr(π1, π2)

2 � ρEMD(π1, π2) � 48ρr(π1, π2)
1/2.

Proof of Theorem 1.4. The earth mover’s distance between two permutations π1, π2 is

the normalized minimum, over all permutations θ : [n] → [n], which is the same as the

normalized minimum over all matchings between points in π1 and π2, of the sum over all

matched pairs of the taxicab (L1) distance between the two points that are matched.

We first show that if ρr(π1, π2) � ε, then ρEMD(π1, π2) � ε2/8. Since ρr(π1, π2) � ε, we

can find a rectangle I × J ⊂ [0, 1]2 such that there are at least εn more points in this

rectangle in π1 than π2, or vice versa. Without loss of generality, we assume there are εn

more points in π1 than in π2. Therefore for any bijection θ that maps points in π1 to the

ones in π2, at least εn points in π1 have to map to the points of π2 that are outside the

rectangle I × J .

Assume I = [x1, x2], J = [y1, y2]. Let

I ′ = [max(x1 − ε/8, 0),min(x2 + ε/8, 1)], J ′ = [max(y1 − ε/8, 0),min(y2 + ε/8, 1)].

Thus I × J ⊂ I ′ × J ′, and the difference between the two rectangles has margin at most

ε/8. Figure 4 illustrates these two rectangles. Since π2 is a permutation, there are at most
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Figure 4. Example of the matching process. The inner rectangle is I × J while the outer rectangle is I ′ × J ′.
The round dots are the points of π1 and the crosses are the points of π2. If a point in π1 is connected to a point

of π2 by a dashed line, it means they are matched. Since there are many more points of π1 than of π2 in I × J

and not many points of π2 in (I ′ × J ′) \ (I × J), many left-over points of π1 in I × J have to map to points of

π2 outside I ′ × J ′; each such match has a distance at least ε/8 between its points.

4 · εn/8 = εn/2 points of π2 that are inside the region (I ′ × J ′) \ (I × J). Therefore there

are at least εn− εn/2 = εn/2 points of π1 inside I × J that have to map to points of π2

outside I ′ × J ′. However for these points of π1, the distance between it and the point in

π2 it maps to is at least ε/8. Therefore

ρEMD(π1, π2) � ε/8 · εn/2 · n/
(
n

2

)
� ε2/8.

Thus we have proved 1
8
ρr(π1, π2)

2 � ρEMD(π1, π2).

We now show that if ρr(π1, π2) � ε, then ρEMD(π1, π2) � 48
√
ε. We may assume that

n � 2 as otherwise these distances are all 0. We will find a bijection θ such that

1(
n
2

) n∑
i=1

|i− θ(i)| + |π1(i) − π2(θ(i))| � 48
√
ε.

To see this, we partition [0, 1]2 into d2 squares, each of side length 1/d, where d = 2−h

with h = 
log2(1/2
√
ε)�. We will define θ which matches points of π1 to points in π2

recursively in rounds. In round 0, we match up as many points of π1 to points in π2 as

possible that lie in the same dyadic square of side length d. In round �, we match up as

many not yet matched points of π1 to not yet matched points in π2 as possible that lie

in the same dyadic square of side length 2�d. For each pair of points matched in level

�, their L1 distance is at most 2�+1d. In the last round � = h, the remaining unmatched

points in π1 necessarily get matched to the unmatched points in π2 as they all lie in the

square of side length 1 = 2hd.

As the discrepancy in the number of points in π1 and in π2 in any square is at most

εn, after round �, the number of unmatched points is at most εn(2−�/d)2. Thus round

�+ 1 matches at most εn(2−�/d)2 pairs of points, each such pair of points has L1 distance

at most 2�+2d. Hence, the sum of the L1 distances of the pairs matched at level �+ 1 is

at most εn(2−�/d)2 · 2�+2d = (22−�/d)εn. Summing over all � � 0 gives a total sum of L1

distances in [0, 1]2 less than 8εd−1n. Also, there are at most n points in π1 that get matched
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Figure 5. Illustration of partitioning most of an interval I into dyadic intervals. Interval I is the segment EG. It

is mostly covered by four dyadic intervals I1 = AB, I2 = DA, I3 = BC, I4 = CF . The only parts in I not covered

by dyadic intervals are I0, I
′
0.

to a point in π2 in the same dyadic square of side length d so that the L1 distance is at

most 2d. The sum of these L1 distances is at most 2dn. Thus, the earth mover’s distance

between π1 and π2 is at most

n(
n
2

) (2dn+ 8εd−1n) � 8(d+ 4εd−1) � 48
√
ε,

where the last inequality uses ε1/2 � d � 2ε1/2. Thus we have proved

ρEMD(π1, π2) � 48ρr(π1, π2)
1/2.

The next lemma shows that, up to two logarithmic factors, the rectangular distance is

the same as the dyadic distance, which is much faster to compute or approximate. It is

easy to give a construction showing that the upper bound is sometimes tight, and reverse-

engineering the proof gives a construction showing that the lower bound is sometimes

tight up to an absolute constant factor.

Lemma 2.2.

ρr(π1, π2)

8 log2
2(8/ρr(π1, π2))

� ρd(π1, π2) � ρr(π1, π2).

Proof. It is clear from the definition that ρr(π1, π2) � ρd(π1, π2). We thus need to show

the other inequality. Given ρr(π1, π2) � ε, we will show

ρd(π1, π2) � ε

2 log2(1/ε)
.

Since ρr(π1, π2) � ε, by definition, there exist intervals I, J ⊂ [0, 1] such that

1

n
max
I,J

|(I × J)(π1) − (I × J)(π2)| � ε.

We want to tile most of I × J by dyadic rectangles, and thus one of them has large

difference between the number of points in π1 and π2. We do this by first covering most

of the interval I by dyadic intervals, shown in Figure 5.

We know I must contain a dyadic interval I1 such that I1 ⊂ I and |I1| � 1
2
|I |. Removing

I1 from I , we are left with at most two other intervals I ′
2 and I ′

3 with I ′
2 coming before I ′

3

and each of length at most |I |/2. In the next level, notice that since I1 is a dyadic interval,

I ′
2, I

′
3 each have one endpoint being dyadic (i.e. of the form i/2k for some integers i, k).

Thus again we can find a dyadic interval I2 ⊂ I ′
2 with the same right endpoint as I ′

2 and

|I2| � |I ′
2|/2; again I ′

2 \ I2 is another interval with one endpoint dyadic. We can similarly
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Figure 6. Covering most of the rectangle I × J by dyadic rectangles by the dyadic partitioning of most of I, J .

I × J is the largest rectangle. The sub-interval Ĩ of I covered by dyadic intervals is shown in red. Ĩ = I \ (I0 ∪ I ′
0).

Similar for the sub-interval J̃ of J covered by dyadic intervals. The dyadic rectangles are defined by the dyadic

intervals covering Ĩ , J̃ . Thus the shaded rectangle Ĩ × J̃ is partitioned by dyadic rectangles.

find a dyadic interval I3 ⊂ I ′
3 with the same left endpoint as I ′

3 with |I3| � |I ′
3|/2 and such

that I ′
3 \ I3 is an interval with one endpoint having a dyadic coordinate. We know

|I \ (I1 ∪ I2 ∪ I3)| �
(

|I \ I1| +
|I1|
2

)
� |I |

4
.

Therefore removing I1, I2, I3 from I leaves us with at most two remaining intervals with

each having a dyadic endpoint and their total length is at most |I |/4. We repeat this

process. In each step, we find at most two new dyadic intervals and removing them

further from I leaves us with two remaining intervals each with one dyadic endpoint

and each of these remaining intervals has length at most half of the length of the

intervals they came from in the previous step. Thus, we can partition I into at most

1 + 2 log(4/ε) = 5 + 2 log(1/ε) dyadic intervals I1, I2, . . . and at most two intervals I0, I
′
0

such that |I0| + |I ′
0| � ε/4. This is because in the first step we used one dyadic interval

I1, and in each further step, we picked out two dyadic intervals, and the total number of

steps used is at most

1 + log2

(
|I |/2
ε/8

)
� 1 + log(4/ε).

Similarly, we can partition J into at most

1 + 2 log(4/ε) = 5 + 2 log(1/ε)

dyadic intervals J1, J2, . . . and at most two intervals J0, J
′
0 such that |J0| + |J ′

0| � ε/4.

Therefore we can cover most of the rectangle I × J by at most (5 + 2 · log2(1/ε))
2

dyadic rectangles Ii × Jj except for four rectangles S1 = I0 × J , S2 = I ′
0 × J , S3 = I × J0,

S4 = I × J ′
0. This is illustrated in Figure 6.
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However, notice that for any rectangle I ′ × J ′, we have 0 � (I ′ × J ′)(π1) � n·
min(|I ′|, |J ′|) simply because π1 is a permutation, and the same applies to π2. Therefore

0 �
( 4⋃
i=1

Si

)
(π1) � |I0| + |I ′

0| + |J0| + |J ′
0| � nε/2.

Similarly,

0 �
( 4⋃
i=1

Si

)
(π2) � nε/2.

Thus ∣∣∣∣
( 4⋃
i=1

Si

)
(π1) −

( 4⋃
i=1

Si

)
(π2)

∣∣∣∣ � nε/2.

Let Ĩ = I \ (I0 ∪ I ′
0), and J̃ = J \ (J0 ∪ J ′

0). Since |(I × J)(π1) − (I × J)(π2)| � nε and

4⋃
i=1

Si = (I × J) \ (Ĩ × J̃),

we have that

|(Ĩ × J̃)(π1) − (Ĩ × J̃)(π2)| � nε− nε/2 � nε/2.

However, we have shown that Ĩ × J̃ is covered by at most (5 + 2 · log2(1/ε))
2 dyadic

rectangles; therefore there must be a dyadic rectangle S such that

|S(π1) − S(π2)| � nε

2(5 + 2 · log2(1/ε))
2

� nε

8(log2(8/ε))
2
.

This implies

ρd(π1, π2) � ε

8(log2(8/ε))
2
.

The next lemma relates the rectangular distance and the square distance. It is easy to

see that the lower bound is sometimes tight, and reverse-engineering the proof shows that

the upper bound is sometimes tight up to an absolute constant factor.

Lemma 2.3.

ρs(π1, π2) � ρr(π1, π2) �
√

7ρs(π1, π2)
1/2.

Proof. It is clear from the definition that ρr(π1, π2) � ρs(π1, π2). We thus need to show

the other inequality. Given ρr(π1, π2) � ε, we will show ρs(π1, π2) � ε2/7.

As ρr(π1, π2) � ε, there exist intervals I, J ⊂ [0, 1] such that

1

n
max
I,J

|(I × J)(π1) − (I × J)(π2)| � ε.
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Figure 7. Illustration of covering most of a rectangle by squares. In this example, the rectangle I × J is covered

by squares of four different sizes (the shaded squares) and a remaining rectangle R (the unshaded rectangle in

the top right corner) with one side length smaller than ε/2.

We want to find a square in I × J in which there are many more points from π1 than

from π2, or vice versa.

Assuming |I | � |J|, then we partition I into 
|I |/|J|� intervals of length |J| and a

remaining interval with length |I | − |J|
|I |/|J|�. Thus the rectangle J × I is partitioned

into 
|I |/|J|� squares each of side length |J| and a remaining rectangle of size |J| ×
(|I | − |J|
|I |/|J|�). An example of this step can be seen as the three largest squares in

Figure 7. And we do the same partitioning procedure for the remaining rectangle by

covering the longer side (now it is the interval of length |J|) by as many intervals of

length (|I | − |J|
|I |/|J|�) as possible. We repeat this process until the remaining interval

has length at most ε/2. In Figure 7, we repeat this step for four rounds (corresponding to

squares of four different sizes), and stop at the smallest white rectangle since its shorter

side has length at most ε/2.

We want to bound the number of squares we obtained. Notice that for each rectangle

of size a1 × a2, assuming a1 � a2, after cutting it into as many squares of size a2 × a2

as possible, the remaining rectangle has size a3 × a2, where 0 � a3 < a2 satisfies a1 =

k1a2 + a3 for some positive integer k. Since k1 � 1 and a3 < a2, clearly we have a3 � a1/2.

We then partition the rectangle a3 × a2 into 
a2/a3� squares of size a3 × a3, and a

remaining rectangle is of size a3 × a4 where 0 � a4 < a3. By the same argument, again

we have a4 � a2/2. We repeat the process, obtaining squares of side lengths a1 > a2 > · · ·
until the side length of some rectangle is no more than ε/2. Say it stops after subdividing

a rectangle of size aN−1 × aN into many squares, and the remaining rectangle is of size

aN × aN+1 where 0 � aN+1 � ε/2. Since ai � ai−2/2 and aN � ε/2, we have that

N � 2 log2(2/ε). (2.1)

The total number of squares is bounded above by

a1/a2 + a2/a3 + · · · + aN−1/aN. (2.2)

Now, to upper-bound the sum in (2.2), notice that the product of the terms is a1/aN <

1/(ε/2) = 2/ε since aN > ε/2. Furthermore, for each i � N − 1, 1 < ai/ai+1 � 1/(ε/2) =

2/ε as ai � 1, ai+1 � ε/2 for i � N − 1. Given an upper bound of the product of non-

negative terms and the range for each term, we know that the sum of the terms is

maximized when the terms are at their extreme values; in our case, it would be that all

the terms are either 2/ε or 1. Therefore (2.2) is bounded above by (N − 2) + 2/ε. Plugging

in (2.1), the number of squares is bounded above by 2 log2(2/ε) + 2/ε.
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Algorithm 1 Two-sided tester

Let M be as specified in Theorem 3.1. Given a permutation π of length n, we pick a

subpermutation π′ of π of size M uniformly at random. That is, we pick a subset S ⊂ [n]

of size M uniformly at random, and π0 is the subpermutation of π induced on S .

1: If for all integers k, there exists a k-blow-up of π′ ∈ P , our algorithm outputs ‘π is in

P ’. Equivalently, if k∗(M) = ∞, then output ‘π is in P ’, and otherwise k∗(M) is finite

(recall the definition of k∗(M) in Definition 1.6), and we output ‘π is in P ’ if and only

if there is a k∗(M)-blow-up of π′ ∈ P .

2: If no k∗(M)-blow-up of π′ is in P , our algorithm outputs ‘π is not in P ’.

Thus we have partitioned the rectangle I × J into at most 2 log2(2/ε) + 2/ε squares and

a rectangle R with one side length at most ε/2. Thus |R(π1) − R(π2)| � ε/2. Therefore

1

n
|((I × J) \ R)(π1) − ((I × J) \ R)(π2)| � ε/2,

where (I × J) \ R is partitioned into at most 2 log2(2/ε) + 2/ε squares. Thus one of the

squares, call it S , satisfies

1

n
|S(π1) − S(π2)| � ε

2(2 log2(2/ε) + 2/ε)
� ε2/7.

The last inequality holds for all 0 < ε � 1.

3. Two-sided property testing under the planar metrics

Recall from Corollary 1.3 that the planar tau distance and the earth mover’s distance are

within a factor of two. Thus, to test with respect to either metric is essentially the same

thing. Hence, we can pick the metric which is the easiest to analyse, and, for our purposes,

it is the earth mover’s distance.

For a hereditary property P , we propose Algorithm 1, a two-sided tester for property P .

It is closely related to the blow-up parameter for P , which is defined in Definition 1.6. We

will analyse this algorithm and show its effectiveness in the next theorem. Let distPF(π,P)

be the minimum of ρEMD(π, π0) over all π0 ∈ P of the same size as π. If P has no

permutation of size |π|, then distPF(π,P) is defined to be 1.

We restate Theorem 1.7 below for convenience.

Theorem 3.1. Let P be a proper hereditary family of permutations, let σ be a smallest

permutation not in P , and s = |σ|. Let c(σ) be the Füredi–Hajnal constant of σ.

For any fixed 0 < ε � 1, let

M =
2000c(σ) log2(2/ε)

ε
,

so M � |σ| and hence k∗(M) is finite. Then the following holds for any permutation π of

length at least 32M5k∗(M)/ε3.
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(1) If π ∈ P , then with probability at least 1 − ε, the algorithm outputs ‘π is in P ’.

(2) If distPF(π,P) > ε, then with probability at least 1 − ε, the algorithm outputs ‘π is not

in P ’.

We justify these two assertions in the next two subsections, respectively.

3.1. When π ∈ P .

We first show that when π ∈ P , with large probability the algorithm outputs π ∈ P . For

this part, we need the following key lemma.

Lemma 3.2. Suppose |π| = n. Let T , k be positive integers and ε′ a positive number. Suppose

n � 32T 5k/ε′3. Let π′ be a subpermutation of π of size T picked uniformly at random. Then,

with probability at least 1 − ε′, some k-blow-up of π′ is in π.

Proof. We consider the permutation as a collection of points represented in the unit

square [0, 1]2. Let t = (4T 2)/ε′. We equally partition [0, 1]2 into t columns and t rows,

thus each of the t× t squares is of size 1/t× 1/t. We say a square is dense if it contains

at least δn points of π, where δ = ε′3/(32T 5). Otherwise we say the square is sparse.

For the samples of size T , the probability that those samples are in different columns

is t(t− 1) · · · (t− T + 1)/tT , where the nominator is the number of ways of assigning the

T samples to columns if they are in different columns, and the denominator is an upper

bound of the total number of ways which columns these T samples can be in. Therefore,

the probability that at least two samples are in the same column is at most

1 − t(t− 1) · · · (t− T + 1)

tT
� 1 −

(
t− T + 1

t

)T

� T (T − 1)

t
.

Similarly, the probability that at least two samples are in the same row is at most

(T (T − 1))/t. Thus, by the union bound, the probability that there are two samples in the

same column or row is at most (2T (T − 1))/t.

For a sample point, the probability that it lies in a sparse square is at most δt2 since

each sparse square has at most δn points in π and there are at most t2 sparse regions.

Thus by the union bound, the probability that at least one of the samples is in the sparse

region is at most δt2T .

Combining the results above, the probability that the T samples are in different columns

and different rows and all the samples are in dense squares is at least

1 − 2T (T − 1)

t
− δTt2 � 1 − ε′.

The inequality holds by our choice of δ and t. We thus now assume the T sample points

are in different dense squares and they are in different rows and columns. However, in

each of the dense squares that the samples are in, there are at least δn � k points of π in

that square. By picking k points of π from each of these squares give us a k-blow-up of

the T -sample π′. Therefore a k-blow-up of π′ is in π.

With Lemma 3.2 we can prove the first assertion of Theorem 3.1.
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Proof of the first assertion in Theorem 3.1. Recall the definition of the blow-up parameter

k∗(·) discussed in Definition 1.6.

Let q = k∗(M), which is finite. Let π′ be the M-subpermutation of π picked uniformly

at random. Applying Lemma 3.2 with k = q, ε′ = ε, T = M, we know as long as n �
32M5q/ε3, with probability at least 1 − ε, the M-sample π′ has a q-blow-up in π. Since

π ∈ P and P is hereditary, this q-blow-up of π′, which is a subpermutation of π, is in P .

However, if our algorithm outputs ‘π is not in P ’, it means there exists a least positive

integer � such that no �-blow-up of π′ is in P . By our definition of k∗(M), we have

l � k∗(M) = q. But we have just found a q-blow-up of π′ in P , which contradicts P is

hereditary.

3.2. When π is ε-far from satisfying P
We now prove the second part of Theorem 3.1. We want to show that if ρEMD(π, π0) � ε

for all π0 ∈ P , then with large probability, our algorithm will output ‘π is not in P ’.

Proof outline. The proof idea is as follows. We view the permutation π as a collection of

points in [0, 1]2. We carry out a ‘partition procedure’, later described as Algorithm 2, to

partition [0, 1]2 into dyadic squares (of possibly different sizes), where some squares are

dense (i.e. informally containing many points from π) and some squares are sparse (i.e.

informally containing only few points from π). With large probability, the M-sample will

hit each of the dense squares (Lemma 3.4).

Roughly speaking, if there are many squares that are dense, then π contains many

copies of σ, the smallest permutation not in P . Thus, with large probability, the M-sample

will contain a copy of σ. This is proved in Lemma 3.5. Hence, our algorithm will output

‘π is not in P ’.

Therefore, we can restrict our attention to the case where not many squares are dense. In

this case, we show that with large probability, the M-sample π′ contains a subpermutation

α which has a blow-up α̃ that is close to π. In fact, ρEMD(π, α̃) < ε/2 (Lemma 3.9). If our

algorithm outputs ‘π is in P ’, then for any k, there is some k-blow-up of π′ in P . Since P
is hereditary, there is some blow-up of α, call it α̃′, which has the same block sizes as α̃,

and α̃′ ∈ P . But ρEMD(α̃, α̃′) < ε/2 (Lemma 3.10). Thus π is within distance ε from α̃′ ∈ P
(Lemma 3.12). This contradicts the fact that π is ε-far from P under ρEMD.

We first partition [0, 1]2 into squares of different types depending on the number of

points of the permutation in the square.

Dyadic partition procedure. This is done through a dynamic procedure in different levels,

starting from level 0. Throughout the procedure, we maintain and update three sets of

squares, called Active, Mature and Frozen, which roughly correspond to squares which

are dense, modestly dense, and sparse, respectively. From now on, let

δ =
ε

512c(σ) log(32/ε)
(3.1)

be the density parameter for a square. Here density means the fraction of the points of

π that is in this square. (Notice here we do not normalize the number of points of π by

the area of the square.) A square in Active means it has density at least δ (thus dense); a
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square in Frozen means it has density less than δ (thus sparse). We will specify Mature

soon. Figure 8 illustrates this procedure and should help the reader to understand it.

To initialize the procedure, which begins at level 0, we put [0, 1]2 into the set Active

since the density is 1 > δ. Initially, the sets Mature and Frozen are empty.

In level i, for i � 1, we consider squares at level i, working only with squares in Active

which are of side length 1/2i−1. This procedure will maintain that at the beginning of level

i, all the squares in Active are of side length 1/2i−1, and at the end of level i, all squares in

Active are of side length 1/2i. We remove a square R of side length 1/2i−1 from Active,

and subdivide it into four children squares R1, R2, R3, R4, each having side length 1/2i. We

say R is the parent square of Ri, i = 1, 2, 3, 4. For any of those four squares, it is added

to Active if it has density at least δ, and is added to Frozen if otherwise. Furthermore,

if all those four squares are added to Frozen, then we add R itself to Mature. This is

roughly saying that R is dense, since it was once in Active, but it is not very dense, since

it has density at most 4δ as all of its four children squares are added to Frozen. After

processing all the squares in Active of side length 1/2i−1, we move to the next level.

This procedure stops when Active is empty, or after level �log(64/ε)�. This means the

smallest possible squares in the three sets have side length at least

d = 2−�log(64/ε)�. (3.2)

We have ε/128 < d � ε/64.

In summary, the procedure is to subdivide parent squares which are dense into children

squares, and subdivide its children squares further only if some children squares are still

dense. We never subdivide squares in Frozen. Eventually we obtain a partition of [0, 1]2

by squares in Active and Frozen. Notice that if a square is labelled as frozen, then its

parent square is either mature or once active.

This procedure is also presented in the pseudocode in Algorithm 2. Based on this

procedure, we obtain the following simple observations.

Lemma 3.3.

(a) The squares in Active,Frozen form a partition of [0, 1]2.

(b) Each square in Active is disjoint from each square in Mature.

(c) At the end of each level, all squares in Active have the same side length. If Active �= ∅
when the procedure stops, then all squares in Active have side length d.

(d) If R ∈ Frozen, then the parent square of R has density at least δ.

(e) If R ∈ Mature, then its density is at most 4δ; if R ∈ Active, then its density is at

most d.

Proof. Items (a), (b), (d) are direct consequences of the procedure.

To see (c), notice that if R is active and has side length greater than d, then the

procedure has not stopped yet; thus it should have been subdivided.

To see (e), notice that R is in Mature only if none of its four children squares have

density at least δ. Therefore R has density at most 4δ. If R ∈ Active when the procedure

stops, then by (c) it has side length d, but since π is a permutation, it means R contains

at most dn points.
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Algorithm 2 Dyadic partition procedure

1: Input: The [0, 1]2 representation of π.

2: Output: Three sets of squares Active,Frozen,Mature.

3: Active = {[0, 1]2}.
4: Mature = ∅.
5: Frozen = ∅.
6: procedure Partition [0, 1]2

7: for Levels i = 1, 2, . . . , log(1/d) do

8: if Active = ∅ then

9: Stop

10: else

11: for all squares R in Active with side length 1/2i−1 do

12: Active = Active \ {R}.
13: Split R into four equal sized squares R1, . . . , R4, each of side length 1/2i.

14: if None of R1, R2, R3, R4 has density at least δ then

15: Frozen=Frozen ∪ {R1, R2, R3, R4}.
16: Mature=Mature ∪ {R}.
17: else

18: Active=Active ∪ {Ri, i = 1, 2, 3, 4 which has density at least δ};
19: Frozen=Frozen ∪ {Ri, i = 1, 2, 3, 4 which has density less than δ};

return Active,Frozen,Mature.

Let Rich be the set of squares at the end of the procedure containing many points,

defined as Rich = Active ∪ Mature. By definition, any square in Rich has density at

least δ. In this way we have identified regions in [0, 1]2 which contain many points in π

(the squares in the set Rich). We claim that with large probability, the M-sample of π

hits each of these dense regions.

Lemma 3.4. With probability at least 1 − ε, every square R ∈ Rich contains a sample point.

Proof. There are at most (1/d)2 = d−2 squares in Rich since each square has side length

at least d and the squares in Rich are disjoint. For each R ∈ Rich, it contains at least δn

points of π. The probability that none of the M samples are in R is bounded above by

(1 − δ)M . Thus, by the union bound, the probability that there is a dense square in Rich

which is not hit by any of the M samples is bounded above by

d−2(1 − δ)M � d−2e−δM.

However, recall that

M =
2000c(σ) log2(2/ε)

ε
,

and the values of δ, d are determined in (3.1) and (3.2); by a simple computation,

d−2e−δM < ε, since M > − ln(εd2)/δ by our choices of M, d, δ.

https://doi.org/10.1017/S096354831800024X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800024X


560 J. Fox and F. Wei

Figure 8. Illustration of the dyadic partition procedure. We provide an example of the first four levels of the

partition procedure. The squares in Active that resulted in each level are denoted by the black squares. At each

level, the active squares in Active splits. The squares in Frozen at each level are denoted by the white squares

with label ‘F’ (stands for ‘Frozen’). The squares in Mature are given by the squares with the parallel lines filled

in and each such square consists of four frozen squares. In this example, Mature is empty at levels 0,1,2. After

finishing the algorithm at level 3, there are two squares in Mature.

Thus we know with probability at least 1 − ε that each square in Rich contains a sample

point. We pick one sample point from each of the squares in Rich (if there are multiple

samples in one square, we arbitrarily pick one). These samples of π induce a permutation

α of length |Rich|. For any 1 � i � |α|, define ji to be such that the ith element (from

left to right) of α corresponds to the sample (ji, π(ji)) of π. Thus 1 � j1 < · · · < j|α| � n.

Furthermore, α(i) > α(i′) if and only if π(ji) > π(ji′ ). Figure 9(a) shows an example of the

M-sample in π, and Figure 9(b) shows α; in this example, α = 4213.

By Lemma 3.3, the parent of each frozen square was once active or mature. If there

are many frozen squares of the same size, then we get many parent squares of the same

size which are dense. The next lemma shows that if this is the case, our algorithm will
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Figure 9. Obtaining a blow-up of a subpermutation of the M-sample that is close to π. The black and red

points are points in π. In this example |π| = 20. In (a), (b) and (c), the squares are the results of the partition

procedure. The squares in grey are the squares in Active. The squares in white and the four smaller squares with

stripes are in Frozen. The larger striped square, which consists of four smaller striped squares, is in Mature.

In this example |Active| = 3, |Frozen| = 13, |Mature| = 1. (a) The red crosses are the M sample points; each

region in Rich contains a sample point. (b) The permutation α consists of one sample point from each square

in Rich, given by the red ‘+’; if one square in Rich contains multiple sample points, arbitrarily pick one. We

ignore the sample points not contained in squares in Rich. In this example, the permutation α induced by

the subset of sample points is 4213. (c) Map φ maps each point in π to a point in α. The dashed line connects

the point of α that a point of π is mapped to. A point is mapped to a point of α sharing the same parent

square. (d) The permutation α̃. Notice that in the tth blow-up block, the subpermutation is the one induced by

the points in π which are mapped to the tth element of α.

output ‘π is not in P ’ with large probability. This lemma implicitly uses the Marcus–

Tardos theorem [26] discussed in the Introduction, which verifies the existence of the

Füredi–Hajnal constant.

Lemma 3.5. Let C = 2c(σ) where c(σ) is the Füredi–Hajnal constant. If there is a positive

integer j such that there are at least 4C · 2j−1 squares in Frozen with side length 1/2j , then

with probability at least 1 − ε, our algorithm will output ‘π is not in P ’.

Proof. Let the set of squares in Frozen with side length 1/2j be Fj . For each square in

Fj , its parent square is either in Mature or it was once in Active. Consider the set of all

these parent squares; call the set S . Thus |Fj | � 4|S| since each parent square has four

children squares. Thus |S| � C · 2j−1.
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Now we consider [0, 1]2 as being partitioned into (2j−1)2 regions where each region is a

square with side length 1/2j−1. The parent squares in S are some of those regions. Each

region corresponding to a parent square in S has density at least δ. Recall s = |σ| and

C = 2c(σ). Since |S| � C · 2j−1, by the Marcus–Tardos theorem, we can find s regions

corresponding to s squares in S that are in different columns and rows. Furthermore, the

points of π in these s regions form a blow-up of σ.

Furthermore, if a square in S is not in Mature, then there must be a square in

Mature ∪ Active which is a subset of this square. Thus by Lemma 3.4, with probability

at least 1 − ε, these s regions each contain a sample point. This means, with probability at

least 1 − ε, σ is a subpermutation of the sampled π′. However, since σ /∈ P , the 1-blow-up

of π′ is not in P . Since each permutation has exactly one 1-blow-up, which is itself,

Algorithm 1 will output ‘π is not in P ’.

From the previous lemma, it suffices to only further consider the case where there

are not many frozen squares in any level. Formally, for each j, Frozen has at most

4C · 2j−1 squares of side length 2−j . We have already obtained α, a subpermutation of

π′. The definition of α is right after Lemma 3.4, and recall α is induced by the points

(jt, π(jt)), t = 1, 2, . . . , |α|. We now want to construct a blow-up of α – call it α̃ – such that

ρEMD(π, α̃) is small.

To define a blow-up of a given permutation, it suffices to define the length and shape of

the subpermutation within each of the blow-up blocks. In the case of α̃, there are in total

|α| blow-up blocks. The high-level idea for creating an α̃ with small distance ρEMD(π, α̃)

is as follows. Recall that to bound ρEMD(π, α̃), we find a matching ψ : [n] → [n] telling us

that the ith point of π is matched with the ψ(i)th point in α̃.

We first define a map φ : [n] → {jt : 1 � t � |α|} which associates with each point of π

one of the sampled points in π that make up α. This is shown in Figure 9(c), in which the

dashed line indicates where a point of π is mapped to. We will use the map φ to determine

ψ and α̃. The map φ will have the property that the sum of the (taxicab) distance between

points in π and the sampled points they are mapped to is small. Also, if the ith point of

π is associated with the tth point in α under φ, then ψ(i) is in the tth blow-up block in

α̃. Thus φ determines the size of each blow-up block, which for the tth blow-up block is

|φ−1(jt)|. To finish the construction of α̃, simply let the subpermutation in the tth blow-up

block be the permutation induced by the subpermutation of π restricted to the positions

in φ−1(jt). This is shown in Figure 9(d). To complete the construction of ψ, if ψ(i), ψ(i′)

are mapped to the same blow-up block, let ψ(i) < ψ(i′) if and only if i < i′. We will prove

that the matching ψ shows that the earth mover’s distance ρEMD(π, α̃) is small.

We now go through the details of this argument. First we define φ. Let

φ : [n] → {ji, i = 1, 2, . . . , |α|}

be such that if φ(i) = jt, we associate (i, π(i)) by φ to the tth point in α. The association

rule is as follows.

(1) If the ith point of π is in a square in Active, and (jt, π(jt)) ∈ π is the sample point in

that square chosen to contribute to α, we define φ(i) = jt.
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(2) If the ith point of π is in some sparse square in Frozen, it means that its parent

square was once active. If the parent square is in Mature, then let (jt, π(jt)) ∈ π be

the unique point in that square chosen to be an element of α and define φ(i) = jt.

If the parent square is not in Mature, then after subdividing the parent square into

four squares, one of them, R, is active. R will further subdivide, and at the end of

the partition procedure, either R is mature, or it contains a square that is mature or

active. Arbitrarily pick one such square that is mature or active, and let (jt, π(jt)) ∈ π

be the unique element of α in that square and define φ(i) = jt.

This association rule is illustrated in Figure 9(c). We thus find for the ith point in π a

target point (φ(t), π(φ(t))) of α.

For the point (jt, π(jt)) ∈ π which gives the tth element in α, let Pt = φ−1(jt). Thus Pt
tells us which points in π are mapped to the tth point in α. We create a blow-up α̃ of α in

the following way: the tth point of α blows up into a block Bt, where |Bt| = |φ−1(jt)| = |Pt|
and the permutation restricted to Bt in α̃ is the subpermutation of π restricted to the

positions in Pt, that is, {(v, π(v)), v ∈ Pt}. By construction, α̃ is of length n. Figures 9(c)

and 9(d) illustrate how α̃ is obtained.

Summarizing, we found a mapping of the points of π to the points of a subpermutation

α. We naturally formed a blow-up α̃ of α. We want to show ρEMD(π, α̃) is small. Recall

that by the definition of the earth mover’s distance, it suffices to find a bijection between

points in π and points in α̃ for which the sum of the L1 distances between the point in π

and the points in α̃ that they map to is small.

We choose the bijection ψ as follows. For any i �= j � n, ψ(i) < ψ(j), if and only if one

of the following situation holds: (1) φ(i) < φ(j), or (2) φ(i) = φ(j) but i < j. Equivalently,

for each i (corresponding to the ith point in π), let (ψ(i), α̃(ψ(i))) lie in the block Bφ(i). And

if among all the points in φ−1(φ(i)), i is the tth smallest, then ψ(i) is the tth point (from

left to right) in Bφ(i). In other words, ψ(i) = |B1| + · · · + |Bφ(i)−1| + t.

To show ρEMD(π, α̃) is small, it suffices to show that

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
ψ(i)

n
,
α̃(ψ(i))

n

))

is small, where d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2| is the L1 distance. The next lemma

shows that this is within a factor of two of the sums of the L1 distance between the points

in π and the points in α that they map to. This in turn is easier to bound as the L1

distance between two points in the same axis-parallel square is at most twice the side

length of the square.

Lemma 3.6.

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
ψ(i)

n
,
α̃(ψ(i))

n

))
� 2

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
φ(i)

n
,
π(φ(i))

n

))
.

We first prove the following useful claim.
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Claim 3.7 (generalized Spearman’s footrule). Let γ(i) : [n] → [n] be any map. Define a

bijection β : [n] → [n] as follows. We have β(i) < β(j) if and only if (1) γ(i) < γ(j) or

(2) γ(i) = γ(j) and i < j.

Let D(β) =
∑n

i=1 |i− β(i)|, which is Spearman’s footrule distance between the identity

permutation and the permutation β. Let D(γ) =
∑n

i=1 |i− γ(i)|, which is a footrule distance

between the identity permutation and the mapping γ. Then

D(β) � 2D(γ).

Proof of Claim 3.7. For each integer 1 � j � n, let γ+
j be the number of integers i such

that i � j < γ(i). Similarly, let γ−
j be the number of i such that γ(i) � j < i. Define β+

j , β
−
j

similarly.

We first show that D(γ) =
∑n

j=1 γ
+
j + γ−

j . We use a double-counting argument. Note

that if i � γ(i), then the number of j for which i contributes one to γ+
j is precisely |i− γ(i)|,

and the number of j for which i contributes to γ−
j is zero. Similarly, if i > γ(i), then the

number of j for which i contributes one to γ−
j is |i− γ(i)|, and the number of j for which

i contributes to γ+
j is zero. Therefore,

D(γ) =
∑
i:i<γ(i)

|i− γ(i)| +
∑
i:i>γ(i)

|i− γ(i)| =

n∑
j=1

γ+
j +

n∑
j=1

γ−
j .

Similarly, we have

D(β) =

n∑
j=1

β+
j + β−

j .

To prove D(β) � 2D(γ), it suffices to show for any j, β+
j � γ+

j + γ−
j and β−

j � γ+
j + γ−

j .

The proofs of both inequalities are essentially the same argument, so we only show the

first. If i contributes one to β+
j , then i � j < β(i). If γ(i) > j, then i also contributes one

to γ+
j . Otherwise, i, γ(i) � j < β(i). Since β is a permutation, for the set of such i, since

i � j < β(i), we can match each such i with a unique i′ such that β(i′) � j < i′. However,

since β(i′) < β(i) and i′ > i, we must have γ(i′) < γ(i), thus γ(i′) < j < i′, which implies that

i′ contributes one to γ−
j . We thus get β+

j � γ+
j + γ−

j . Similarly, β−
j � γ+

j + γ−
j . Summing

over all j, we get D(β) � 2D(γ).

Proof of Lemma 3.6. It suffices to prove the following two inequalities:

n∑
i=1

∣∣∣∣ in − ψ(i)

n

∣∣∣∣ � 2

n∑
i=1

∣∣∣∣ in − φ(i)

n

∣∣∣∣,
n∑
i=1

∣∣∣∣π(i)

n
− α̃(ψ(i))

n

∣∣∣∣ � 2

n∑
i=1

∣∣∣∣π(i)

n
− π(φ(i))

n

∣∣∣∣.
To prove the first inequality, we, apply the claim with γ(i) = φ(i) and β(i) = ψ(i). By the

definition of ψ which is ψ(i) < ψ(j) if and only if (1) φ(i) < φ(j), or (2) φ(i) = φ(j) but

i < j, the condition of the claim holds. For the second inequality, we apply the claim
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with γ(i) = π ◦ φ ◦ π−1(i) and β(i) = α̃ ◦ ψ ◦ π−1(i). Similarly, by the definition of α̃, the

conditions for the claim holds.

Lemma 3.8. Let P be a proper hereditary family of permutations, let σ be a smallest

permutation not in P , and s = |σ|. Let C = 2c(σ), where c(σ) is the Füredi–Hajnal constant

for σ. Assume, for permutation π, that for each j, there are at most 4C · 2j−1 frozen squares

of side length 2−j . Further suppose that the random subpermutation α of π contains at least

one point in each rich square. Then

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
φ(i)

n
,
π(φ(i))

n

))
� 2dn+ 8 log(1/d)Cδn.

Proof. For any point in an active square, the L1 distance between it and the point of α it

maps to is at most 2d since they are both in the same active square, which has side length

d by Lemma 3.3. There are at most n points of π which are in active squares. Thus, the

sum of the distances coming from points in active squares is at most 2dn.

For a point (i/n, π(i)/n) in a frozen square R ∈ Frozen, suppose the side length of the

square is 1/2j . The L1 distance from it to the point in α it associates with is at most

2 · 1/2j−1 since these two points are in the same parent square whose side length is 1/2j−1.

However, by assumption there are at most 4C · 2j−1 frozen squares of side length 2−j .

Therefore, for each j, the sum of L1 distances coming from points in frozen squares of side

length 1/2j is at most (4C · 2j−1) · δn · 2/2j−1, where (4C · 2j−1) · δn gives an upper bound

for the number of points in frozen squares of side length 1/2j and 2/2j−1 is an upper

bound for the L1 distances between a point in π and its image in α. Therefore the sum of

the distances coming from points in frozen squares of different side lengths is at most

log(1/d)∑
j=1

8Cδn = 8 log(1/d)Cδn.

Combining the distances from points in active squares and points in frozen squares, we

have that

n∑
i=1

d

((
i

n
,
π(i)

n

)
, (aφ(i), bφ(i))

)
� 2dn+ 8 log(1/d)Cδn.

Lemmas 3.6 and 3.8, together with the values of δ, d as given in (3.1) and (3.2), give the

following lemma.

Lemma 3.9. Assume that for each j, there are at most 4C · 2j−1 frozen squares of side

length 2−j , and the sample contains at least one point in each rich square. Then

ρEMD(π, α̃) � 2(2d+ 8 log(1/d)Cδ) < ε/2.
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We have shown α̃ and π are close in the earth mover’s distance. We now show that α̃

is close in the earth mover’s distance to any other blow-up of α, where the jth point in α

blows up into a block of size |φ−1(j)| = |Bj |. Thus π and any of these blow-ups are close.

Lemma 3.10. Let α̃′ be any blow-up of α where the jth point in α blows up into a block of

size |φ−1(j)| = |Bj |. Then

ρEMD(α̃′, α̃) � ε/2.

Before proving Lemma 3.10, we first obtain the following useful claim.

Claim 3.11.

δn � |Bj | � 3δn log(1/d) + max(dn, 4δn).

Proof. By definition, Bj = φ−1(j). Since (tj , π(tj)) is in an active or mature square, and

all the other points in this square are mapped to it by φ, we have |Bj | � δn.

Given any mature or active square R of side length l, by the partition procedure, we

know for each possible length l′ > l, there are at most three frozen squares of side length

l′ whose points are mapped to a sample in R. Since there are at most log(1/l) possible side

lengths of squares greater than l, the number of points coming from the frozen squares

mapped to the sample point in R is at most δn · (3 log(1/l)) � 3δn log(1/d).

Furthermore, by Lemma 3.3, the number of points in R is at most max(dn, 4δn). The

points in R and points in a frozen square mapped to R are all the possible points mapping

to R. Thus

|φ−1(j)| � 3δn log(1/d) + max(dn, 4δn).

Proof of Lemma 3.10. By the assumption, we know α̃, α̃′ have the same corresponding

blow-up block sizes. To get an upper bound for ρEMD(α̃′, α̃), we simply pick the identity

permutation θ given by θ(i) = i for i ∈ [n]. Thus we would like to upper-bound

n∑
i=1

d((i/n, α̃(i)/n), (i/n, α̃′(i)/n) =

n∑
i=1

|(α̃(i) − α̃′(i))/n|.

Notice that if the ith point in α̃ is in the jth blow-up block, then the ith point in α̃′ is also

in the jth block. Thus |α̃(i) − α̃′(i)| � |Bj |. This gives us

n∑
i=1

|(α̃(i) − α̃′(i))/n| =

|α|∑
j=1

( ∑
i:(i,α̃(i))∈Bj

|(α̃(i) − α̃′(i))/n|
)

�
|α|∑
j=1

|Bj |2/n. (3.3)

We have

|α|∑
j=1

|Bj | = n and 0 � |Bj | � 3δn log(1/d) + max(dn, 4δn).
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To maximize
∑|α|

j=1 |Bj |2/n with these constraints, we want the |Bj | as close to the extreme

values as possible. This gives

|α|∑
j=1

|Bj |2/n � (3δ log(1/d) + max(d, 4δ))n,

where we assign n/(3δn log(1/d) + max(dn, 4δn)) number of |Bj | to achieve the maximum

possible value 3δn log(1/d) + max(dn, 4δn), and the rest are set to be 0.

Therefore, we have

ρEMD(α̃′, α̃) � 1

(n− 1)/2

n∑
i=1

|(α̃(i) − α̃′(i))/n|

� n

(n− 1)/2
(3δ log(1/d) + max(d, 4δ)) � ε/2.

The first inequality is by the definition of ρEMD, and the last inequality is by our choices

of δ, d as in (3.1) and (3.2).

Combining the previous two lemmas, we have the following lemma.

Lemma 3.12. Suppose the subpermutation α contains at least one point in each rich square.

Let α̃′ be any blow-up of α such that the jth point in α blows up into a block of size

|φ−1(j)| = |Bj |. Assume that for each j, there are at most 4C · 2j−1 frozen squares of side

length 2−j . Then

ρEMD(π, α̃′) < ε.

Proof. This is a direct consequence of Lemmas 3.10 and 3.9 and the triangle inequality:

ρEMD(π, α̃′) � ρEMD(π, α̃) + ρEMD(α̃, α̃′) < ε.

Assuming Lemma 3.12, we show that the second assertion of Theorem 3.1 holds.

Proof. We have obtained that with probability at least 1 − ε, we can obtain a permutation

α being a subpermutation of the sample permutation π′, and α hits each of the dense

squares in Rich once. If our algorithm outputs ‘π ∈ P ’, it implies that there is an n-blow-

up of α in P . Therefore we can find a subpermutation α̃′ of the n-blow-up, where α̃′ is of

length n, and it is a blow-up of α where the jth point of α blows up into a block of size

|Bj |. (Notice that this α̃′ may be different from the α̃ defined right before Lemma 3.6.)

Since P is hereditary, α̃′ ∈ P . However, by Lemma 3.12, we know ρEMD(π, α̃′) < ε. This

contradicts the assumption that π is at distance at least ε from P and completes the

proof.

https://doi.org/10.1017/S096354831800024X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831800024X


568 J. Fox and F. Wei

4. Two-sided property testing under the planar metrics with universal bound

In this section we prove Theorem 1.8. The tester we use is the same as the two-sided

tester in Algorithm 1, but with a different choice of M. The proof is similar to that of

Theorem 1.7, but with a somewhat different analysis. When π ∈ P , by Lemma 3.2 and the

same argument as in the proof of Theorem 1.7, it can be seen that when n is sufficiently

large (depending on P), the algorithm outputs π ∈ P with probability at least 1 − ε.

We now handle the case when π is ε-far from P . Let

M = 20000/ε2 (4.1)

be the sample size. We will first prove the following lemma, which states that any

permutation is very close to some blow-up of a sufficiently large sample with high

probability.

Lemma 4.1. Let π be a permutation of length n and M be as in (4.1). An M-sample chosen

uniformly at random in π, given by the sample points (jt, π(jt)) for t = 1, 2, . . . ,M, induces a

permutation α. Then, with probability at least 1 − ε/2, there exists a blow-up of α which is

within distance ε/2 (under ρEMD) with π.

Remark. The sample size M = O(1/ε2) is tight. The following is the main idea of the

proof. For a permutation of length n picked uniformly at random with n � ε−2 log(1/ε),

if M < 2−7ε−2, then a square of side length 8ε around a point of π with probability at

least 2/3 does not contain any sample point. Thus, we expect that most points have to

move distance more than 2ε in any blow-up of α.

To prove Lemma 4.1, we proceed similar to the proof of Theorem 1.7. Define a map

φ : [n] → [n] which maps each point of π to the closest (under the Euclidean distance§

in [0, 1]2) sample point. In other words, φ(i) = j is equivalent to the point (i, π(i)) of π

being closest to the sample point (j, π(j)). As in the proof of Theorem 1.7, from φ we

also define a permutation α̃ : [n] → [n] which is a blow-up of α. For each t = 1, 2, . . . ,M,

let Pt = φ−1(jt); then the permutation restricted to the tth blow-up block Bt of α̃ is the

subpermutation of π restricted to the positions indicated in Pt. Clearly |Bt| = |Pt|. We

also define a matching ψ : [n] → [n], such that for any i �= j � n, ψ(i) < ψ(j) if and only

if one of the following holds: (1) φ(i) < φ(j), or (2) φ(i) = φ(j) and i < j. Thus ψ gives

a matching between points in π and points in ψ. As before, we will show that with

probability at least 1 − ε/2,

ρEMD(π, α̃) < ε/2, (4.2)

which is a stronger statement of Lemma 4.1. Further, we will prove that with probability

at least 1 − ε/2, if α̃′ is another blow-up of α where the jth point of α blows up into a

§ Note that one can also easily use the L∞ or L1 distance as they are Lipschitz-equivalent; the proofs are

basically the same but it is easier to explain it with figures using the Euclidean distance.
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block of size |Bj | as well, then

ρEMD(α̃, α̃′) < ε/2. (4.3)

Inequalities (4.2) and (4.3) and the triangle inequality imply that ρEMD(π, α̃′) < ε. Assuming

we can prove that ρEMD(π, α̃′) < ε, if the algorithm outputs ‘π ∈ P ’, then there is an n-

blow-up of α in P . Therefore we can find a length-n subpermutation α̃′ of this n-blow-up

where the jth point of α blows up into a block of size |Bt|. Clearly α̃′ ∈ P by the hereditary

property. Since we have assumed ρEMD(π, α̃′) < ε, we reach a contradiction since we also

assume ρEMD(π,P) � ε.

Therefore we just need to prove two things: Lemma 4.1 or equivalently inequality (4.2),

and (4.3). Note that as a consequence inequalities (4.2) and (4.3) will simultaneously hold

with probability at least 1 − ε. The proof consists of two parts. The first part is to show

inequality (4.2), and the second part is to show inequality (4.3). The first part is done

through the dyadic partition procedure again.

4.1. ρEMD(π, α̃) < ε/2

As in the proof of Theorem 1.7, we again conduct a dynamic procedure in different levels,

starting from level 0, where in level i we look at squares of side lengths 2−i. Recall that

the density of a square is the fraction of points in the permutation in the square (so it is

not the relative density with respect to the area of the square). Let

d = 2−�log(48/ε)� (4.4)

be the smallest side length of squares. Let l0 = log(1/d) be the number of different levels.

Let

δ1 =
√

2/96 · ε2 log(1/ε), δ2 = ε2/5200, K = �− log(12 · 16 · δ1/ε)�, (4.5)

where δ1, δ2 are two density thresholds: if i � K , then a square of side length 2−i is in

Active if it has density at least δ1; if i > K , then a square of side length 2−i is in Active

if it has density at least δ2. We go through the same procedure as in Algorithm 2, with the

only difference being that the density threshold for a square to be in Active depends on

its side length. In summary, throughout the procedure, repeatedly some parent square in

Active splits into four children squares, and a child square splits if is dense with respect

to the corresponding density threshold.

For each level 0 � i � log(1/d), let Frozeni be the set of squares in Frozen which

are of side length 2−i. Let Maturei be the set of squares in Mature which are of side

length 2−i. Note that each square in Maturei is a union of four squares in Frozeni+1. Let

Activei be the squares of side length 2−i that are once active. Clearly Activel0 = Active.

We will define a map φ′ : [n] → [n] which maps points of π to some sample point. First

notice that φ is the map which maps each point of π to its closest sample point; thus

n∑
i=1

∣∣∣∣ in − φ(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ(i))

n

∣∣∣∣ �
n∑
i=1

∣∣∣∣ in − φ′(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ′(i))

n

∣∣∣∣. (4.6)

We now define φ′ such that we can bound the right-hand side of (4.6), and thus upper-

bounds the left-hand side of (4.6) which is about φ.
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For a point (i, π(i)) in π, let 1 � j � l0 be the largest integer such that there exists a

square in Activej containing both the point (i, π(i)) of π and some sample points. Let

φ′(i) ∈ {jt, t = 1, 2, . . . ,M} be the position of a closest such sample point to (i, π(i)). In

other words, we find the smallest square which was once in Active containing this point

and some sample points and φ′ maps (i, π(i)) to a closest such sample point.

To analyse the right-hand side of (4.6), we first partition points in π into different

groups. For each 1 � i � log(1/d), we define a set of squares Candidatei as follows.

(1) If 0 � i < log(1/d), Candidatei consists of squares in Maturei ∪ Frozeni+1. (Notice

[0, 1]2 cannot be in Mature.)

(2) If i = log(1/d), Candidatei consists of squares in Active, which by definition are

of side length d. Denote the number of points of π in Candidatei as ni. Thus∑log(1/d)
i=0 ni = n.

The following lemma is easy to check from the definitions.

Lemma 4.2.

(a) The squares in the sets Candidatei partition [0, 1]2.

(b) Given 1 � i � log(1/d), the points in squares in
⋃
i�j�log(1/d) Candidatej are the same

as the points in squares in Activei. The points of π in squares in Candidatei are the

points in squares in Activei but not in squares in
⋃
j>i Activej .

(c) For each K + 1 � i < log(1/d), ni � 4δ2 · 22in. For each 0 � i � K , ni � 4δ1 · 22in.

Proof. The first two assertions are clear from the definition of Candidatei. To show (c)

holds, notice that when i < log(1/d), Candidatei consists of only squares in Frozeni+1

or Maturei. If i � K , each dyadic square of side length 2−i has at most 4δ1n points of

π coming from squares in Maturei or Frozeni+1, and there are 22i dyadic squares of

side length 2−i. Thus the bound is achieved. A similar argument applies to the case when

i > K .

For a point in a square in Candidatei, we say that it is resolved in level j if j is the

largest integer such that there is a square in Activej containing this point and a sample

point. Clearly by the definition of Candidatei, j � i. And by the definition of φ′ defined

above, if a point (s, π(s)) of π is resolved in level j, then

|s− φ(s)| + |π(s) − π(φ(s))| � |s− φ′(s)| + |π(s) − π(φ′(s))| � 2 · 2−j . (4.7)

Let the random variables Ni,j be the set of points in squares in Candidatei which are

resolved in level j. Let ni,j = |Ni,j |. Thus
∑

j:0�j�i ni,j = ni, the number of points of π in

squares in Candidatei. Let NResolvej be the set of points in squares in
⋃
l0�i�j Candidatei

which are not resolved in levels l0, l0 − 1, . . . , j. Thus by the definition of NResolvej ,

|NResolvej | =
∑
j�s�l0

∑
0�t�j−1

ns,t. (4.8)

We first show that under some conditions, the quantity on the right-hand side of (4.6)

is indeed small; then we show that with high probability, these conditions hold.
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Lemma 4.3. Let c = 1/2. Suppose the following conditions holds simultaneously.

(i) For each i � K , points in squares in Candidatei are resolved in level i.

(ii) For each i > K , a point in a square in Candidatei is resolved in level j with j � K .

(iii) For each i > K , |NResolvej | � cδ22
2jn.

Then, under these three conditions,

n∑
i=1

∣∣∣∣ in − φ(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ(i))

n

∣∣∣∣ �
(

16δ12
K +

8δ2

d
+ 2 · d+

2cδ2

d

)
n.

Proof. By (4.7) and the definition of ni,j , we have the bound

n∑
i=1

∣∣∣∣ in − φ′(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ′(i))

n

∣∣∣∣
�

∑
log(1/d)�i�j�0

2 · 2−jni,j

=

K∑
i=0

i∑
j=0

2 · 2−jni,j +

l0∑
i=K+1

i∑
j=0

2 · 2−jni,j . (4.9)

The first inequality is by (4.7) and the definition of ni,j , and the equality is simply

regrouping the terms into two groups. By conditions (i) and (ii), we have for 0 � i � K ,

ni,i = ni and ni,t = 0 for t < j. For i � K + 1, ni,t = 0 for t < K . Thus combining with

Lemma 4.2(c) for the bound on ni, the first summand in (4.9) can be bounded by

K∑
i=0

( i∑
j=0

2 · 2−jni,j

)
=

K∑
i=0

2 · 2−ini �
K∑
i=0

2 · 2−i4δ12
2in = 8δ1

K∑
i=0

2in � 16δ12
Kn. (4.10)

We now bound the second summand in (4.9). Note that |NResolveK | = 0 by conditions

(i) and (ii). Furthermore, by (4.8),

|NResolvej | − |NResolvej−1| = nj,j−1 + · · · + nl0 ,j−1 − (nj−1,j−2 + · · · + nj−1,K ). (4.11)

We now rewrite the second summand in (4.9):

l0∑
i=K+1

∑
0�j�i

2 · 2−jni,j

=

l0∑
j=K+1

2 · 2−jnj,j +

l0−1∑
t=K

l0∑
j=t+1

2 · 2−tnj,t

=

l0∑
j=K+1

2 · 2−jnj,j +

l0−1∑
t=K

2 · 2−t(|NResolvet+1| − |NResolvet| + nt,t−1 + · · · + nt,K )

=

l0∑
j=K+1

2 · 2−j(nj,j + nj,j−1 + · · · + nj,K ) +

l0−1∑
t=K

2 · 2−t(|NResolvet+1| − |NResolvet|)
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=

l0∑
j=K+1

2 · 2−jnj +

l0−1∑
t=K

2 · (2−(t−1) − 2−t)|NResolvet|

=

l0∑
j=K+1

2 · 2−jnj +

l0−1∑
t=K

2 · 2−t|NResolvet|

�
l0−1∑

j=K+1

2 · 2−j(4δ22
2jn) + 2 · dn+

l0−1∑
t=K

2 · 2−t(cδ22
2tn), (4.12)

where the second equality is by (4.11), the first inequality is by Lemma 4.2(c) and nl0 � n,

and condition (iii) in the lemma statement. Using a simple upper bound on a geometric

series, (4.12) is bounded above by

8δ2 · 2l0n+ 2dn+ 2cδ2 · 2l0n =
8δ2

d
n+ 2dn+

2cδ2n

d
. (4.13)

Therefore, combining (4.10) and (4.13), we have

n∑
i=1

∣∣∣∣ in − φ′(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ′(i))

n

∣∣∣∣ �
(

16δ12
K +

8δ2

d
+ 2 · d+

2cδ2

d

)
n. (4.14)

Thus, by (4.6), the claim holds.

Now we show that with probability at least 1 − ε/2, the conditions in Lemma 4.3 hold.

Lemma 4.4. Let c = 1/2. With probability at least 1 − ε/2, the following conditions hold

simultaneously.

(a) For each i � K , points in squares in Candidatei are resolved in level i.

(b) For each i > K , a point in a square in Candidatei is resolved in level j with j � K .

(c) For each i > K , |NResolvej | � cδ22
2jn.

Proof. For each 0 � i � K , and for each square in Activei, we know it has at least δ1n

points by the definition of Activei. The probability that this square does not contain a

sample point is bounded above by (1 − δ1)
M � e−δ1M . There are at most 22i squares in

Activei, so by the union bound, the probability that the sample misses some square in

Activei is at most 22ie−δ1M . By the union bound again, the probability that there exists

0 � i � K such that the sample misses some square in Activei is bounded above by

K∑
i=0

22ie−δ1M < 22K+1e−δ1M � ε/4, (4.15)

where the last inequality is by our choices of δ1, K as in (4.5).

Now we consider the case K + 1 � i � l0. Recall NResolvei are the points in squares

in Activei which do not contain a sample point. Each square of side length 2−i in Activei

has at least δ2n points of π by definition. Suppose |Activei| = Ti. We know |Ti| � 22i since

there are at most 22i squares of side length 2−i. Given any set of squares in Activei which

consist of at least cδ22
2in points of π, the probability that these squares do not contain
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a sample point is at most (1 − cδ22
2i)M � e−cδ22

2iM . Since there are at most 2|Ti| � 222i

choices for these squares, by the union bound, the probability that some squares in

Activei containing at least cδ22
2in points and do not contain a sample point is bounded

above by 222i
e−cδ22

2iM . Therefore

Pr(|NResolvei| � cδ22
2in) � 222i

e−cδ22
2iM = ec2

2i(c′−δ2M) (4.16)

where c′ = ln(4e). By the union bound, the probability that |NResolvei| � cδ22
2in for

some K + 1 � i � l0 is bounded above by

l0∑
i=K+1

ec2
2i(c′−δ2M).

Since

c′ − δ2M = ln(4e) − 20000/5200 = −1.46

by the values of M and δ2 as in (4.1) and (4.5), we have

Pr(|NResolvei| � cδ22
2in for some K + 1 � i � l0) (4.17)

�
l0∑

i=K+1

ec2
2i(c′−δ2M) <

∞∑
j=22(K+1)

ecj(c
′−δ2M)

= ec(c
′−δ2M)(22(K+1)−1)/(e−c(c′−δ2M) − 1) < ε/8. (4.18)

Thus the claim in the lemma holds by (4.15) and (4.18).

Combining Lemma 4.3 and Lemma 4.4, we know that with probability at least 1 − ε/2,

n∑
i=1

∣∣∣∣ in − φ(i)

n

∣∣∣∣ +

∣∣∣∣π(i)

n
− π(φ(i))

n

∣∣∣∣ �
(

16δ12
K +

8δ2

d
+ 2 · d+

2cδ2

d

)
< εn/4.

Recall the definitions from earlier: α̃ is the blow-up of the subpermutation α induced

by the sample in π where the tth blow-up block is the subpermutation induced by the

locations φ−1(jt) in π, and ψ is the bijection between locations of π and α̃ with ψ(i) < ψ(j)

if and only if φ(i) < φ(j) or φ(i) = φ(j) but i < j. Then for the bijection ψ and the blow-up

permutation α̃, similar to the proof above, we have by Lemma 3.6 that

ρEMD(π, α̃) � 1

(n− 1)/2

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
ψ(i)

n
,
α̃(ψ(i))

n

))

� 2

(n− 1)/2

n∑
i=1

d

((
i

n
,
π(i)

n

)
,

(
φ(i)

n
,
π(φ(i))

n

))
< ε/2.

4.2. ρEMD(α̃, α̃′) < ε/2

In this section we show the following lemma.
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Lemma 4.5. With probability at least 1 − ε/2, any blow-up α̃′ of α with the jth point of α

blows up into a block of size |φ−1(j)| = |Bj |, which satisfies

ρEMD(α̃′, α̃) < ε/2.

Proof. As in the proof of Lemma 3.10, we again obtain (3.3), which states

n∑
i=1

|(α̃(i) − α̃′(i))/n| =

|α|∑
j=1

( ∑
i:(i,α̃(i))∈Bj

|(α̃(i) − α̃′(i))/n|
)

�
|α|∑
j=1

|Bj |2/n. (4.19)

To analyse |Bj |, we conduct another dyadic partition similar to that in Algorithm 2

with the following parameters. Let

δ3 := ε2 log(2/ε)/448 (4.20)

be the density threshold for a square to be in Active. The smallest side length of the

squares is d′ = 2−�2 log(1/(ε))�. Thus ε2/2 < d′ � ε2. Again, let Activei be the set of squares

of side length 2−i that were once in Active; let Frozeni ⊂ Frozen be the set of squares

of side length 2−i. We have the following claim.

Claim 4.6. With probability at least 1 − ε/2, for any 1 � j � |α| = M,

|Bj | � 56 log(2/d′)δ3n.

We delay the proof of this claim to later. Assuming this claim holds, we complete the

proof of Lemma 4.5.

Since
∑M

j=1 |Bj | = n and by the claim, |Bj | � B∗ := 56 log(2/d′)δ3n, by convexity we

have

M∑
j=1

|Bj |2/n � (B∗)
2 · 1/n · (n/B∗) = B∗ = 56 log(2/d′)δ3n. (4.21)

Therefore by (4.19) and applying the same argument as in Lemma 3.10, we have for any

ε > 0,

ρEMD(α̃, α̃′) �2 · 56 log(2/d′)δ3 � 112 log(4/ε2)δ3 � ε/2.

The last inequality holds by our choice of δ3 as in (4.20).

We now finish this section by completing the proof of Claim 4.6.

Proof of Claim 4.6. Notice that a smallest square is of side length d′ and can contain at

most d′n < δ3n points of π. Hence, the smallest squares cannot be active, so Active = ∅.

We next show that with probability at least 1 − ε/2, for each 0 � i � log(1/d′), each

square in Activei for some i contains a sample point. The reasoning is the same as in

Lemma 3.4. For each square in Activei, the probability that this square does not contain
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Figure 10. Case 1. The yellow squares are the square S containing the sample points X and X1 respectively.

The circles with centres X and X1 and radius
√

2 · 2−(i−1), respectively, each intersect at most 13 other squares

in Actives.

a sample point is at most (1 − δ3)
M . There are at most 22i squares in Activei; thus there

are at most

log(1/d′)∑
i=0

22i � 2 · d′−2

squares in
⋃log(1/d′)
i=0 Activei. Thus, by the union bound, the probability that for every i,

every square in Activei contains a sample point is at least

1 − 2d′−2(1 − δ3)
M � 1 − 2d′−2e−δ3M � 1 − ε/2.

We assume now that each square once in Active contains a sample point. We know

[0, 1]2 is now partitioned into squares in Frozen. Let X = (jt, π(jt)) be a sample point.

Suppose X is in Frozens for some s, which means it is in a square S of side length 2−s

that is in Frozen. We show that |φ−1(j)| is small by counting the number of squares in

Frozeni containing points of π that are mapped to this sample point X for each i. Note

that a square in Frozeni must have a parent square in Activei−1; on the other hand,

each square in Activei−1 contains at most four squares in Frozeni. It thus suffices to

upper-bound the number of squares in Activei−1 that contain a point of π which maps

to X.

Case 1. i− 1 = s. Since each square in Activei−1 contains a sample point, the Euclidean

distance between any point of π in this square and the sample point in Activei−1 is

at most
√

2 · 2−(i−1). Thus for any square S ′ other than S in Activei−1, if S ′ contains a

point of π mapped to the sample point X in S , the distance between X and S ′ is at most√
2 · 2−(i−1). Since the disc with centre X and radius

√
2 · 2−(i−1) can intersect at most

14 squares of side length 2−i (see Figure 10), including S itself, we know there are at

most 14 squares in Activei−1 containing points of π mapped to X. Therefore there are at

most 4 · 14 squares in Frozeni containing points of π mapped to X; this implies at most

4 · 14δ3n points of π contained in squares in Frozeni mapped to X.

Case 2. i− 1 > s. Similarly, if a square S ′ ∈ Activei−1 contains a point mapped to the

sample point X, then the distance from X to S ′ is at most
√

2 · 2−(i−1), since the disc with
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Figure 11. Case 2. The yellow squares are the squares containing the sample points X,X ′, X1, X
′
1. The four

circles with the four sample points as centres and radius
√

2 · 2−(i−1) each intersect at most 12 squares in Actives

respectively.

centre X and radius
√

2 · 2−(i−1) can intersect at most 12 squares of side length 2−i (see

Figure 11). Thus, by a similar argument, there are at most 4 · 12δ3n points of π contained

in squares in Frozeni mapped to X.

Case 3. i− 1 < s. By a similar argument, there are at most 4 · 13δ3n points of π contained

in squares in Frozeni mapped to X, since the disc with centre X and radius
√

2 · 2−(i−1)

can intersect at most 13 squares of side length 2−i (see Figure 12).

Combining the three cases above, we know that for each 0 � i � log(1/d′) and i �= s,

there are at most 56δ3n points of π contained in squares in Frozeni mapped to the sample

point X. And there are at most 56δ3n points of π in Frozens mapped to the sample point

X. Therefore

|Bj | �
log(1/d′)∑
i=0

56δ3n = 56 log(2/d′)δ3n. (4.22)

5. One-sided property testing under the planar metrics

We prove Theorem 1.9 in this section. The referee pointed out that an approach similar

to that of Goldreich and Trevisan given as Proposition D.2 in [18] can be used, which

shows that a (non-adaptive) two-sided tester for a hereditary property P can be used as

a black box to obtain a (canonical) one-sided tester for P . This argument simplifies our

original proof and also provides a better bound.

We first describe the one-sided tester, which is a modification of the two-sided tester as

described in Algorithm 1. With the parameters M1(ε/2),M2(ε/2), and M ′ as described in

Theorem 1.9, the tester works as shown in Algorithm 3.
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Figure 12. Case 3. The yellow squares are the squares S containing the sample points X,X1, X2, X3. The four

circles with the four sample points as centres and radius
√

2 · 2−(i−1) each intersect at most 13 squares in Actives

respectively.

Algorithm 3 One-sided tester

Let M ′ be as specified in Theorem 3.1. Given a permutation π, we pick a subpermutation

π′ of π of size M ′ uniformly at random. Output ‘π is in P ’ if π′ is in P , and otherwise

output ‘π is not in P ’.

Proof of Theorem 1.9. We first assume

32M5
1k

∗(M1)/ε
3 � 32M5

2k
∗(M2)/ε

3.

The other case is similar. If π ∈ P then clearly the result holds since the property

is hereditary. We can assume now that π is ε-far from P . It suffices to prove that

Pr(π′ ∈ P) < ε.

Let π′′ be a subpermutation of π′ of size M1(ε/2) picked uniformly at random. Recall

we have a two-sided tester in Algorithm 1 in Section 3; we call it Tester 1. Given any

permutation π′, applying Tester 1 with parameter ε/2, we pick a subpermutation π′′ of

size M1(ε/2) of π′ uniformly at random. For simplicity, we say ‘π′ is accepted by Tester

1’ if Tester 1 outputs ‘π′ ∈ P . Therefore, for π′ a subpermutation of π of size M ′ picked

uniform at random from π, we have

Pr(π′ is accepted by Tester 1) � Pr(π′ is accepted by Tester 1|π′ ∈ P)Pr(π′ ∈ P)

� (1 − ε/2)Pr(π′ ∈ P).
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The second inequality holds by a direct consequence of Theorem 1.7. Since the size of π′

is at least the value of n0(M1(ε/2), ε/2) in Theorem 1.7 and π′ ∈ P , a subpermutation π′′

of size M1(ε/2) of π′ will be accepted with probability at least 1 − ε/2.

Furthermore, since π is ε-far from P and is of size at least the value n0(M1(ε/2), ε/2)

in Theorem 1.7, and π′′ is a subpermutation of size M1(ε/2) of π picked uniformly at

random, Theorem 1.7 tells us

Pr(π′ is accepted by Tester 1) � ε/2.

Therefore we have

Pr(π′ ∈ P) � (ε/2)/(1 − ε/2) < ε.
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