Article contents
Fixed point sets and the fundamental group I: semi-free actions on G-CW-complexes
Published online by Cambridge University Press: 03 August 2023
Abstract
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is
${\mathbb {Z}}_p$-acyclic for any prime factor
$p$ of the order of
$G$. Jones proved the converse of Smith theory for the case
$G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain
$K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of
$K$-theoretical obstructions.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1029.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1033.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1034.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1035.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1036.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1037.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1038.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1039.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1040.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230802175255659-0430:S030821052300063X:S030821052300063X_inline1041.png?pub-status=live)
- 1
- Cited by