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Szemerédi’s regularity lemma and its variants are some of the most powerful tools in combin-
atorics. In this paper, we establish several results around the regularity lemma. First, we prove
that whether or not we include the condition that the desired vertex partition in the regularity
lemma is equitable has a minimal effect on the number of parts of the partition. Second, we use an
algorithmic version of the (weak) Frieze–Kannan regularity lemma to give a substantially faster
deterministic approximation algorithm for counting subgraphs in a graph. Previously, only an
exponential dependence for the running time on the error parameter was known, and we improve
it to a polynomial dependence. Third, we revisit the problem of finding an algorithmic regularity
lemma, giving approximation algorithms for several co-NP-complete problems. We show how to
use the weak Frieze–Kannan regularity lemma to approximate the regularity of a pair of vertex
subsets. We also show how to quickly find, for each ε ′ > ε , an ε ′-regular partition with k parts if
there exists an ε-regular partition with k parts. Finally, we give a simple proof of the permutation
regularity lemma which improves the tower-type bound on the number of parts in the previous
proofs to a single exponential bound.
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Secondary 05C50, 05D99

1. Introduction

Szemerédi’s regularity lemma [25] is one of the most powerful tools in graph theory. Szemerédi
[24] used an early version in the proof of his celebrated theorem on long arithmetic progressions
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in dense subsets of the integers. Roughly speaking, the regularity lemma says that every large
graph can be partitioned into a small number of parts such that the bipartite subgraph between
almost every pair of parts is random-like.

To state Szemerédi’s regularity lemma requires some terminology. Let G be a graph, and let
X and Y be (not necessarily disjoint) vertex subsets. Let e(X ,Y ) denote the number of pairs of
vertices (x,y) ∈ X ×Y that are edges of G. The edge density d(X ,Y ) = e(X ,Y )/(|X ||Y |) between
X and Y is the fraction of pairs in X ×Y that are edges. The pair (X ,Y ) is ε-regular if, for
all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| � ε|X | and |Y ′| � ε|Y |, we have |d(X ′,Y ′)− d(X ,Y )| < ε .
Qualitatively, a pair of parts is ε-regular with small ε if the edge densities between pairs of large
subsets are all roughly the same. A vertex partition V = V1 ∪·· ·∪Vk is equitable if the parts have
size as equal as possible, that is, we have ||Vi|− |Vj||� 1 for all i, j. An equitable vertex partition
with k parts is ε-regular if all but εk2 pairs of parts (Vi,Vj) are ε-regular. The regularity lemma
states that for every ε > 0 there is a (least) integer K(ε) such that every graph has an ε-regular
equitable vertex partition into at most K(ε) parts.

Arguably the main drawback of Szemerédi’s regularity lemma is that the proof gives an
enormous upper bound K(ε) on the number of parts, namely an exponential tower of twos of
height O(ε−5). That such a huge bound is indeed necessary was an open problem for many
years, until Gowers [15] proved a lower bound on K(ε) which is an exponential tower of twos
of height Ω(ε−1/16). Further results by Conlon and Fox [5] determine the dependence on the
number of irregular pairs, and a simpler proof of Gowers’ result was obtained by Moshkovitz
and Shapira [23]. The first two authors [12] determine the tower height up to a constant factor in
a version of the regularity lemma (see Section 2 for details). In this version, we show in Section 2
that the requirement that the partition is equitable has a negligible effect on the number of parts
(up to changing the regularity parameter a little bit).

Due to the many applications of the regularity lemma, there has been a great deal of research
on developing algorithmic versions of the regularity lemma and its applications (see the survey
by Komlós and Simonovits [19]). We would like to be able to find an ε-regular partition of a
graph on n vertices in time polynomial in n. Szemerédi’s original proof of the regularity lemma
was not algorithmic. The reason for this is that it needs to be able to check if a pair of parts is
ε-regular, and if not, to use subsets of the parts that realize this. This is problematic because it is
shown in [1] that determining whether a given pair of parts is ε-regular is co-NP-complete. They
use this to show that checking whether a given partition is ε-regular is co-NP-complete.

However, Alon, Duke, Lefmann, Rödl and Yuster [1] show how to find, if a given pair of
vertex subsets of size n are not ε-regular, a pair of subsets which realize that the pair is not
ε4/16-regular. The running time is Oε(nω+o(1)), where ω < 2.373 is the matrix multiplication
exponent (multiplying two n× n matrices in nω+o(1) time) [7, 20]. Here we use the subscript ε
to mean that the hidden constants depend on ε . Finding a pair of subsets of vertices that detect
irregularity is the key bottleneck for the algorithmic proof of the regularity lemma. It was shown
[1] that one can find an ε-regular partition with the number of parts at most an exponential
tower of height O(ε−20) in an n-vertex graph in time Oε(nω+o(1)). Thus, the following surprising
fact holds: while checking whether a given partition is ε-regular is co-NP-complete, finding an
ε-regular partition can be done in polynomial time.

Frieze and Kannan [14] later found a simple algorithmic proof of the regularity lemma based
on a spectral approach. Using expander graphs, Kohayakawa, Rödl and Thoma [18] gave a faster
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algorithmic regularity lemma with optimal running time of Oε(n2). Alon and Naor [2] develop an
algorithm which approximates the cut norm of a graph within a factor 0.56 using Grothendieck’s
inequality and apply this to find a polynomial-time algorithm which finds, for a given pair of
vertex subsets of order n which is not ε-regular, a pair of subsets which realize that the pair is not
ε3/2-regular. They further observe that their approach gives an improvement on the tower height
in the algorithmic regularity lemma to O(ε−7).

However, due to the tower-type dependence for the number of parts on the regularity para-
meter, these are not practical algorithms. While most graphs have a small regularity partition,
the previous algorithmic proofs would not necessarily find it, and would only guarantee finding a
regular partition with a tower-type number of parts. Addressing this issue, Fischer, Matsliah and
Shapira [11] give a probabilistic algorithm which runs in constant time (depending on ε and k)
and which finds, in a graph with an ε/2-regular partition with k parts, an ε-regular partition with
at most k parts (implicitly defined). Tao [26] gives a probabilistic algorithm which, with high
probability in constant time (depending on ε), produces an ε-regular partition. The algorithm
takes a random sample of vertices (the exact number of which is also random) and outputs the
common refinement of the neighbourhoods of these vertices.

Still, it is desirable to have a fast deterministic algorithm for finding a regularity partition,
which we obtain here. We give several deterministic approximation algorithms for these co-NP-
complete problems.

Theorem 1.1. There exists an Oε,α,k(n
2)-time algorithm which, given 0 < ε,α < 1 and k, and

a graph G on n vertices that admits an equitable ε-regular partition with k parts, outputs an
equitable (1+α)ε-regular partition of G into k parts.

In other words, if a graph has a regular partition with few parts, then we can quickly find
a regular partition (losing very slightly on the regularity) with the same number of parts. In
particular, we obtain an algorithmic regularity lemma which is optimal in terms of the number
of parts as it is exactly the same as in the non-algorithmic version (with a very slight loss on the
regularity parameter).

We also give an approximation algorithm for checking whether a given pair of vertex subsets
is ε-regular, in the sense that if the pair is not ε-regular, then we can algorithmically find a pair of
vertex subsets that witness that its failure to be (1−α)ε-regular. We will formulate this in terms
of regularity of bipartite graphs. We say that bipartite graph G with bipartition (X ,Y ) is ε-regular
if the pair (X ,Y ) is ε-regular.

Theorem 1.2. There exists an Oε,α(n2)-time algorithm which, given ε,α > 0, and a bipartite
graph G between vertex sets X and Y , each of size at most n, outputs one of the following.

(1) It correctly states that G is ε-regular.
(2) It finds a pair of vertex subsets U ⊆ X and W ⊆ Y which realize that G is not (1−α)ε-

regular, that is, |U | � (1−α)ε|X |, |W | � (1−α)ε|Y |, and |d(U,W )−d(X ,Y )| > (1−α)ε .

Using this result, by checking the regularity of each pair of parts in a partition, we have the
following corollary.
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Corollary 1.3. Given ε,α > 0, we can distinguish in time Oε,α(n2) between an ε-regular
partition and a partition which is not (1−α)ε-regular.

Remark. In Theorems 1.1 and 1.2 and Corollary 1.3, the dependence of the running time on
the parameters ε,α,k may be improved at the cost of worsening the dependence on n from n2

to nω+o(1). This is because we use the recent algorithmic version of the Frieze–Kannan weak
regularity lemma due to Dellamonica, Kalyanasundaram, Martin, Rödl and Shapira [8, 9]. In the
more recent paper [9], they develop an Oε(n2) algorithm for finding a weak ε-regular partition,
but it has a double exponential in 1/ε constant factor dependence. The older paper [8] has the
advantage of not having this poor dependence on the regularity parameter. See Section 3 for more
information.

Counting the number of copies of a graph H in another graph G is a famous problem in
algorithmic graph theory. For example, a special case of this problem is to determine the clique
number, the size of the largest clique, in a graph. This is a well-known NP-complete problem. In
fact, Håstad [16] and Zuckerman [27] proved that it is NP-hard to approximate the clique number
of an n-vertex graph within a factor n1−ε for any ε > 0.

There is a fast probabilistic algorithm for approximating up to ε the fraction of k-tuples which
make a copy of H. The algorithm takes s = 10ε−2 samples of k-tuples of vertices uniformly at
random from G and outputs the fraction of them that make a copy of H. The number of copies of
H is a binomial random variable with standard deviation at most s1/2/2, and hence the fraction
of k-tuples which make a copy of H in this random sample is likely within ε of the fraction
of k-tuples which makes copies of H. However, this algorithm has no guarantee of success.
It is therefore desirable to have a deterministic algorithm for counting copies which gives an
approximation for the subgraph count with complete certainty.

The algorithmic regularity lemma is useful for deterministically approximating the number of
copies of any fixed graph in a graph. Indeed, the counting lemma shows that if k parts V1, . . . ,Vk

are pairwise regular, then the number of copies of a graph H with k vertices with the copy of
the ith vertex in Vi is close to what is expected in a random graph with the same edge densities
between the pairs of parts. Adding up over all k-tuples of parts in an ε-regular partition, and
noting that almost all k-tuples of parts have all pairs ε-regular, we get an algorithm which runs in
time Oε,k(n

2) and which computes the number of copies of a graph H on k vertices in a graph on
n vertices, up to an additive error of εnk. The major drawback with this result is the tower-type
dependence on ε and k, which comes from the number of parts in the regularity lemma.

Duke, Lefmann and Rödl [10] gave a faster approximation algorithm for the number of copies
of H in a graph G. They first develop a weak regularity lemma with an exponential dependence
instead of a tower-type dependence. This gives an algorithm which runs in time 2(k/ε)O(1)

nω+o(1)

and which computes the number of copies of a graph H on k vertices in a graph on n vertices, up
to an additive error of εnk.

In Section 4, we will use the algorithmic version of the Frieze–Kannan weak regularity lemma
[8] to get the following even faster approximation algorithm for the subgraph counting prob-
lem. It improves the previous exponential dependence on the error parameter to a polynomial
dependence. Here v(H) and e(H) denote the number of vertices and edges in H, respectively.
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Theorem 1.4. Let H be a graph, and let ε > 0 be given. There is a deterministic algorithm that
runs in time OH(ε−O(1)nω+o(1) + ε−O(e(H))n), and finds the number of copies of H in G up to an
error of at most εnv(H).

For example, we can count the number of cliques of order 1000 in an n-vertex graph up to an
additive error n1000−10−6

in time O(n2.4).
In the final section of the paper, Section 7, we turn our attention to a regularity lemma for

permutations. Cooper [6] proved a permutation regularity lemma which was later refined by
Hoppen, Kohayakawa and Sampaio [17]. We give a new short proof of the permutation regularity
lemma, improving the number of parts from tower-type to single exponential, and further extend
it to an interval regularity lemma for graphs and matrices.

2. Equitable partitions with small irregularity

Let G be a graph, and let X and Y be (not necessarily disjoint) vertex subsets. The irregularity of
the pair X ,Y is defined as

irreg(X ,Y ) = max
U⊆X ,W⊆Y

∣∣e(U,W )−|U ||W |d(X ,Y )
∣∣.

The irregularity of a partition P of the vertex set of G is defined to be

irreg(P) = ∑
X ,Y∈P

irreg(X ,Y ).

One version of Szemerédi’s regularity lemma [22, Lemma 2.2] states that given any ε , one can
find an M(ε) such that any graph G has a partition into at most M(ε) parts with irregularity at
most ε|V |2. The proof of the regularity lemma gives M(ε) � tower(O(ε−2)), and we now know
that this is essentially tight [5, 12, 15], in the sense that M(ε) = tower(Θ(ε−2)) [12]. Here the
tower function is defined by tower(1) = 2 and tower(k +1) = 2tower(k).

We say that a partition is equitable if any two parts differ in size by at most one. It is a
convenient property to have in a regularity partition. The main result of this section shows that
for any vertex partition, one can refine it a bit further to obtain a partition which is close to an
equitable partition whose irregularity is not substantially larger.

Theorem 2.1. Let 0 < α < 1/2, let m be a positive integer, and let G be a graph on n �
108mα−5 vertices. If P is a vertex partition of G into m parts, then there is an equitable vertex
partition Q of G into at most 4m/α parts such that irreg(Q) � irreg(P)+αn2.

Let Meq(ε) be the smallest M such that, for any graph G = (V,E), there is an equitable partition
into at most M parts with total irregularity at most ε|V |2. We have Meq(ε) � M(ε) trivially. As
a consequence of Theorem 2.1, we show directly that adding the condition that the partition is
equitable has a very small effect on the size of the smallest partition with small irregularity.

Theorem 2.2. Let 0 < ε < 1 and 0 < α < 1/2. We have Meq(ε +α) � α−O(1)M(ε).
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In particular, taking α small but not too small, such as α = 2−1/ε , we see that the tower
height in Szemerédi’s regularity lemma is not significantly affected by adding the equitability
requirement.

Note that Theorem 2.1 also applies to graphs G whose number of parts in the regularity
partition is not as large as the worst case M(ε). To prove Theorem 2.1, we randomly divide
each part of the partition P into parts of (essentially) equal size (apart from a small remaining
subset), and then arbitrarily partition the relatively few remaining vertices into parts of equal size
to obtain an equitable partition. We show that this works with high probability.

As a first step, the following lemma shows that with high probability, a pair of random subsets
X ′,Y ′ of a pair of parts X ,Y induces roughly the same subgraph density as X and Y .

Lemma 2.3. Let X and Y be vertex subsets of a graph G. Let X ′ ⊆ X and Y ′ ⊆ Y be picked
uniformly at random with |X ′| = |Y ′| = k. Then

P
(
|d(X ′,Y ′)−d(X ,Y )| < δ

)
� 1−2e−δ 2k/4.

Proof. Consider picking the vertices of X ′ and Y ′ one at a time, starting with the vertices in
X ′. Let Z0, . . . ,Z2k be the martingale where Zi is the expected value of e(X ′,Y ′) conditioned on
knowing the first i vertices already chosen (this is sometimes referred to as the vertex-exposure
martingale). We have |Zi − Zi−1| � k as the choice of each vertex in X ′ and Y ′ changes the
final e(X ′,Y ′) by at most k. By the Azuma–Hoeffding inequality (see Alon and Spencer [3,
Chapter 7]),

P
(
|Z2k −Z0| � t

)
� 2e−t2/(4k3).

We have Z0 = k2d(X ,Y ) and Z2k = e(X ′,Y ′). Set t = δk2. We then obtain

P
(
|e(X ′,Y ′)− k2d(X ,Y )| � δk2

)
� 2e−δ 2k/4.

Noting that e(X ′,Y ′) = k2d(X ′,Y ′), the lemma follows.

The next lemma shows that the irregularity parameter remains roughly the same when restric-
ted to a random, much smaller, subset of vertices. Recall that the cut metric d� between two
graphs G and H on the same vertex set V = V (G) = V (H) is defined by

d�(G,H) := max
U,W⊆V

|eG(U,W )− eH(U,W )|
|V |2 .

When G and H are bipartite graphs on V = X ∪Y , we define the cut metric as

d�(G,H) := max
U⊆X ,W⊆Y

|eG(U,W )− eH(U,W )|
|X ||Y | .

We also use the same notation for edge-weighted graphs, where e(U,W ) denotes the sum of
weights of all edges in U ×W .
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Lemma 2.4. Let X ,Y be vertex subsets of a graph G. Let X ′ ⊆X and Y ′ ⊆Y be picked uniformly
at random with |X ′| = |Y ′| = k. Then, with probability at least 1−6e−

√
k/10,∣∣∣∣ irreg(X ′,Y ′)

k2
− irreg(X ,Y )

|X ||Y |

∣∣∣∣ � 9
k1/4

, (2.1)

Proof. We use the so-called First Sampling Lemma [4, Theorem 2.10] (we quote the statement
from [21, Lemma 10.5]): if G and H are weighted graphs with V (G) = V (H) and edge weights
in [0,1], and S ⊆V (G) is chosen uniformly at random with |S| = k, then with probability at least
1−4e−

√
k/10,

|d�(G[S],H[S])−d�(G,H)| � 8
k1/4

.

Let G[X ,Y ] denote the bipartite (weighted) graph with vertex sets X and Y , and whose edges are
induced from G. A bipartite version of this sampling lemma holds true, that with probability at
least 1−4e−

√
k/10,

|d�(G[X ′,Y ′],H[X ′,Y ′])−d�(G[X ,Y ],H[X ,Y ])| � 8
k1/4

, (2.2)

and its proof is nearly identical to the first version stated above. Note that

irreg(X ,Y ) = |X ||Y |d�(G[X ,Y ],d(X ,Y )),

where the second argument denotes the complete graph with loops with all edge weights equal
to d(X ,Y ). Similarly,

irreg(X ′,Y ′) = k2d�(G[X ′,Y ′],d(X ′,Y ′)).

By letting H in (2.2) be the complete graph with loops and all edge weights d(X ,Y ), we obtain
that with probability at least 1−4e−

√
k/10,∣∣∣∣ irreg(X ′,Y ′)

k2
− irreg(X ,Y )

|X ||Y |

∣∣∣∣ � 8
k1/4

+ |d(X ,Y )−d(X ′,Y ′)|.

We then apply Lemma 2.3 with δ = 1/k1/4 to reach the desired conclusion.

As a corollary of Lemma 2.3, and noting that the left-hand side of (2.1) is at most 1, we have

E

(
irreg(X ′,Y ′)

k2

)
� irreg(X ,Y )

|X ||Y | +
9

k1/4
+6e−

√
k/10 � irreg(X ,Y )

|X ||Y | +
20

k1/4
. (2.3)

Proof of Theorem 2.1. We shall omit floors and ceilings for the sake of clarity of presentation.
Let k = αn/(4m). Let V1, . . . ,Vm be the parts of P . Uniformly at random partition each Vi into
parts of size k, with possibly one remainder part of size less than k. Call the resulting partition P′.
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By (2.3),†

E

(
∑

X ′,Y ′∈P ′

|X ′|=|Y ′|=k

irreg(X ′,Y ′)

)
� ∑

X ,Y∈P

(
irreg(X ,Y )+

20
k1/4

|X ||Y |
)

� irreg(P)+
20n2

k1/4
.

So there exists some such partition P′ such that

∑
X ′,Y ′∈P ′

|X ′|=|Y ′|=k

irreg(X ′,Y ′) � irreg(P)+
20n2

k1/4
. (2.4)

Fix P′ to be this partition.
Let S be the union of the parts of P′ of size less than k. There is at most one such part of P′ for

each Vi, so |S| < mk. Arbitrarily partition S into sets of size k, and let Q be the equitable vertex
partition consisting of these parts of S along with the parts of P′ of size k.

Parts arising from S contribute at most 2|S|n < 2mkn to irreg(Q), whereas the other contribu-
tions to irreg(Q) are bounded by (2.4). Thus

irreg(Q) � irreg(P)+
20n2

k1/4
+2mkn � irreg(P)+αn2,

where the last step follows from

20
k1/4

=
20(4m)1/4

(αn)1/4
� 20(4m)1/4

(α ·108mα−5)1/4
<

α
2

and

2mk
n

=
2m
n

αn
4m

� α
2

.

Therefore Q is the required equipartition.

As a consequence of Theorem 2.1, we can prove Theorem 2.2.

Proof of Theorem 2.2. Let G be a graph with a partition P of the vertex set into m �
M(ε) parts with irregularity at most εn2. If n < 108mα−5, then we just partition the vertices
into singleton sets, which have zero irregularity, using at most 108mα−5 � 108α−5M(ε) parts.
Otherwise apply Theorem 2.1 to obtain a partition with irregularity at most (ε + α)n2, and at
most 4m/α � 4α−1M(ε) parts.

3. Algorithmic weak regularity

In this section we review some results concerning algorithmic versions of the Frieze–Kannan
weak regularity lemma. We will be applying these results in subsequent sections.

† It is easy to modify the proof to address the case when X ′ and Y ′ are within the same part of P .
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Given any edge-weighted graph G and any partition P : V = V1 ∪V2 ∪·· ·∪Vt of the vertex set
of G into t parts, let GP denote the weighted graph with vertex set V obtained by giving weight
di j := d(Vi,Vj) = e(Vi,Vj)/(|Vi||Vj|) to all pairs of vertices in Vi ×Vj, for every 1 � i � j � t.
We say P is an ε-regular Frieze–Kannan (or ε-FK-regular) partition if d�(G,GP) � ε . In other
words, P is an ε-regular Frieze–Kannan partition if∣∣∣∣e(S,T )−

t

∑
i, j=1

di j|S∩Vi||T ∩Vj|
∣∣∣∣ � ε|V |2. (3.1)

for all S,T ⊆V . We say that sets S and T witness that P is not ε-FK-regular if the above inequality
is violated.

Frieze and Kannan [13] proved the following regularity lemma.

Theorem 3.1 (Frieze–Kannan). Let ε > 0. Every graph has an ε-regular Frieze–Kannan par-
tition with at most 22/ε2

parts.

We apply efficient deterministic algorithms for generating Frieze–Kannan regular partitions.
Such algorithms were recently given in [8, 9]. Specifically, Dellamonica, Kalyanasundaram,
Martin, Rödl and Shapira [8] gave an ε−6nω+o(1)-time algorithm to generate an equitable ε-
regular Frieze–Kannan partition of a graph on n vertices into at most 2O(ε−7) parts. Recall that
ω < 2.373 is the matrix multiplication exponent. In [9] they gave a different algorithm which
improved the dependence of the running time on n from Oε(nω+o(1)) to Oε(n2), while sacrificing
the dependence of ε . Namely, it was shown that there is a deterministic algorithm that finds, in

O(22ε−O(1)

n2) time, an ε-regular Frieze–Kannan partition into at most 2ε−O(1)
parts. It remains an

open problem to improve the dependence on ε in the running time.
The proof of the Frieze–Kannan regularity lemma and its algorithmic versions, roughly speak-

ing, run as follows.

• Given a partition (starting with the trivial partition with one part), either it is ε-FK-regular (in
which case we are done), or we can exhibit some pair of subsets S,T of vertices that witness
the irregularity by violating (3.1) (in the algorithmic versions, one may only be guaranteed
to find S and T that violate (3.1) for some smaller value of ε).

• Refine the partition by using S and T to split each part into at most four parts, thereby
increasing the total number of parts by a factor of at most 4.

• Repeat. Use a mean-square-density increment argument to upper-bound the number of pos-
sible iterations.

Remark. As in the case of the usual regularity lemma, it is possible to obtain an equitable
partition in the Frieze–Kannan regularity lemma, increasing the number of parts by a small factor.
We will not need this for our algorithm, however.

For example, in the algorithmic version [8], the first step (also the key step) is given as the
following result [8, Corollary 3.1].

Theorem 3.2. There is an nω+o(1)-time algorithm which, given ε > 0, an n-vertex graph G and
a partition P of V (G), does one of the following.
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(1) It correctly states that P is ε-FK-regular.
(2) It finds sets S, T which witness the fact that P is not ε3/1000-FK-regular.

In [9], an alternative theorem is given for finding an irregular pair. The statement below is a
consequence of [9, Theorem 8.1].

Theorem 3.3. There is an O(2kn2)-time algorithm which, given ε > 0, an n-vertex graph G and
a partition P of V (G) into k parts, does one of the following.

(1) It correctly states that P is ε-FK-regular.
(2) It finds sets S, T which witness the fact that P is not εO(1)-FK-regular.

There is a variant of the weak regularity lemma, where the final output is not a partition of V
into 2ε−O(1)

parts, but rather an approximation of the graphs as a sum of ε−O(1) complete bipartite
graphs each assigned some weight. Below we use weighted graph to mean a graph with edge
weights. For S,T ⊆V , by KS,T we mean the weighted graph where an edge {s, t} has weight 1 if
s ∈ S and t ∈ T (and weight 2 if s, t ∈ S∩T ) and weight zero otherwise. For any c ∈ R, by cG we
mean the weighted graph obtained from G by multiplying every edge weight by c. For a pair of
weighted graphs G1,G2 on the same set of vertices, we will use the notation G1 +G2 to denote the
graph on the same vertex set with edge weights summed (and weight 0 corresponding to not hav-
ing an edge). Additionally, we write c to mean the constant graph with all edge weights equal to c.

Theorem 3.4 (Frieze–Kannan). Let ε > 0. Let G be any weighted graph with [−1,1]-valued
edge weights. There exists some k � O(ε−2), subsets S1, . . . ,Sk,T1, . . . ,Tk ⊆ V , and c1, . . . ,ck ∈
[−1,1], so that

d�(G,d(G)+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

) � ε.

See [22, Lemma 4.1] for a proof (given there in the more general setting of arbitrary Hilbert
spaces). Roughly speaking, to find the appropriate Si,Ti,ci, in the second step of the above outline
of the proof of the weak regularity lemma, instead of using S and T to refine the existing partition,
we subtract cKS,T from the remaining weighted graph (starting with G), where c is the density
between S and T in the remaining weighted graph. We record the corresponding Si,Ti,ci in step i
of this iteration. We can bound the number of iterations by observing that the L2-norm of G−
d(G)− c1KS1,T1

−·· ·− ciKSi,Ti
must decrease by a certain amount at each step.

As for the algorithmic version, using Theorems 3.2 and 3.3 (or minor modifications thereof),
we can efficiently approximate G as a weighted sum of ε−O(1) complete bipartite graphs.

Corollary 3.5. There exists a min{ε−O(1)nω+o(1),O(22ε−O(1)

n2)}-time algorithm which, given
ε > 0 and an n-vertex graph G, outputs subsets S1, . . . ,Sk,T1, . . . ,Tk ⊆ V (G) and real numbers
c1, . . . ,ck, for some k � ε−O(1), such that

d�(G,d(G)+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

) � ε.

We will use a variation for bipartite graphs.
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Corollary 3.6. There exists a min{ε−O(1)nω+o(1),O(22ε−O(1)

n2)}-time algorithm which, given
ε > 0 and a bipartite graph G between vertex sets X and Y each with at most n vertices, outputs
subsets S1, . . . ,Sk ⊆ X and T1, . . . ,Tk ⊆ Y and real numbers c1, . . . ,ck, for some k � ε−O(1), such
that

d�(G,d(X ,Y )+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

) � ε,

where the constant d(X ,Y ) here denotes the weighted complete bipartite graph d(X ,Y )KX ,Y .

4. Approximation algorithm for subgraph counts

Suppose that we are given a graph G on n vertices, and we would like to find the number of
copies of a small graph H on k vertices that are contained in G. We would like to count them up
to an error at most εnk. In this section we will provide a deterministic algorithm that can do so.
Specifically, we prove Theorem 1.4, reproduced below for convenience.

Theorem 1.4. Let H be a graph, and let ε > 0 be given. There is a deterministic algorithm that
runs in time OH(ε−O(1)nω+o(1) + ε−O(e(H))n), and finds the number of copies of H in G up to an
error of at most εnv(H).

It will be cleaner to work instead with hom(H,G), the number of graph homomorphisms from
H to G. This quantity differs from the number of (labelled) copies of H in G by a negligible
O(nv(H)−1) additive error (the hidden constants here and onward may depend on H). We extend
the definition of hom(H,G) to edge-weighted graphs G: if the edge xy in G has weight G(x,y),
then we define

hom(H,G) = ∑
f :V (H)→V (G)

∏
{u,v}∈E(H)

G( f (u), f (v)).

Note that here G(x,y) is defined on all pairs, with G(x,y) = 0 if there is no edge between x and y.
The idea is to apply a weak regularity lemma in the form of Corollary 3.5. A weakly regular

approximation also gives an approximate H-count, via a standard counting lemma (see [21,
Lemma 10.22]).

Lemma 4.1 (counting lemma). Given any graph H and any two weighted graphs G1 and G2

on the same set V of n vertices, we have

|hom(H,G1)−hom(H,G2)| � e(H)d�(G1,G2)n
v(H).

Here is the algorithm. Apply Corollary 3.5 to find any approximation

G′ = d(G)+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

of G with d�(G,G′) � ε/e(H) and k � ε−O(1). By the counting lemma, it suffices to compute

hom(H,G′) = hom(H,d(G)+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

), (4.1)
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which can be done in OH(ke(H)n) time, as follows. We can expand the right-hand side of (4.1)
via the distributive property, writing

hom(H,G′) = ∑
ϕ : E(H)→{0,...,k}

homϕ(H,(d(G),c1KS1,T1
, . . . ,ckKSk ,Tk

)), (4.2)

where for each assignment ϕ : E(H) → {0, . . . ,k} of edges of H to the components of G′ we
write homϕ(H,(G0,G1, . . . ,Gk)) to mean the homomorphism count obtained where the image of
each edge e ∈ E(H) is restricted to Gϕ(e), that is,

homϕ(H,(G0,G1, . . . ,Gk)) = ∑
f : V (H)→[n]

∏
uv∈E(H)

Gϕ(uv)( f (u), f (v)).

Here by Gi(x,y) we mean the edge weight of (x,y) in Gi.
There are (k+1)e(H) possible maps ϕ . We claim that each term on the right-hand side of (4.2),

corresponding to some ϕ , can be exactly computed in OH(n) time. Taking out a constant factor,
it remains to compute the value of

homϕ(H,(1,KS1,T1
, . . . ,KSk ,Tk

)).

We further decompose each KSi,Ti
(viewed as an adjacency matrix) as a sum 1Si×Ti

+ 1Ti×Si

and apply the distributive property once again to expand the quantity as a sum of 2e(H)-terms.
Each term counts the number of maps f : V (G) → [n] such that, for every v ∈ V (H), f (v) ∈⋂

e∈E(H) Rϕ(e) for some choice of Rϕ(e) = Sϕ(e) or Tφ(e). The size of such an intersection can be

computed in OH(n) time, and we can compute this term (one of 2e(H)-terms) by multiplying over
all v∈V (H). There are 2e(H) choices for which summand in 1Si×Ti

+1Ti×Si
to take in the expansion

over all i, and by summing over all 2e(H) choices, we can evaluate homϕ(H,(1,KS1,T1
, . . . ,KSk ,Tk

)).
By summing over all ϕ in (4.2), we see that hom(H,G′) can be exactly computed in OH(ke(H)n)
time, thereby providing the desired approximation to hom(H,G).

As for the running time, it took ε−O(1)nω+o(1) time to find the approximation G′, and it took
OH(ke(H)n) = OH(ε−O(e(H))n) time to compute hom(H,G′), giving the claimed total running
time.

5. Finding an irregular pair

In this section we prove Theorem 1.2, reproduced below for convenience.

Theorem 1.2. There exists an Oε,α(n2)-time algorithm which, given ε,α > 0, and a bipartite
graph G between vertex sets X and Y , each of size at most n, outputs one of the following.

(1) It correctly states that G is ε-regular.
(2) It finds a pair of vertex subsets U ⊆ X and W ⊆ Y which realize that G is not (1−α)ε-

regular, that is, |U | � (1−α)ε|X |, |W | � (1−α)ε|Y |, and |d(U,W )−d(X ,Y )| > (1−α)ε .

We can assume that α < 1/2, since for larger α we can just apply the algorithm with a lower

value of α . We shall give an O(22(αε)−O(1)

n2)-time algorithm. Using Corollary 3.6, we approximate
G by G′ = d(G)+ c1KS1,T1

+ · · ·+ ckKSk ,Tk
so that k = (αε)−O(1) and d�(G,G′) � αε3/4. Here
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S1, . . . ,Sk ⊆ X and T1, . . . ,Tk ⊆ Y . We shall assume that k is small compared to |X | and |Y |,
namely,

100 · k2k � αε3 min{|X |, |Y |}, (5.1)

for otherwise we can accomplish the task by a complete search (say when |X | � |Y |) over all

subsets of X in 2O(|X |) = 2O(α−1ε−3k2k) = 22(αε)−O(1)

time, which is enough.
We say that a sequence of numbers u,u1, . . . ,uk,w,w1, . . . ,wk is feasible if there exists a func-

tion μ : X ∪Y → [0,1] (we write μ(S) = ∑x∈S μ(x) from now on) such that the quantities

|μ(X)−u|
|X | ,

|μ(Y )−w|
|Y | ,

|μ(Si)−ui|
|X | ,

|μ(Ti)− ti|
|Y | , for all 1 � i � k,

are each at most αε3/(100k). One can think of μ as representing subsets U ⊆ X and W ⊆Y with
[0,1]-valued weights attached to its elements. One can determine via a linear program if a given
sequence is feasible (see Lemma 5.1 below).

Here is the algorithm. We perform a complete search through all sequences

u,u1, . . . ,uk,w,w1, . . . ,wk

of non-negative integers at most n, where u and each ui are divisible by 
αε3|X |/(100k)�, and w
and each wi are divisible by 
αε3|Y |/(100k)�. For each such sequence, we check whether it is
feasible, and if so we then check whether the inequalities∣∣∣∣ k

∑
i=1

ciuiwi

∣∣∣∣ > (1−α/2)εuw, u � (1−α/2)ε|X | and w � (1−α/2)ε|Y | (5.2)

hold. If they never hold for any feasible sequence, then we state that G is ε-regular. On the other
hand, if they hold for some feasible sequence, then we can convert f into actual sets U and W
(as we shall explain) that witness that G is not (1−α)ε-regular.

Next we prove the correctness of the algorithm if the output is that G is ε-regular.
Consider the partition of X given by the common refinement by S1, . . . ,Sk. For any index set

I ⊆ [k], let

SI =
(⋂

i∈I

Si

)
∩

(⋂
i/∈I

(X \Si)
)

denote the part in the common refinement indexed by I. We can compute the sizes |SI | for all
I ⊆ [k] in O(2kn) time. With this information at hand, we obtain the following result.

Lemma 5.1. There exists a 2O(k)-time algorithm that determines whether a given sequence u,
u1, . . . ,uk, w, w1, . . . ,wk is feasible.

Proof. It suffices to show that one can determine in the required time whether there exists
μ : X → [0,1] such that |μ(X)−u| � a and |μ(Si)−ui| � ai, for each i. Here

a = ai = 
αε3n/(100k)�

is the required bound (though it could be chosen arbitrarily for the purpose of this lemma). The
situation for Y is analogous.
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For the purpose of satisfying the inequalities |μ(X)− u| � a and |μ(Si)− ui| � ai, one only
needs to know the sum of values of μ on parts in the partition of X induced by the common
refinement of S1, . . . ,Sk.

For each I ⊆ [k], the variable xI is supposed to correspond to the value of μ(SI). Then μ exists
if and only if there exists (xI)I⊆[k] ∈ R

2k
satisfying the following inequalities:

−a �
(

∑
I⊆[k]

xI

)
−u � a,

−ai �
(

∑
I�i

xI

)
−ui � ai for all i ∈ [k],

and 0 � xI � |SI | for all I ⊆ [k].

This is a linear program in 2k + 1 variables, which can be solved in 2O(k) time. The original
sequence is feasible if and only if the above system of linear inequalities has some solution
in (xI).

Suppose the algorithm does not find any feasible sequence satisfying (5.2). We claim that G
is ε-regular. Assume otherwise. Then there exist U ⊆ X and W ⊆ Y such that |U | � ε|X |, |W | �
ε|Y |, and |d(U,W )−d(X ,Y )|> ε . Since d�(G,G′) � αε3/4, we have |eG(U,W )−eG′(U,W )|�
(αε3/4)|X ||Y |. Thus

|eG′(U,W )−dG(X ,Y )|U ||W || � |eG(U,W )−dG(X ,Y )|U ||W ||− |eG(U,W )− eG′(U,W )|

� |dG(U,W )−dG(X ,Y )||U ||W |− 1
4

αε3|X ||Y |

� ε|U ||W |− 1
4

αε|U ||W |

�
(

1− 1
4

α
)

ε|U ||W |.

On the other hand, since G′ = dG(X ,Y )+ c1KS1,T1
+ · · ·+ ckKSk ,Tk

, we have

eG′(U,W )−dG(X ,Y )|U ||W | =
k

∑
i=1

ci|U ∩Si||W ∩Ti|.

So ∣∣∣∣ k

∑
i=1

ci|U ∩Si||W ∩Ti|
∣∣∣∣ �

(
1− 1

4
α

)
ε|U ||W |.

Let u and ui be |U | and |U ∩ Si|, each respectively rounded to the nearest integer multiple
of 
αε3|X |/(100k)�, for all 1 � i � k. Similarly let w,wi be |W | and |W ∩ Si|, each respect-
ively rounded to the nearest integer multiple of 
αε3|Y |/(100k)�, for all 1 � i � k. The se-
quence u,u1, . . . ,uk,w,w1, . . . ,wk is feasible as witnessed by μ = 1U∪W . We claim that (5.2) holds.
Indeed, we have

u � |U |− 1
100

αε3|X | �
(

1− 1
100

αε2

)
ε|X |,
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and

w � |W |− 1
100

αε3|Y | �
(

1− 1
100

αε2

)
ε|Y |.

Furthermore, we have∣∣∣∣ k

∑
i=1

ciuiwi

∣∣∣∣ �
∣∣∣∣ k

∑
i=1

ci|U ∩Si||W ∩Ti|
∣∣∣∣− 3

100
αε3|X ||Y |

�
(

1− 1
4

α
)

ε|U ||W |− 3
100

αε3|X ||Y |

�
(

1− 1
4

α − 3
100

α
)

ε|U ||W |

�
(

1− 1
4

α − 3
100

α
)

ε
(

1+
1

100
αε2

)−2

uw

>

(
1− 1

2
α

)
εuw.

The first inequality above follows from the fact that for each i,

|ui −|U ∩Si|| �
αε3|X |
100k

,

|ui −|U ∩Si|| �
αε3|Y |
100k

,

and thus

|uiwi −|U ∩Si||W ∩Ti|| �
3αε3|X ||Y |

100k
.

The penultimate inequality follows from

u � |U |+ 1
100

αε3|X | �
(

1+
1

100
αε2

)
|U |

and similarly with w. So we have a feasible sequence satisfying (5.2), which is a contradiction.
Now suppose instead that the algorithm does find some feasible sequence that satisfies (5.2).

By adjusting μ , we may assume that μ takes {0,1}-value on all but at most one element in each
part in the common refinement partition of X by S1, . . . ,Sk, and likewise in Y by T1, . . . ,Tk. Let
U ⊆ X and W ⊆ Y denote the elements where μ is positive. Then we have

||U |−u| � αε3

100k
|X |+2k � αε3

50k
|X |.

Here the extra 2k-term accounts for rounding up non-integral values of μ . We used assumption
(5.1) to bound 2k. It thus follows from the above and (5.2) that

|U | �
(

1− 1
2

α − 1
50k

αε2

)
ε|X | � (1−α)ε|X |.

In particular, this means that

||U |−u| � αε3

50k
|X | � αε2

(1−α)50k
|U |.
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Similarly, we have

|W | �
(

1− 1
2

α − 1
50k

αε2

)
ε|Y | � (1−α)ε|Y |,

along with

||U ∩Si|−ui| �
αε2

(1−α)50k
|U |, for all 1 � i � k,

and

||W |−w| � αε2

(1−α)50k
|W |, and ||W ∩Ti|−wi| �

αε2

(1−α)50k
|W |, for all 1 � i � k.

Further,

|dG(U,W )−dG(X ,Y )| � |dG′(U,W )−dG(X ,Y )|− |dG(U,W )−dG′(U,W )|

� 1
|U ||W |

∣∣∣∣ k

∑
i=1

ci|U ∩Si||W ∩Ti|
∣∣∣∣− |X ||Y |

|U ||W |d�(G,G′)

� 1
|U ||W |

(∣∣∣∣ k

∑
i=1

ciuiwi

∣∣∣∣− 3
(1−α)50

αε2|U ||W |)
)
− 1

4
αε3 |X ||Y |

|U ||W |

� 1
|U ||W |

((
1− α

2

)
εuw− 3

(1−α)50
αε2|U ||W |

)
− 1

4
αε

� (1−α)ε.

Hence the pair (U,W ) witnesses that G is not (1−α)ε-regular.
We will need the following easy corollary of Theorem 1.2 for the next section.

Corollary 5.2. There exists an Oε,α,k(n
2)-time algorithm which, given ε,α,k > 0, a graph G

on n vertices, and a partition P of the vertex set of G into k parts, does one of the following.

(1) It correctly states that P is (1+α)ε-regular.
(2) It correctly states that P is not ε-regular.

Sometimes both options are correct. The algorithm that we give runs in O(k222(αε)−O(1)

n2) time.

Proof. Let P be the partition of V into V1, . . . ,Vk. Apply the algorithm in Theorem 1.2 to each
pair Vi,Vj so that either it correctly states that (Vi,Vj) is (1+α)ε-regular or it is not ε-regular. If
at least a (1−ε)-fraction of pairs is seen to be (1+α)ε-regular, then we know that P is (1+α)ε-
regular. Otherwise, more than an ε-fraction of pairs fails to be ε-regular, so P is not ε-regular.

6. Approximating regularity

In this section we prove Theorem 1.1, reproduced below for convenience.
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Theorem 1.1. There exists an Oε,α,k(n
2)-time algorithm which, given 0 < ε,α < 1 and k, and

a graph G on n vertices that admits an equitable ε-regular partition with k parts, outputs an
equitable (1+α)ε-regular partition of G into k parts.

Here is the algorithm, which runs in O(22(k/(αε))O(1)

n2) time. Using Corollary 3.5, we find
S1, . . . ,Ss, T1, . . . ,Ts ⊆V , with s � (k/αε)O(1), such that d�(G,G′) � αε/(10k2), where

G′ = d(G)+ c1KS1,T1
+ · · ·+ ckKSs,Ts

.

Let Q denote the partition of V (G) given by the common refinement of the sets

S1, . . . ,Ss,T1, . . . ,Ts.

Let Q have r � 4s parts, with sizes q1, . . . ,qr. We shall search over all tuples (qi, j)1�i�r,1� j�k of
non-negative integers satisfying all of the following requirements:

• qi = qi,1 + · · ·+qi,k for each 1 � i � r,
• each qi, j with j < k is divisible by 
αεn/(25rk)� (no divisibility requirements for qi,k), and
• the sums ∑r

i=1 qi, j for different values of j differ from n/k by at most αεn/(50k).

For each eligible tuple (qi, j), consider a partition P : V = V1 ∪·· ·∪Vk where Qi ∩Vj = qi, j (there
are many such partitions: pick an arbitrary one). Apply Corollary 5.2 to certify that P is either
(1 + 3α/4)ε-regular or not (1 + α/2)ε-regular. It turns out that the latter option cannot always
be true for all P searched, as we assume that G admits some ε-regular partition with k parts (we
will justify this claim). From this search, we find a (1 + 3α/4)ε-regular partition P which is
almost equitable in the sense that its parts have sizes differing from n/k by at most αεn/(50k).
We modify P by moving a minimum number of vertices to make it equitable. We claim that the
resulting partition is (1+α)ε-regular.

We next analyse the running time of this algorithm. Corollary 3.5 takes O(22(k/(αε))O(1)

n2) time
to find the cut norm decomposition. The number of tuples (qi, j) is at most

(25rkα−1ε−1)kr � 22(k/(αε))O(1)

.

For each (qi, j), the algorithm in Corollary 5.2 takes O(k222(αε)−O(1)

n2) time. Therefore, the entire

algorithm takes O(22(k/(αε))O(1)

n2) = Oα,ε,k(n
2) time.

Now we verify correctness. We shall prove the following claims, which together imply the
result. Indeed, (1) shows that the algorithm always finds some (1 + 3α/4)ε-regular partition P ,
and (2) shows that making P equitable by moving a minimum number of vertices between parts
results in a (1+α)ε-regular partition.

(1) If a partition P = {V1,V2, . . . ,Vk} of V is ε-regular, then we can modify it slightly to obtain
P′ = {V ′

1,V
′

2, . . . ,V
′

k} such that qi, j = |Qi ∩V ′
j | form an eligible tuple, and P′ is (1+α/2)ε-

regular for G (so the search would not pass over this (qi, j)).
(2) If a partition P of V is (1+3α/4)ε-regular for G, then by modifying P by adding or deleting

at most αεn/(50k) vertices from each part, the resulting partition is (1+α)ε-regular.

In order to show these claims, we first establish a few simple lemmas.
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Lemma 6.1. Let X, X ′, Y be vertex subsets of a graph with X ⊂ X ′ and |X |� (1−δ )|X ′|. Then
|d(X ′,Y )−d(X ,Y )| � δ .

Proof. We have the identity

d(X ′,Y )−d(X ,Y ) =
e(X ′ \X ,Y )+ e(X ,Y )
|X ′ \X ||Y |+ |X ||Y | − e(X ,Y )

|X ||Y |

=
(
d(X ′ \X ,Y )−d(X ,Y )

) |X ′ \X |
|X ′| .

The lemma follows from noting that densities are between 0 and 1 and |X ′ \X | � δ |X ′|.

Recall that AΔB := (A\B)∪ (B\A) denotes the symmetric difference between A and B.

Lemma 6.2. If U, U ′, W , W ′ are vertex subsets of a graph with |UΔU ′| � δ |U ∪U ′| and
|WΔW ′| � δ |W ∪W ′|, then |d(U,W )−d(U ′,W ′)| � 2δ .

Proof. It suffices to prove the lemma in the case W = W ′ and with the bound 2δ replaced by δ .
Indeed, the lemma would then follow by applying this case twice and the triangle inequality. By
the triangle inequality and applying Lemma 6.1 twice with X ′ = U ∪U ′, first with

δ1 =
|U ∪U ′|− |U |

|U ∪U ′|
and then with

δ2 =
|U ∪U ′|− |U ′|

|U ∪U ′| ,

and finally using

δ1 +δ2 =
|UΔU ′|
|U ∪U ′| � δ ,

we have

|d(U,W )−d(U ′,W )| � |d(U,W )−d(U ∪U ′,W )|+ |d(U ∪U ′,W )−d(U ′,W )|
� δ1 +δ2 � δ .

Lemma 6.3. Suppose (V1,V2) is an ε-regular pair of vertex subsets of a graph. Suppose we
modify them slightly to V ′

1 and V ′
2, with |ViΔV ′

i | � δε|Vi| for i = 1,2. Then V ′
1 and V ′

2 are ε +4δ -
regular.

Proof. Clearly we may assume that ε + 4δ � 1. Let U ′ ⊆ V ′
1 and W ′ ⊆ V ′

2 with |U ′| � (ε +
4δ )|V ′

1| and |W ′| � (ε +4δ )|V ′
2|. Let U = U ′ ∩V1 and W = W ′ ∩V2. Then we have

|U | = |U ′|− |U ′ \V1| � |U ′|− |V ′
1 \V1| � (ε +4δ )|V ′

1|−δε|V1|
� (ε +4δ )(|V1|−δε|V1|)−δε|V1|
= ε|V1|+4δ |V1|− (1+ ε +4δ )δε|V1| � ε|V1|.
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Similarly |W | � ε|V2|. Thus, by the regularity of the pair (V1,V2), we have

|d(U,W )−d(V1,V2)| � ε.

Now, we have that

|UΔU ′| � δε|V1| � δ |U | � δ |U ∪U ′|,

and similarly |WΔW ′| � δ |W ∪W ′|, and thus |d(U,W ) − d(U ′,W ′)| � 2δ by Lemma 6.2.
Similarly

|d(V ′
1,V

′
2)−d(V1,V2)| � 2δε � 2δ .

By the triangle inequality, we have |d(U ′,W ′)− d(V ′
i ,V

′
j )| � ε + 4δ , showing that (V ′

i ,V
′
j ) is

(ε +4δ )-regular.

As a corollary, we have the following.

Corollary 6.4. Let 0 < ε,δ < 1. Let G be a graph with n vertices. Let P be a partition of V (G)
into k parts, with each part having size at least n/(2k). Suppose that P is ε-regular for G. If we
modify P by adding or deleting at most δε|V |/k vertices from each part of P , then the resulting
partition is (ε +8δ )-regular for G.

Proof. Indeed, for any part Vi of P , if we let V ′
i be its modification, then |ViΔV ′

i | � δε|V |/k �
2δε|Vi|. This means that if a pair (Vi,Vj) was ε-regular, then after the modification it is (ε +8δ )-
regular, and so the proportion of pairs that are not ε +8δ -regular is at most ε � ε +8δ .

Now we prove claim (1). Let P be an equitable ε-regular partition of G. Since d�(G,G′) �
αε/(10k2), P is (1+α/10)ε-regular for G′. In G′, edges between the same parts of Q have equal
weights, and we can take P′ such that |Qi ∩Vj| differs from |Qi ∩V ′

j | by at most αεn/(50rk) for
each i, j. This means that P′ can be taken so that Vj and V ′

j differ by at most αεn/(50k) for each
j, so it follows from the lemma above that P′ is (1+3α/10)ε-regular for G′. Therefore, P′ must
be (1+α/2)ε-regular for G.

Claim (2) follows immediately from the corollary above.

7. Permutation regularity lemma

In this section we give a new proof of a regularity lemma for permutations that requires fewer
parts than previous results in literature. To define regular partitions for permutations, it is natural
to state it as a special case in a more general setting for matrices.

Let Y = (yi j) be an n×n matrix. We use interval to mean a subset of [n] of consecutive integers.
For any intervals I,J of [n], we write

dY (I,J) :=
1

|I||J| ∑
i∈I, j∈J

yi j.
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Definition. Let Y be an n× n square matrix. Let I,J ⊆ [n] be intervals. We say that (I,J) is
interval ε-regular for Y if, for all subintervals A ⊆ I and B ⊆ J with |A|� ε|I| and |B|� ε|J|, we
have

|dY (A,B)−dY (I,J)| � ε.

Let P be a partition of [n] into k intervals. We say that P is interval ε-regular for Y if all except
at most εk2 pairs of intervals (I,J) of P are interval ε-regular for Y .

Definition. We say that P is an equipartition of [n] if every pair of parts in P differ in size by
at most one.

Here is the regularity lemma for interval regular partitions.

Theorem 7.1 (interval regularity lemma). For every ε > 0 and positive integer m there is
some M = mO(1)ε−O(ε−5) with the following property. For every n ∈ N, and n×n matrix Y = (yi j)
with [0,1]-valued entries, there is some integer k ∈ [m,M] such that every equipartition of [n] into
k intervals is interval ε-regular for Y .

Remark. If n � M, then we can take the partition of [n] into singletons. Otherwise, our proof
will show that one can pick k from a small set of choices: one can take k = mqi, where q =
�16ε−3� and 0 � i < �4ε−5� is some integer.

Theorem 7.1 has the following immediate consequence for permutation regularity. Given a
permutation σ : [n] → [n], associate with it the n×n matrix Y σ defined by

yi j =

{
1 if σ(i) < j,

0 otherwise.

A partition of [n] into intervals is said to be ε-regular for σ if it is interval ε-regular for the
associated matrix Y σ .

Theorem 7.2 (permutation regularity lemma). For every ε > 0 and positive integer m, there
exist M = mO(1)ε−O(ε−5) with the following property. Let n �= n0 and σ be a permutation of [n].
Then, for some integer k ∈ [m,M], every equitable partition of [n] into k intervals is ε-regular
for σ .

An early form of this permutation regularity lemma was first proved by Cooper [6]. The above
form was proved in [17] with M being a tower exponential of height O(ε−5). Our version requires
a much smaller M.

7.1. Interval regular partitions for functions
We first prove the interval regularity lemma for functions. It is somewhat cleaner to work with
partitions of the real interval [0,1] into exactly equal-length subintervals, instead of equitable
partitions of [n]. The measure-theoretic approach has the slight advantage that it allows us to
defer divisibility issues of n until the end.
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Let f : [0,1]2 → [0,1] be a measurable function. For any intervals I,J ⊆ [0,1], we write

df (I,J) :=
1

λ (I)λ (J)

∫
I×J

f (x,y)dxdy.

Here λ denotes the Lebesgue measure.

Definition. Let f : [0,1]2 → [0,1] be a measurable function. Let I,J ⊆ [0,1] be intervals. We say
that (I,J) is interval ε-regular for f if, for all subintervals A ⊆ I and B ⊆ J with λ (A) � ελ (I)
and λ (B) � ελ (J), we have

|d f (A,B)−d f (I,J)| � ε.

Let P be a partition of [0,1] into k intervals. We say that P is interval ε-regular for f if all
except at most εk2 pairs of intervals (I,J) of P are interval ε-regular for f .

Theorem 7.3. For every ε > 0 and positive integer m there is some M = mε−O(ε−5) with the
following property. For every measurable function f : [0,1]2 → [0,1], there is some integer k ∈
[m,M] such that the partition of [0,1] into k equal-length intervals

[0,1/k)∪ [1/k,2/k)∪·· ·∪ [(k−1)/k,1]

is interval ε-regular for f .

Remark. In Theorem 7.3, it is possible to take k = mqi, where q = �16ε−3� and 0 � i < �4ε−5�
is some integer.

Before proving Theorem 7.3, we first prove a lemma showing that the density df (A,B) does
not change very much if A and B are changed only slightly.

Lemma 7.4. Let f : [0,1]2 → [0,1] be a measurable function. For any intervals

A,A′,B,B′ ⊆ [0,1],

we have

|d f (A,B)−d f (A
′,B′)| � 2λ ((A×B)Δ(A′ ×B′))

λ (A)λ (B)
.

Proof. By the triangle inequality,

λ (A)λ (B)|d f (A,B)−d f (A
′,B′)|

� |λ (A)λ (B)d f (A,B)−λ (A′)λ (B′)d f (A
′,B′)|+d f (A

′,B′)|λ (A)λ (B)−λ (A′)λ (B′)|

�
∣∣∣∣
∫

A×B
f dλ −

∫
A′×B′

f dλ
∣∣∣∣+ |λ (A)λ (B)−λ (A′)λ (B′)|

� 2λ ((A×B)Δ(A′ ×B′)).

The bound in Lemma 7.4 can be improved by a factor of 2 via the proof of Lemma 6.2.
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Proof of Theorem 7.3. Let fk denote the function obtained from f by replacing its value inside
each box,

Bi j =
[

i
k
,

i+1
k

)
×

[
j
k
,

j +1
k

)
,

with its average inside that box, that is,

fk(x,y) := k2
∫

Bi j

f dλ if (x,y) ∈ Bi j, for i, j = 0,1, . . . ,k−1

(when i or j equals k−1, the corresponding interval should be modified to be closed on the right).
Write

‖ f‖2 :=
(∫

[0,1]2
| f |2 dλ

)1/2

for the L2-norm.
Let q = �16ε−3�. Consider the sequence fm, fmq, fmq2 , . . . . Since 0 � ‖ fk‖2 � 1 for all k, there

exists some k = mqi for 0 � i < �4ε−5� such that

‖ fkq‖2
2 � ‖ fk‖2

2 +
ε5

4
. (7.1)

We will show that the partition of [0,1] into k equal-length intervals is interval ε-regular. In-
deed, if this were not the case, then there would exist more than εk2 irregular pairs of intervals
(I,J), where I = [i/k,(i + 1)/k) and J = [ j/k,( j + 1)/k) for some integers i and j. Due to the
irregularity, there exist subintervals A ⊆ I and B ⊆ J such that λ (A) � ελ (I), λ (B) � ελ (J), and

|d f (I,J)−d f (A,B)| > ε. (7.2)

Let A′ be the smallest interval containing A with both ends being multiples of 1/(kq). Note that
A′ ⊆ I. Define B′ similarly. We see that A′ ×B′ contains A×B, and the difference in area is at
most 4/(k2q). By Lemma 7.4,

|d f (A,B)−d f (A
′,B′)| � 2(4/(k2q))

(ε/k)2
=

8
qε2

=
8

�16ε−3�ε2
� ε

2
.

By (7.2) we have

|d f (I,J)−d f (A
′,B′)| > ε

2
.

Since the endpoints of I and J are multiples of 1/k and those of A′ and B′ are multiples of
1/(kq), the function fk − fkq has average value d f (I,J)−d f (A

′,B′) over the box A′ ×B′. So the
contribution to ‖ fk − fkq‖2

2 from A′ ×B′ is at least λ (A′)λ (B′)(ε/2)2 � ε4/(4k2). As there are
more than εk2 irregular pairs (I,J), and all the rectangles I × J are disjoint, we have

‖ fk − fkq‖2
2 >

ε5

4
.

Note that ∫
[0,1]2

( fk − fkq) fk dλ = 0
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since fk is constant over each box [i/k,(i+1)/k)× [ j/k,( j+1)/k), and fkq averages to fk on this
box. Thus fk and fk − fkq are orthogonal, so by the Pythagorean theorem,

‖ fkq‖2
2 = ‖ fk − ( fk − fkq)‖2

2 = ‖ fk‖2
2 +‖ fk − fkq‖2

2 > ‖ fk‖2
2 +

ε5

4
,

which contradicts (7.1). It follows that the partition of [0,1] into k equal-length intervals is
interval ε-regular for f .

7.2. Dealing with equitable partitions
Here is a lemma that will be useful for the proof of Theorem 7.1. It says that (I,J) being interval
regular is robust under changing I and J by a small amount.

Lemma 7.5. Let f : [0,1]2 → [0,1] be a measurable function. Let I, I′,J,J′ ⊆ [0,1]. Let 0 < ε �
1. Let ε ′ > 0 be a quantity less than each of

ε − 4λ ((I × J)Δ(I′ × J′))
ε2λ (I)λ (J)

,
λ (I)ε −λ (I \ I′)

λ (I′)
,

λ (J)ε −λ (J \ J′)
λ (J′)

.

If (I′,J′) is interval ε ′-regular for f , then (I,J) is interval ε-regular for f .

Proof. Let A ⊆ I and B ⊆ J be subintervals such that λ (A) � ελ (I) and λ (B) � ελ (J). Let
A′ = A∩ I′ and B′ = B∩ J′. The second and third hypotheses about ε ′ above imply that λ (A′) �
ε ′λ (I′) and λ (B′) � ε ′λ (J′). Since (I′,J′) is ε ′-regular for f , we have

|d f (A
′,B′)−d f (I

′,J′)| � ε ′.

By Lemma 7.4, we have

|d f (I,J)−d f (I
′,J′)| � 2λ ((I × J)Δ(I′ × J′))

λ (I)λ (J)

and

|d f (A,B)−d f (A
′,B′)| � 2λ ((A×B)Δ(A′ ×B′))

λ (A)λ (B)
� 2λ ((I × J)Δ(I′ × J′))

ε2λ (I)λ (J)
.

It follows by the triangle inequality and the first hypotheses on ε ′ that

|d f (A,B)−d f (I,J)| � ε,

which proves that (I,J) is ε-regular for f .

Proof of Theorem 7.1. Let f : [0,1]2 → [0,1] be the function that takes constant value yi j on
the rectangle [(i− 1)/n, i/n)× [( j− 1)/n, j/n), for each 1 � i, j � n. By Theorem 7.3, there is
some k ∈ [m,mε−O(ε−5)] such that the partition of [0,1] into k equal-length intervals is interval
(ε/2)-regular.

Any equitable partition P of [n] into sets of sizes c1, . . . ,ck, gives rise to a partition Q of [0,1]
into intervals of length c1/n, . . . ,ck/n. Since P is an equitable partition, the ith interval Ii of Q
differs, in terms of symmetric difference, from [(i− 1)/k, i/k) by at most k/n in measure. It
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follows from Lemma 7.5 that if n is large enough, say, n � 100k3ε−3, then (Ii,Ji) is interval ε-
regular for f whenever [(i−1)/k, i/k)× [( j−1)/k, j/k) is interval (ε/2)-regular for f . It follows
that Q is interval ε-regular for f .

When n < 100k3ε−3, we can take the partition of [n] into singletons, which is trivially interval
ε-regular.
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[25] Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes Combinatoires et Théorie des
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