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SUMMARY
Mechanical regulator-free bicycle robots have lighter weight and fewer actuators than the traditional
regulator-based bicycle robots. In order to deal with the difficulty of maintaining balance for
this kind of bicycle robot, we consider a front-wheel drive and mechanical regulator-free bicycle
robot. We present the methodologies for realizing the robot’s ultra-low-speed track-stand motion,
moderate-speed circular motion and high-speed rectilinear motion. A simplified dynamics of the
robot is developed using three independent velocities. From the dynamics, we suggest there may be
an underactuated rolling angle in the system. Our balancing strategies are inspired by human riders’
experience, and our control rules are based on the bicycle system’s underactuated dynamics. In the
case of track-stand and circular motion, we linearize the frame’s rolling angle and configure the robot
to maintain balance by the front-wheel’s motion with a fixed front-bar turning angle. In the case
of the rectilinear motion, we linearize both front-bar steering angle and front-wheel rotating angle,
and configure the system to maintain balance by the front-bar’s turning with a constant front-wheel
rotating rate. Numerical simulations and physical experiments are given together to validate the
effectiveness of our control strategies in realizing the robot’s proposed three motions.

KEYWORDS: Bicycle robot; Mechanical regulator-free; Track-stand motion; Circular motion;
Rectilinear motion.

1. Introduction
The bicycle robot (unmanned bicycle) has the advantages of simple structure, energy savings and
running capability in a narrow road, so it can potentially be used when performing field exploration,
security patrol, entertainment exhibition etc.

Essentially, bicycle robots are statically unstable systems, so the primary obstacle to realize their
developed function is dynamically falling over. In the past two decades, regulating the falling has been
a challenging topic in the field of bicycle robot research, and there are, in summary, the following
two types of regulators used in dealing with this issue:
� Type I: Regulator-based means.

Beznos et al.1 proposed an autonomous bicycle with two gyros. They believed that when the two gyros
span opposite directions, their gyroscopic torque due to the precession of gyros would counteract the
destabilizing torque due to the gravity force. Lee and Ham2 developed a movable load mass in their
unmanned bicycle design. They suggested the following control strategy. If the bicycle falls left or
right, by driving the center of the load mass right or left, the system would return back to the stable state
because its center of gravity has been regulated by the load mass movement. As opposed to the mass
balancer of Lee and Ham,2 Yamakita et al.3,4 focused on a rotational balancer in their autonomous
bicycle design. They stated that, due to momentum conservation, the rotation of their balancer in
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direction opposite to the tilting angle could generate enough regulating torque to compensate for
the tilting torque (induced by the gravity force). It is important to mention that Yamakita’s group5,6

successfully developed a prototype for an ultra-low-speed standing. Yavin7 presented two kinds
of innovative mechanical regulators, namely rotational bar and fly-wheel, to adjust his riderless
bicycle’s leaning angle. Yavin7 suggested that the symmetric bar or flywheel should not change the
mass distribution of his bicycle when it is rotating, so it would be more convenient for maintaining
bicycle’s balance. Bui et al.8 were also concerned with the flywheel regulator in their design, and what
is amazing is that their robot achieved a stable balance with zero moving velocity in a real experiment.
Suebsomran9 proposed upper and lower flywheels in their bicycle robot design. In a simulation, they
showed that the flywheels’ rotation produced a suitable torque to stabilize the bicycle in a given roll
angle. The most exciting achievement of the flywheel-based bicycle robot may be the Murata Boy
robot.10 The naughty boy rode on a little bicycle, standing still, tracking a curve and even climbing
a slope, as if by magic. As a compromise between the flywheels and mass balancers, Keo et al.11

and Kawaguchi and Yamakita12 presented a variable structure mechanical regulator in their riderless
bicycle scheme. Their regulator is configured as a flywheel when the robot’s leaning disturbances are
large, and it will switch to a mass balancer when the position of the center of gravity is shifted. Keo
et al.11 claimed that the flywheel should perform better than the balancer in stabilizing his riderless
bicycle. But he also recognized that the flywheel cannot cause his bicycle to track in the desired
direction as the balancer can do. Both numerical simulations and physical experiments are shown to
verify their ideas.
� Type II: Front-bar-based means.

Getz,13–15 Tanaka and Murakami16, Han et al.17 and Saguchi et al.18,19 insisted that a bicycle robot
can be stabilized only by steering. Especially, using physical experiments, Saguchi et al.18 argued that
the steering might be more efficient than the mechanical regulator in maintaining a bicycle robot’s
balance. Suryanarayanan et al.20 concentrated on a riderless bicycle at high speed. They proposed
that the front-bar’s turning would exert dominant effects on bicycle’s balance. Astrom et al.,21 Yi
and Song22 and Zhang and Yi23 believed that the front-fork’s turning can regulate the bicycle robot’s
leaning angle by states feedback loops and the turning magnitude might depend on the robot’s
running velocity. Moreover, Astrom et al.21 suggested a lower bound for velocity, i.e., as long as the
bicycle robot runs faster than this limit, it can easily be stabilized. Defoort and Murakami24,25 and
Guo et al.26 also balanced their own bicycle robot’s motion in a short time just by the front-bar’s
turning. Yamaguchi27 developed an intelligent system with a miniature humanoid robot riding a
miniature bicycle. In his prototype experiments, the robot can perform stable balanced running with
a turning handlebar and can stop bicycle by moving its feet from pedals to the ground. Yang et al.28

concentrated their effort on the circular motion’s simulation for an unmanned bicycle. In their idea,
the bicycle can keep a stable balance by steering if an angular velocity of a rear-wheel is given. Yang
et al.28 pointed out that there is only one equilibrium point when the bicycle runs straight, whereas
there may be many equilibrium points when the bicycle performs turning. Wang et al.29 presented
an evolutional opinion that both balance and direction of an autonomous bicycle can be achieved
only by the use of the handlebar steering. In order to testify their idea, scenario road tests for their
bicycle were performed, and their results were convincing. Soudbakhsh et al.30 focused on the human
neuro-balance control of a stationary bicycle. With a lot of physical tests, they validated that it is
impossible to stabilize stationary bicycle by only using rider’s upper body movements. However, a
rider can use steering as an additional actuation while incorporating his upper body movement to
balance a stationary bicycle. Cerone et al.31 paid their attention to the balance abilities of a riderless
bicycle against exogenous disturbances, such as a side wind gust and a slight slap on rear frame. Their
physical prototype experiments validated the effectiveness of steering control to stabilize a running
bicycle even when there are some external disturbances.

As mentioned above, the most distinctive properties of regulator-based bicycle robots may be
whether they are configured with translational mass balancers or with rotational flywheels. More
mechanisms and actuators are needed in this case. These changes lead to increase in systems’ weight
and energy consumption. Obviously, the situation does not agree with the original intention of
lightweight and energy saving designs of bicycle robots. Another disadvantage for regulator-based
bicycle robots may be the lack of fail-safe capability. If their mechanical regulators fail to work, this
type of robot would be disabled from the normal work due to its over-dependence on the functional
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Fig. 1. Schematic diagram and kinematics analysis of a front-wheel drive bicycle robot which is free from
mechanical regulators. (a) Front view of the robot showing the system’s coordinate frames settings and
instantaneous rotational axisPCPD etc. (b) Top view of the robot showing the horizontal velocities of the
mass center, i.e., vf , vr and vya. (c) Side view of the robot showing the vertical velocities of the mass center,
i.e., vro.

action of regulators. As for the front-bar-based bicycle robots, the main problem by far is that there
is no sufficient evidence; particularly, there are not enough convincing physical experiments to prove
that this type of bicycle robot as well as regulator-based robot has the ability to perform the same
balanced motions.

In this paper, we first aim to evaluate the self-balanced capability of a mechanical regulator-free
bicycle robot when it runs at various speeds, and second we intend to improve the regulators fail-
safe ability for regulator-based bicycle robots. In Section 2, a simplified dynamics is introduced by
analyzing the instantaneous turning radius of a robot. In Section 3, we propose controllers for three
balanced motions. In Sections 4 and 5, simulated and physical experiments are addressed to verify
the feasibility of our control strategies. In the final section, we outline the conclusions for the whole
paper and give the ideas about our future work.

2. Dynamic Model
Our work concentrates on a front-wheel drive robotic bicycle. The robot is not configured with any
mechanical regulators. The schematic diagram of the robot is shown in Fig. 1.

In Fig. 1, O1(O4) denotes the geometric center of the rear-wheel (front-wheel). Pm, Pm1 and Pm2

denote the mass center of the whole bicycle, the frame and the front-bar respectively. PA(PB) denotes
the ground contact point of the rear-wheel (front-wheel). PC denotes the intersection point of rear-
and front-wheels’ rotation axis. PCPD is normal to �O1O4PC , so it can be treated as the frame’s
instantaneous axis of rotation. Table I gives the physical meaning of the notations given in Fig. 1.

Figure 1 also shows the following coordinate systems of the robot:

� O − e1e2e3 is the coordinate system fixed on the ground.
� O1 − e(1)

1 e(1)
2 e(1)

3 represents the coordinate system of the frame, and its origin is located at the
geometric center of the rear-wheel.

� O2 − e(2)
1 e(2)

2 e(2)
3 represents the coordinate system fixed on the rear-wheel and its origin is also

located at the geometric center of the rear-wheel.
� O3 − e(3)

1 e(3)
2 e(3)

3 is the coordinate system fixed on the front-bar, and its origin is located at the
intersection point of the frame’s axis and the front-bar’s axis.

� O4 − e(4)
1 e(4)

2 e(4)
3 is the coordinate system fixed on the front-wheel and its origin is located at the

geometric center of the front-wheel.

First, we consider the geometric relationship depicted in Fig. 1(b), and second, we formulate

r1, r2 and r as afunction of l, l1 and φ2 : r1 = lcot(φ2), r2 = l/ sin(φ2) and r =
√

l2
1 + r2

1 =
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Table I. Nomenclature.

Parameter Definition

h Height of Pm when the robot stands upright.
α Offset angle between the vertical line and the front-bar axis when the robot stands upright.
R1, R2 Rear-wheel’s radius, front-wheel’s radius.
r1, r2, r Distance fromO1 to PCPD , distance fromO2 to PCPD , distance fromPm1 to PCPD .
l, l1 Horizontal distance fromO1 to O4, horizontal distance from O1 to the front-wheel’s center

Pm.
ψ , ψ̇ Yaw angle, yaw rate of the frame.
θ , θ̇ Roll angle, roll rate of the frame.
ϕ, ϕ̇ Pitch angle, pitch rate of the frame.
φ1, φ̇1 Rotational angle, rotational rate of the rear-wheel relative to the fame.
φ2, φ̇2 Rotational angle, rotational rate of the front-bar relative to the fame.
φ3, φ̇3 Rotational angle, rotational rate of the front-wheel relative to the front-bar.
vf , vr Linear velocity of O4; linear velocity of O1.
vya, vro Part of linear velocity of Pm induced by the frame’s turning; part of linear velocity ofPm

induced by the frame’s rolling.

√
l2
1 + l2cot2(φ2). Since we assume that the front-wheel runs on the ground without slipping, vf

can be represented as R2φ̇3. On the other hand, we suppose that point O4 rotates about line PCPD ,
so vf can also be represented as r2ψ̇ . By combining these two analytical expressions of vf, we can
represent ψ̇ as a function of φ̇3:ψ̇ = (R2/l) sin(φ2)φ̇3. Similarly, we consider the linear velocity of
point O1, and then represent φ̇1 as a function of φ̇3 : φ̇1 = (R2/R1) cos(φ2)φ̇3.

As illustrated in Figs. 1(b) and (c), the linear velocity of Pm can be decomposed into two orthotropic
parts, i.e.,

{
vro = hθ̇

vya = rψ̇
. (1)

We suppose the bicycle robot runs on a level ground with an invariable frame’s pitch angle, so we
can neglect its pitching rate and calculate frame’s angular velocity vector as

ωB1 = θ̇e(1)
1 + sin(θ)ψ̇e(1)

2 + cos(θ)ψ̇e(1)
3 , (2)

where e(1)
i (i = 1, 2, 3) is the ith axis basis vector in the frame coordinate system O1 − e(1)

1 e(1)
2 e(1)

3 .
Moreover, we consider the relative motion between the frame and the front-bar, and then we

calculate the front-bar’s angular velocity,

ωB3 = 3
1 RωB1 + φ̇2e(3)

3 , (3)

where e(3)
3 is the 3rd axis basis vector in the front-bar coordinate system O3 − e(3)

1 e(3)
2 e(3)

3 ; 3
1 R represents

the matrix of rotation transformation between coordinate frame O3 − e(3)
1 e(3)

2 e(3)
3 and O1 − e(1)

1 e(1)
2 e(1)

3 .
For simplifying the analysis, the system’s kinetic energy Ek is intentionally divided into two

independent parts, i.e., rotation inducing energy and translation inducing energy. For the former, it is
formulated as

{
Ek1 = (

ωT
B1

JB1ωB1 + J2yyφ̇
2
1

)
/2

Ek2 = (
ωT

B3
JB3ωB3 + J4yyφ̇

2
3

)
/2

, (4)

where JB1 denotes the inertial matrix of the assembly of the rear-wheel and the frame. JB3 denotes the
inertial matrix of the assembly of the front-bar and the front-wheel. J2yy and J4yy denote rear-wheel’s
and front-wheel’s moment of inertia around their own joint axis respectively. For the latter, we take
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the whole system as an integral, yielding

Ek3 = m(v2
ya + v2

ro)/2, (5)

where m represents the mass of the bicycle robot.
The total kinetic energy Ek of our system is defined as the algebraic sum of Eki (i = 1, 2, 3).

According to the previous analysis, ψ̇ and φ̇1 are the functions of φ̇3, thus our system’s total kinetic
energy Ek can be explicitly calculated by the use of angular velocities θ̇ , φ̇2 and φ̇3. The final
expression of Ek shows that there are no explicit ψ , ϕ and φ1 (φ3) in the total kinetic energy.

In order to calculate our system’s potential energy Ep, we assume that the turning of the front-bar
cannot change the height of the mass center of the whole system, so we get

Ep = mgh cos(θ). (6)

In our research, we only considered the track-stand motion, the circular motion and the rectilinear
motion. For the former two motions, the front-bar is locked at a fixed angle, thus φ2, sin(φ2) and cos(φ2)
become constant values. For the later motion, φ2 is very small, then sin(φ2) ≈ 0 and cos(φ2) ≈ 1.

No matter which case it will be, the two non-holonomic velocity constraints: ψ̇ = (R2/l) sin(φ2)φ̇3,

φ̇1 = (R2/R1) cos(φ2)φ̇3 could be integrated to two holonomic geometric constrains:

{
φ1 = (R2/R1) cos(φ2)[φ3(t) − φ3(0)]
ψ = (R2/l) sin(φ2)[φ3(t) − φ3(0)] ,

where φ3(0) is the initial angle of the front-wheel.
Besides, we suppose the bicycle robot runs with an invariable frame’s pitch angle, so ϕ is also

subjected to a holonomic geometric constrain. As a result, we can remove states variables, ψ , ϕ and
φ1, from our system, and then choose the remaining variables θ , φ2 and φ3 as general coordinates for
our system.

With Ek and Ep, we can calculate the Lagrange function: L = Ek − Ep. We substitute L into the
Lagrange’s equation,

τi = d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

,

where qi (i = 1, · · ·) represents general coordinates.
Then our system’s dynamic model can be

D(θ )θ̈ + C(θ , θ̇)θ̇ + G(θ) = τ , (7)

where θ = ( θ φ2 φ3 )T and τ = ( 0 τ1 τ2 )T, which denote joint variables and joint driving torques
respectively. D3×3 denotes the inertial matrix, and its elements are the functions of θ and φ2. C3×3

denotes the items relating to the Coriolis force etc., and its elements are the functions of θ , φ2, θ̇ , φ̇2

and φ̇3. G = (−mgh sin(θ) 0 0 )T, which denotes the item relating to the force of gravity.
Equation (7) reveals that our robot is an underactuated system with three independent velocities,

and the frame’s rolling angle is the underactuated degree of freedom.

3. Controller for Balanced Motions
As a consequence of Brockett’s theorem,32 one cannot linearize all the state variables of a
underactuated system by state feedback or nonlinear transformations, so we use the partial feedback
linearization method to develop three balanced motion controllers for our bicycle robot.

3.1. Controller for track-stand motion
Track-stand motion is standing on the ground with zero running velocity. We get the inspiration from
the human rider’s balancing skills: holding the front-bar immobile and driving the wheels forward
and backward to maintain balance. So we assume the front-bar of our bicycle to be locked at a fixed
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angle position (here without loss of the generality, we use 45◦. Other angles have similar results) and
the system maintains balance by the front-wheel’s motion. In response to this case, the dynamics in
Eq. (7) should be reduced, yielding

D1(θ1)θ̈1 + C1(θ1, θ̇1)θ̇1 + G1(θ1) = τ 1, (8)

in which θ1 = ( θ φ3 )T, D1, C1, G1, θ1 and τ 1 have the reduced forms of the corresponding items in
Eq. (7).

First, we solve the first formula of Eq. (8) and get φ̈3. Second, we substitute the derived result of
φ̈3 into the second formula of Eq. (8) and employ

τ2 =
(

d31 − d11d33

d13

)
v +

(
c31 − c11d33

d13

)
θ̇ +

(
c33 − c13d33

d13

)
φ̇3 + d33

d13
mgh sin(θ), (9)

where v is a newly introduced virtual control variable; cij (dij ) (i, j = 1, . . .) are the ith row and
j th column element of the matrix C1(D1). After the procedures, we can linearize the system’s
underactuated roll angle θ . We set the system expectations θd and φd

3 to zero and introduce symbols
ei (i = 1, . . . , 4) to denote the errors of θ , θ̇ , φ3 and φ̇3. If we define the system’s output y to be the
function of ei (i = 1, 3) and employ the virtual control input

v = −kpe1 − kde2 − k1e4 − k2e3, (10)

where kp, kd , k1 and k2 represent the feedback coefficients of the state variables ei (i = 1, . . . , 4)
respectively, then we can formulate the system’s error affine equations as

{
ė = f (e) + g(e)v
y = h(e) , (11)

Where e = ( e1 e2 e3 e4 )T, y = ( e1 e3 )T f (e), h(e) and g(e) are the vector functions of e, and

f (e) =

⎛
⎜⎝

e2

−kde2 − kpe1 − k1e4 − k2e3

e4

(ghm sin e1 − c11e2 − c13e4)/d13

⎞
⎟⎠ ,

g(e) =

⎛
⎜⎝

0
0
0

−d11/d13

⎞
⎟⎠ , h(e) =

(
e1

e3

)
.

Next, we discuss the control system’s stability. From Eq. (11), we get the Jacobin matrix at
equilibrium point (e = 0):

∂ ė
∂e

∣∣∣∣
e=0

=

⎛
⎜⎝

0 1 0 0
−kp −kd −k2 −k1

0 0 0 1
w 0 0 0

⎞
⎟⎠ , (12)

where w is the quantity relative to mass, moment of inertia, structural parameters and the front-bar’s
fixed turning angle. The secular equation of matrix (12) is described as

D(s) = s4 + kds
3 + kps2 + wk1s + wk2 = 0. (13)

According to the algebraic stability criterion, the necessary and sufficient condition of stability for
the system of Eq. (11) can be described as that where all the coefficients in Eq. (13) are simultaneously
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positive and satisfy the relationship:

kdkp − wk1 > k2
dk2/k1. (14)

3.2. Controller for circular motion
Referring to the human rider’s experience in tracking a circle, we find that the human rider would
not turn the handle-bar but control the driven wheel’s velocity to maintain balance. So we lock the
front-bar at 45◦ and employ the driving torque as in Eq. (9). Besides, we only consider the uniform
circular motion, so the resultant moment (about PAPB) due to the gravity and the centripetal force
should be zero, which leads to

ma(n)h cos(θ) − mgh sin(θ) = 0, (15)

Where a(n) denotes the centripetal acceleration of Pm. Moreover, since a(n) is proportional to the
square of ψ̇ , and ψ̇ is the function of φ̇3, Eq. (15) can also be expressed as

φ̇3 =
√

λ tan(|θ |), (16)

where λ is a constant that relates the system’s geometric parameters, the acceleration of gravity and
the front-bar’s turning angle etc.; | | is the absolute value operator.

We set the expectation θd = c and use ei(i = 1, 2, 3) to represent the errors of θ , θ̇ and φ̇3. If we
define the output of our system to be y = ( e1 e3 )T and employ

v = θ̈ d − kde2 − kpe1 − k1e3, (17)

where kd , kp and k1 represent the feedback coefficients of the state variables ei(i = 1, 2, 3)
respectively, we can get the system’s errors affine equation similar to Eq. (11), where e = ( e1 e2 e3 )T,

y = ( e1 e2 e3 )T, f (e), h(e) and g(e) are the vector functions of e, and

f (e) =
⎛
⎝ e2

−kde2 − kpe1 − k1e3

(ghm sin(e1 + c) − c11e2 − c13e3)/d13

⎞
⎠ ,

g(e) =
⎛
⎝ 0

0
−d11/d13

⎞
⎠ , h(e) =

⎛
⎝ e1

e2

e3

⎞
⎠ .

Finally, with the same procedure performed in the track-stand motion, we can derive the necessary
and sufficient condition of stability for circular motion, i.e.,{

kd > w2

(kd − w2)(kp − kdw2) > (k1w1 − kpw2) > 0, (18)

Where wi (i = 1, 2) is the quantity with respect to the inertial parameters, the geometrical parameters
and the front-bar’s turning angle of the system.

3.3. Controller for rectilinear motion
We all know, the human rider can drive a bicycle to track a straight line approximately by turning the
front-bar under various running velocities, and moreover, the faster the bicycle runs, the easier is the
line-tracking action. Referring to this riding experience, we design a controller for rectilinear motion
by turning the front-bar under a fixed front-wheel’s running velocity.

First, we rewrite Eq. (7) as

(
M11 M12

M21 M22

) (
�̈1

�̈2

)
+

(
F1

F2

)
=

(
τ a

0

)
, (19)
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where �1 = (φ2 φ3 )T , �2 = θ , τ a = ( τ1 τ2 )T ; M ij (i = 1, 2) is the inertial matrix of appropriate
dimension. Fi (i = 1, 2) is the quantity, including the Coriolis force and the gravity etc.

Then we linearize �1, and employ the driving torque

τ a = (M11 − M12 M−1
22 M21)υ − M12 M−1

22 F2 + F1. (20)

Next, we set expectations θd = 0, φd
2 = 0 and φ̇d

3 = c, and introduceei (i = 1, . . . , 6) to denote
the errors of φ2, φ̇2, φ3, φ̇3, θ and θ̇ . If we define the output y of our system as a function of errors e1,
e3 and e5, and employ

υ = −k1e1 − k2e2, (21)

where k1 and k2 are the feedback coefficient matrices defined as k1 = ( kp1 kd1 0 0
0 0 kp2 kd2

), k2 = ( k1 k2
0 0 ),

and k1, k2, kp1, kp2, kd1 and kd2 denote the feedback coefficients of the state variables ei , vectors
e1 = ( e1 e2 e3 e4 )T, e2 = ( e5 e6 )T, we can also derive the system’s error affine equations similar to
the form shown in Eq. (11):

⎧⎨
⎩

{
ė1 = Ae1 + p(e1, e2)
ė2 = f (e1, e2)

y = h(e1, e2)
,

where

A =

⎛
⎜⎝

0 1 0 0
−kp1 −kd1 0 0

0 0 0 1
0 0 −kp2 −kd2

⎞
⎟⎠ , p(e1, e2) =

⎛
⎜⎝

0
ke6

0
0

⎞
⎟⎠ ,

f (e1, e2) =
(

e6

f

)
, h(e1, e2) =

⎛
⎝ e1

e3

e5

⎞
⎠ ,

f = −d−1
11 [d12(−kd1e2 − kp1e1 + k2e6) + d13(−kd2e4 − kp2e3)

· · · + c11e6 + c12e2 + c13(e4 + c) − ghm sin(e5)].

Similarly, based on the eigenvalue analysis of the corresponding Jacobin matrix, we also obtain
the necessary and sufficient condition of stability of this kind of balance motion as:

⎧⎨
⎩

k1, k2 < 0
((kp1 − kp2)2 + kp2k

2
d1 + kp1k

2
d2) + kd1kd2(kp2 + kp1) > 0

kd2 + kd1, kp1kp2 > 0, kd2kp2 + k2
d2kd1 + k2

d1kd2 + kd1kp1 > 0
. (22)

4. Control Simulations
In this section, we will conduct numerical simulations of three kinds of balanced motions by the use
of the controllers proposed in last section.

Table II illustrates the structural parameters that are needed in our simulations. These parameters
are obtained from the estimation of a virtual prototype rather than the identification of our physical
prototype, but these are still used in our following prototype experiments.

We consider the controllers’ necessary and sufficient condition of stability in Eqs. (14), (18) and
(22), and then set the states feedback coefficients as shown in line 2 of Table III. In the rectilinear
motion, we only consider that the robot runs with a constant front-wheel velocity, rather than a
time-variant one. We do this here for the sake of simplicity. As a consequence, the front-wheel’s
kinetic parameters would not provide feedback to our controller.
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Table II. Parameters of the simulation.

Sym Physical meanings Value

h Height of mass center (m) 0.41
α Front-bar’s offset angle 20◦
R1 Rear-wheel’s radius (m) 0.19
R2 Front-wheel’s radius (m) 0.17
l Distance between the rear- and front-wheel’s center (m) 0.89
l1 Distance between the mass center and the rear-wheel’s center (m) 0.51
m Mass of the robot (kg) 21.34
g Acceleration of gravity (m/s2 ) 9.8

JB1 Inertia matrix of the assembly of rear-wheel and frame (kg· m2 )

⎛
⎝ 0.236 0 0

0 2.143 0
0 0 1.384

⎞
⎠

JB2 Inertia matrix of the assembly of front-bar and front-wheel (kg· m2 )

⎛
⎜⎝

0.682 0 0

0 0.785 0
0 0 0.021

⎞
⎟⎠

J2yy Inertia moment of rear-wheel around its rotational axis (kg· m2 ) 0.036
J4yy Inertia moment of front-wheel around its rotational axis (kg· m2 ) 0.028

Table III. Simulated configurations and results.

Motion type Track-stand motion Circular motion Rectilinear motion 

Feedback  
coefficients 

107, pk = 8dk =  

1 0.155, k = 2 0.126k =  
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1 0.03, k =− 2k = −0.0032  
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Line 3 in Table III shows three simulated experiment results. From these results we have:

� In track-stand motion (column 2 of line 3)

In column 2 of line 3 of Table III, Figure (a) shows the robot is initially set to tilt with –0.087 rad.
Under the regulating actions of a balanced controller, the tilting angle gradually decreases, and after
4 s, the angle is limited to a narrow range of 0 rad. This phenomenon implies that the bicycle robot
swings in the vicinity of its equilibrium position. In column 2 of line 3 of Table III, Figure (b) shows
the front-wheel runs quickly to –5.24 rad in 0.4 s at the beginning, and then smoothly turns back to
0 rad. This phenomenon indicates that the robot eventually returns to its initial location. In column 2
of line 3 of Table III, Figure (c) shows the maximum front-wheel’s driving toque is about –20 N·m,
which would not be inaccessible for a normal DC motor.

� In circular motion (column 3 of line 3)

In column 3 of line 3 of Table III, Figure (a) shows the robot’s initial tilting angle of 0.087 rad.
When the controller operates, the tilting angle starts reducing, and about 2 s later, it converges to
the anticipated 0.017 rad. In column 3 of line 3 of Table III, Figure (b) shows that the front-wheel
turns the angular velocity to the prescribed 3.14 rad/s in 2 s. According to the moment equilibrium
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Fig. 2. Experimental prototype. (a) Overall layout of the robot. The robot is developed with four basic bones,
i.e., the front-wheel, the rear-wheel, the frame and the front-bar. (b) Configuration of the autonomous driving
system, including three key function modules, marked A, B and C, which serve as the motor control, the data
acquisition and the algorithm calculation correspondingly.
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Fig. 3. Results of the track-stand motion experiment. (a) Snapshots of the experiment, which shows the bicycle
robot stands stably for more than 10 s on a level ground. (b) Rolling angle of the frame, which shows that the
robot is limited to a small range near the zero position. (c) Rotational angle of the front-wheel, which shows
that the wheel runs with trivial displacement in its initial location. Figures (b) and (c) together verify that the
robot performs the track-stand motion. (d) Driving torque of the front-wheel, which is limited to 10 N· m, is far
lower than the actuated motor’s critical torque.

condition given in Eq. (16), we know that the system stays at the state of dynamic equilibrium. In
column 3 of line 3 of Table III, Figure (c) shows that the maximum front-wheel’s driving torque is
about 37.5 N·m, which can be achieved by a normal DC motor.

� In rectilinear motion (column 4 of line 3)

In column 4 of line 3 of Table III, Figure (a) shows that the robot’s initially tilting with –0.087 rad.
The front-wheel’s angular velocity is set to 3π rad/s. Under the regulation of our controller, the tilting
angle gradually falls, and after 20 s, it permanently stays at 0 rad. This situation shows that the robot
runs stably on the ground. In column 4 of line 3 of Table III, Figure (b) shows the front-bar turns left
and right frequently at the beginning, but it eventually decreases to 0 rad. This situation indicates that
the robot system roughly runs in a straight line. In column 4 of line 3 of Table III, Figure (c) shows
that the maximum driving torque of the front-bar is less than 10 N·m.
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Fig. 4. Results of the circular motion experiment. (a) Snapshot of the experiment, which shows the robot running
in a circle stably for less 16 s. (b) Rolling angle of the frame, which converges nearly to a constant eventually.
(c) Angular velocity of the front-wheel, which converges nearly to a constant. Obviously, Figures (b) and (c)
are consistent with the moment equilibrium condition in Eq. (16), which further shows that the robot runs in
a circle. (d) Driving torque of the front-wheel, which is limited to ± 8 N· m and far lower than the actuated
motor’s critical torque.

As a consequence of the above discussion, we believe the bicycle robot achieves three kinds of
balanced motions by respective controllers with reasonable torques.

5. Prototype Experiments
To testify the real effectiveness of our control strategies, a physical prototype, say BYBR-I, is
developed. The prototype is actually 1.2 m in length, 0.7 m in height and 23 kg in weight.

5.1. Prototype hardware configuration
Figure 2(a) illustrates the overall framework of the prototype. Figure 2(b) shows the hardware
configurations of the robot’s control system.

As shown in Fig. 2, the developed prototype primarily consists of five parts, which are as follows:
� Control unit (Digital Signal Processor (DSP) + sensors)
� Communication unit (wireless modules)
� Support (aluminum alloy + steel)
� Actuation unit (DC servomotors)
� Accessories (batteries, auxiliary wheels)

The prototype should be developed to be as compact as possible, thus the DSP-based control board,
the wireless module, most of the sensors and the batteries are attached to the prototype frame. Two
DC servomotors are mounted on the front-wheel and front-bar’s joints. The motors can easily drive
the front-wheel and the front-bar thru gear reducers. In order to prevent the robot from falling over
and damaging costly devices, a couple of auxiliary wheels are installed on the two sides of the robot,
which are 15 cm from the floor when the robot stands erectly.
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Fig. 5. Results of the rectilinear motion experiment. (a) Snapshot of the experiment, which shows the robot
running a straight line stably for less 10 s. (b) Roll angle of the frame, which stays around zero. (c) Rotational
angle of the front-bar, which stays around zero. Figures (b) and (c) together indicate that the robot runs stably
in a straight line. (d) Driving torque of the front-bar, which is strictly limited to 3 N·m and far lower than the
actuated motor’s critical torque.

As shown in Fig. 2, we use two chips of DSPs (TMS320 F28335 and TMS320F2812) and a
microcontroller (MCU) (C8051F020) in our system. For the sensors group, an Inertial Measure Unit
(IMU) and three encoders are employed to get the posture information of the bicycle robot. In addition,
three supersonic sensors and two current sensors are introduced for the detection of obstacles and the
current measurements of motors respectively. Since the bicycle may run fast over long distance on
the ground, we use a couple of wireless modules to transfer data between the host computer and the
bicycle robot. But for short distances onboard microprocessors, we use CAN bus, SPI bus and SCI
bus to exchange data.

From Fig. 2, we also see that there are four CPUs in the robot’s control system. We divided this
system into three hierarchies. The first one is the host computer, which is in charge of making the
strategic decision and monitoring the whole system’s state. The second one comprises two DSPs,
which are responsible for the sensors’ data acquisition and control algorithm calculation. The last one
is MCU, which deals with the control of two motors. The working procedure of the control system
can be summarized as follows:

� Step 1: The TMS320F28335 (DSP) sends a requirement message of data transferring to
TMS320F2812 (DSP) for asking for sensors data.

� Step 2: The TMS320F2812 responds to the requirement message and returns the latest sensors data
to F28335.

� Step 3: The TMS320F28335 calculates the needed control quantities according to the received
sensors data, and sends them to the C8051F020 (MCU). After that, these control quantities together
with the sensors data are transferred to the host computer.

� Step 4: The C8051F020 generates the corresponding driving signals according to the control
quantities to drive the two motors.

5.2. Balanced motion experiments
The parameters used in our controllers are shown in Table II. Since there may be deviations between
the real parameters and the estimated ones, we need to retune the states feedback coefficients. Next,
we provide the three trials in detail.

� Motion A: Track-stand motion
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Prior to the trial, we lock the front-bar at π/4 rad and reset the states feedback coefficients as:
kd = 140, kp = 187, k1 = 5.3389, k2 = 1.0268.

Figure 3 shows the results of our track-stand experiment. Figure 3(a) gives the snapshots of the
experiment, which shows that the bicycle robot operates stably for longer than 10 s. Figure 3(b) shows
that the robot’s rolling angle is strictly limited to a small range near to the equilibrium point, and
a slight disturbance, which happens at 12 s, does not disrupt the system’s balance at all. This case
shows the abilities of our controller to compensate for the noise and disturbances. Figure 3(c) shows
the front-wheel runs with a trivial displacement in its initial location. As a whole, Figs. 3(b) and (c)
verify that the robot is operating in the track-stand motion. Figure 3(d) shows that the front-wheel’s
maximum driving torque is 9.6 N·m, which is about 39% of the driving motor’s critical torque.

In conclusion, the robot prototype achieves well its track-stand motion.

� Motion B: Circular motion

We again lock the front-bar at π/4 rad and reset the state feedback coefficients as: kp = 160, kd = 80,
k1 = 2.36.

Figure 4 shows the results of this experiment. Figure 4(a) shows that the robot runs in a circular
trajectory at about 14 s per round. Figure 4(b) shows, the robot’s rolling angle converges to the
prescribed value. Figure 4(c) shows that the front-wheel’s velocity quickly rises to the preset value.
These phenomena verify the moment equilibrium condition in Eq. (16). Figure 4(d) shows that the
maximum of the front-wheel’s driving torque is less than 10 N·m (10 N·m is about 40% of the driving
motor’s critical torque).

� Motion C: Rectilinear motion

We set free the previously locked front-bar and configure the controller’s feedback coefficients as:
kp = 100, kd = 30, k1 = −5.62, k2 = −0.55. Similar to the setup of velocity in rectilinear motion
simulation, the driving angular velocity of the front-wheel is maintained at 3π rad/s.

Figure 5 shows the experimental results of the rectilinear motion. It is seen from Fig. 5(b) that the
frame’s rolling angle is strictly limited in the vicinity of 0 rad. This situation indicates that the robot
is performing a balanced motion. Figure 5(c) shows that the front-bar’s rotational angle is basically
constrained at 0 rad and its biggest deviation is about 0.20 rad. This phenomenon implies that our
robot runs in a trajectory close to a straight line. Figure 5(d) shows that the maximum value of the
front-bar’s driving torque is less than 3 N·m. This value is about 11.6% of the driving motor’s critical
torque.

Summarily, we can conclude from the analyses that our bicycle robot perfectly achieves its
rectilinear motion.

As a whole, with the proposed controllers, we accomplish the three kinds of balanced motions’
physical experiments. On the other hand, the three experimental results validated the practical
effectiveness of our strategies.

6. Conclusions and Future Work
Maintaining balance is the most fundamental requirement for a bicycle robot. In the traditional views,
most researchers believe that mechanical regulators are the best means to achieve a bicycle robot’s
balance. While for the bicycle robots which are free of mechanical regulators, they argue that it is
difficult to maintain balance, especially in the case of low speed.

This paper is concerned with three kinds of balanced motions of a front-wheel drive and mechanical
regulator-free bicycle robot when it runs in different speeds. For making a rule, we first present a
simplified model for the proposed system. Our model can well symbolize the robot’s coupling
dynamics with three independent angular velocities and an underactuated rolling angle. Second,
accounting for the underactuated characteristics of the dynamics, we develop model-based balanced
controllers for the system’s ultra-low-speed track-stand motion, moderate-speed circular motion and
high-speed rectilinear motion. The main advantages of our controllers are that they are simple and
compactly closed structures, which can be easily used in our microprocessor-based controlling system.
Finally, with the proposed controllers, both simulations and physical experiments are performed to
demonstrate that our bicycle robot can realize three motions with reasonable driving torques.

https://doi.org/10.1017/S026357471400112X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400112X


Realization of balanced motions for mechanical regulator-free bicycle robot 1971

Our work indicates that mechanical regulator-free bicycle robots can also perform the same
balanced motions in various speeds as the regulator-based ones do. Moreover, when the regulator-
based bicycle robots are subjective to the mechanical regulator malfunction, by turning to the steering-
balanced mode, our control strategies can be used to the fault-tolerance control for this kind of bicycle
robots.

One limitation in our work is that our bicycle robot cannot automatically turn from one balanced
motion state to another. For this reason, the extensions of our research should involve developing an
autonomous switching strategy to perform smooth turning among the three motions. In addition, since
the structural parameters, e.g., moment of inertia and mass, used in experimental controllers mainly
stem from individual estimations, it is difficult to choose appropriate controller parameters just by the
proposed theoretic stability conditions (Because the theoretic stability conditions completely depend
on the accuracy of the structural parameters). So developing a strategy for controller parameters’
self-tuning is also a significant work that should be done next. Finally, we should generalize our
strategies to the regulator-based bicycle robots as a spare control method in future.
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