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We upper-bound the number of common zeros over a finite grid of multivariate polynomials

and an arbitrary finite collection of their consecutive Hasse derivatives (in a coordinate-

wise sense). To that end, we make use of the tool from Gröbner basis theory known as

footprint. Then we establish and prove extensions in this context of a family of well-known

results in algebra and combinatorics. These include Alon’s combinatorial Nullstellensatz

[1], existence and uniqueness of Hermite interpolating polynomials over a grid, estimations

of the parameters of evaluation codes with consecutive derivatives [20], and bounds on the

number of zeros of a polynomial by DeMillo and Lipton [8], Schwartz [25], Zippel [26, 27]

and Alon and Füredi [2]. As an alternative, we also extend the Schwartz–Zippel bound

to weighted multiplicities and discuss its connection to our extension of the footprint bound.
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1. Introduction

Estimating the number of zeros of a polynomial over a field F has been a central problem

in algebra, where one of the main inconveniences is counting repeated zeros, that is,

multiplicities. In the univariate case, this is easily solved by defining the multiplicity of

a zero as the minimum positive integer r such that the first r consecutive derivatives of

the given polynomial vanish at that zero. In addition, Hasse derivatives [14] are used

instead of classical derivatives in order to give meaningful information over fields of

positive characteristic. In this way, the number of zeros of a polynomial, counted with

multiplicities, is upper-bounded by its degree. Formally:∑
a∈F

m(F(x), a) � deg(F(x)). (1.1)
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If V�r(F(x)) denotes the set of zeros of F(x) of multiplicity at least r, then a weaker, but

still sharp, bound is the following:

#V�r(F(x)) · r � deg(F(x)). (1.2)

In the multivariate case, the standard approach is to consider the first r consecutive

Hasse derivatives as those whose multi-indices have order less than r, where the order of a

multi-index (i1, i2, . . . , im) is defined as
∑m

j=1 ij . We will use the terms standard multiplicities

to refer to this type of multiplicity. In this work, we consider arbitrary finite families J
of multi-indices that are consecutive in a coordinate-wise sense: if (i1, i2, . . . , im) belongs

to J and kj � ij , for j = 1, 2, . . . , m, then (k1, k2, . . . , km) also belongs to J . Obviously, the

(finite) family J of multi-indices of order less than a given positive integer r satisfies this

property, hence is a particular case.

Our main contribution is an upper bound on the number of common zeros over a

grid of a family of polynomials and their (Hasse) derivatives corresponding to a finite

set J of consecutive multi-indices. This upper bound makes use of the technique from

Gröbner basis theory known as footprint [11, 16], and can be seen as an extension of

the classical footprint bound [7, Section 5.3] in the sense of (1.2). A first extension for

standard multiplicities has been given as Lemma 2.4 in the expanded version of [24].

We will then show that this bound is sharp for ideals of polynomials, characterize

those which satisfy equality, and give as applications extensions of known results in

algebra and combinatorics: Alon’s combinatorial Nullstellensatz [1, 3, 6, 21, 23], existence

and uniqueness of Hermite interpolating polynomials [10, 19, 22], estimations of the

parameters of evaluation codes with consecutive derivatives [12, 19, 20], and the bounds

by DeMillo and Lipton [8], Zippel [26, 27] and Alon and Füredi [2], and a particular

case of the bound given by Schwartz in [25, Lemma 1].

The bound in [25, Lemma 1] can also be derived by those given by DeMillo and Lipton

[8], and Zippel [26, Theorem 1], [27, Proposition 3] (see Proposition 5.5 below), and is

referred to as the Schwartz–Zippel bound in many works in the literature [9, 12, 19, 20].

Interestingly, an extension of such a bound for standard multiplicities in the sense of

(1.1) has recently been given in [9, Lemma 8], but as Counterexample 7.4 in [4] shows,

no straightforward extension of the footprint bound in the sense of (1.1) seems possible

(recall that we will give a footprint bound in the sense of (1.2)). To conclude this work, we

give an extension of the Schwartz–Zippel bound in the sense of (1.1) to derivatives with

weighted order less than a given positive integer, which we will call weighted multiplicities.

This bound is inspired by [9, Lemma 8], and we will discuss its connection to our extension

of the footprint bound.

The results are organized as follows. We start with some preliminaries in Section 2.

We then give the main bound in Section 3, together with some particular cases, an

interpretation of the bound, and sharpness and equality conditions. In Section 4, we give

a list of applications. Finally, in Section 5 we give an extension of the Schwartz–Zippel

bound in the sense of (1.1) to weighted multiplicities, and discuss the connections to the

bound in Section 3.
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Notation

Throughout this paper, F denotes an arbitrary field. We denote by F[x] = F[x1, x2, . . . , xm]

the ring of polynomials in the m variables x1, x2, . . . , xm with coefficients in F. A multi-

index is a vector i = (i1, i2, . . . , im) ∈ Nm, where N = {0, 1, 2, 3, . . .}, and as usual we use the

notation xi = xi11 x
i2
2 · · · ximm . We also denote N+ = {1, 2, 3, . . .}.

In this work, � denotes the coordinate-wise partial ordering in Nm, that is, (i1, i2, . . . , im) �
(j1, j2, . . . , jm) if ik � jk , for all k = 1, 2, . . . , m. We will use �m to denote a given monomial

ordering in the set of monomials of F[x] (see [7, Section 2.2]), and we denote by

LM�m
(F(x)) the leading monomial of F(x) ∈ F[x] with respect to �m, or just LM(F(x)) if

there is no confusion about �m. Finally, the notation 〈A〉 means ideal generated by A in

a ring, and 〈A〉F means vector space over F generated by A.

2. Consecutive derivatives

In this work, we consider Hasse derivatives, introduced first in [14]. They coincide with

usual derivatives except for multiplication with a non-zero constant factor when the

corresponding multi-index contains no multiples of the characteristic of the field, and

they have the advantage of not being identically zero otherwise.

Definition 2.1 (Hasse derivative [14]). Let F(x) ∈ F[x] be a polynomial. Given another

family of independent variables z = (z1, z2, . . . , zm), the polynomial F(x + z) can be written

uniquely as

F(x + z) =
∑
i∈Nm

F (i)(x)zi,

for some polynomials F (i)(x) ∈ F[x], for i ∈ Nm. For a given multi-index i ∈ Nm, we define

the ith Hasse derivative of F(x) as the polynomial F (i)(x) ∈ F[x].

We next formalize the concept of zero of a polynomial of at least a given multiplicity as

that of common zero of the given polynomial and a given finite family of its derivatives.

Definition 2.2. Let F(x) ∈ F[x] be a polynomial, let a ∈ Fm be an affine point, and let

J ⊆ Nm be a finite set. We say that a is a zero of F(x) of multiplicity at least J if

F (i)(a) = 0, for all i ∈ J .

The concept of consecutive derivatives, in a coordinate-wise sense, can be formalized by

the concept of decreasing sets of multi-indices (recall that � denotes the coordinate-wise

ordering in Nm).

Definition 2.3 (decreasing sets). We say that the set J ⊆ Nm is decreasing if, whenever

i ∈ J and j ∈ Nm are such that j � i, it holds that j ∈ J .
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Decreasing subsets of a partially ordered set are also commonly known as down sets in

the literature. Observe that the finite set

J =

{
(i1, i2, . . . , im) ∈ Nm :

m∑
j=1

ij < r

}
,

for a positive integer r, is decreasing. Moreover, if m = 1, then these are all possible

decreasing finite sets. The concept of weighted orders and weighted multiplicities shows

that this is not the case when m > 1.

Definition 2.4 (weighted multiplicities). Fix a vector of positive weights

w = (w1, w2, . . . , wm) ∈ Nm
+.

Given a multi-index i = (i1, i2, . . . , im) ∈ Nm, we define its weighted order as

|i|w = i1w1 + i2w2 + · · · + imwm. (2.1)

Let F(x) ∈ F[x] be a polynomial and let a ∈ Fm be an affine point. We say that a is a zero

of F(x) of weighted multiplicity r ∈ N, and we write

mw(F(x), a) = r,

if F (i)(a) = 0, for all i ∈ Nm with |i|w < r, and F (j)(a) �= 0, for some j ∈ Nm with |j|w = r.

We also introduce the definition of weighted degree, which will be convenient for

different results in the following sections.

Definition 2.5 (weighted degrees). Let F(x) ∈ F[x] be a polynomial and let w ∈ Nm
+ be a

vector of positive weights. We define the weighted degree of F(x) as

degw(F(x)) = max{|i|w : Fi �= 0},

where F(x) =
∑

i∈Nm Fix
i and Fi ∈ F, for all i ∈ Nm.

Other interesting sets of consecutive derivatives that we will consider throughout the

paper are those given by bounding each index separately, that is, sets of the form

J = {(i1, i2, . . . , im) ∈ Nm : ij < rj , j = 1, 2, . . . , m},

for a given (r1, r2, . . . , rm) ∈ Nm
+, where � denotes the coordinate-wise partial ordering.

3. The footprint bound for consecutive derivatives

In this section, we will give an extension of the footprint bound [7, Section 5.3] to upper-

bound the number of common zeros over a finite grid of a family of polynomials and

a given set of their consecutive derivatives, as in Definition 2.2. We give some particular

cases and an interpretation of the bound. We conclude by studying its sharpness.

Throughout the section, fix a decreasing finite set J ⊆ Nm, an ideal I ⊆ F[x] and finite

subsets S1, S2, . . . , Sm ⊆ F. Write S = S1 × S2 × · · · × Sm, and denote by Gj(xj) ∈ F[xj] the
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defining polynomial of Sj , that is, Gj(xj) =
∏

s∈Sj (xj − s), for j = 1, 2, . . . , m. The three

objects involved in our bound are the following.

Definition 3.1. We define the ideal

IJ = I +

〈{ m∏
j=1

Gj(xj)
rj : (r1, r2, . . . , rm) /∈ J

}〉

and the set of zeros of multiplicity at least J of the ideal I in the grid S = S1 × S2 × · · · ×
Sm as

VJ (I) = {a ∈ S : F (i)(a) = 0, ∀F(x) ∈ I, ∀i ∈ J }.

Finally, given a monomial ordering �m, we define the footprint of an ideal J ⊆ F[x] as

Δ�m
(J) = {xi : xi /∈ 〈LM(J)〉},

where LM(J) = {LM(F(x)) : F(x) ∈ J} with respect to the monomial ordering �m. We

write Δ(J) if there is no confusion about the monomial ordering.

3.1. The general bound

Theorem 3.2. For any monomial ordering, it holds that

#VJ (I) · #J � #Δ(IJ ). (3.1)

The rest of the subsection is devoted to the proof of this result. The first auxiliary

tool is the Leibniz formula, which follows by a straightforward computation (see also [15,

pp. 144–155]).

Lemma 3.3 (Leibniz formula). Let F1(x), F2(x), . . . , Fs(x) ∈ F[x] and let i ∈ Nm. It holds

that ( s∏
j=1

Fj(x)

)(i)

=
∑

i1+i2+···+is=i

( s∏
j=1

F
(ij )
j (x)

)
.

The second auxiliary tool is the existence of Hermite interpolating polynomials with

Hasse derivatives. For our purposes, a separated-variables extension of univariate Hermite

interpolation over grids is enough. This extension is straightforward and seems to be

known in the literature (see [22, Section 3.1]), but we give a short proof in the Appendix

for the convenience of the reader.

Definition 3.4. We define the evaluation map on a finite set T ⊆ Fm with derivatives

corresponding to multi-indices in J as

Ev : F[x] −→ F#T ·#J

F(x) �→ ((F (i)(a))i∈J )a∈T . (3.2)
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Lemma 3.5 (Hermite interpolation). The evaluation map Ev : F[x] −→ F#T ·#J defined in

(3.2) is surjective, for all finite sets T ⊆ Fm and J ⊆ Nm.

Proof. See the Appendix.

With these tools, we may now prove Theorem 3.2.

Proof of Theorem 3.2. Fix multi-indices r = (r1, r2, . . . , rm) /∈ J and i = (i1, i2, . . . , im) ∈ J ,

and define G(x) =
∏m

j=1 Gj(xj)
rj . By Lemma 3.3, it holds that

G(i)(x) =

m∏
j=1

(Gj(xj)
rj )(ij ). (3.3)

Furthermore, if r > i and F(x) ∈ F[x], then there exists H(x) ∈ F[x] such that

(F(x)r)(i) =
∑

i1+i2+···+ir=i

( r∏
j=1

F (ij )(x)

)
= H(x)F(x)r−i, (3.4)

again by Lemma 3.3, since at least r − i > 0 indices ij must be equal to 0, for each

(i1, i2, . . . , im) ∈ Nm such that
∑m

j=1 ij = i. Finally, since J is decreasing, it holds that

r − i has at least one positive coordinate. Hence, combining (3.3) and (3.4), we see that

G(i)(a) = 0, for all a ∈ VJ (I) ⊆ S . This implies that

Ev(F(x)) = 0, for all F(x) ∈ IJ ,

by the definition of the ideal IJ and the set VJ (I), and where we consider T = VJ (I) in

the definition of Ev (Definition 3.4).

Therefore, the evaluation map Ev can be extended to the quotient ring

Ev : F[x]/IJ −→ F#VJ (I)·#J ,

which is again surjective, since the original evaluation map is surjective by Lemma 3.5.

Since the domain and codomain of this map are F-linear vector spaces and the map itself

is also F-linear, we conclude that

#VJ (I) · #J = dimF(F#VJ (I)·#J ) � dimF(F[x]/IJ ).

Finally, Proposition 4 in [7, Section 5.3] says that the monomials in Δ(J) constitute a

basis of F[x]/J , for an ideal J ⊆ F[x]. This fact implies that

dimF(F[x]/IJ r) = #Δ(IJ ),

and the result follows.

3.2. Some particular cases

In this subsection, we derive some particular cases of Theorem 3.2. We start with

the classical form of the footprint bound (see Proposition 8 in [7, Section 5.3], and

[11, 16]).
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Corollary 3.6 ([7, 11, 16]). Setting J = {0}, we obtain that

#V(I) � #Δ(I + 〈G1(x1), G2(x2), . . . , Gm(xm)〉),

where V(I) denotes the set of zeros of the ideal I in S .

The case of zeros of standard multiplicity at least a given positive integer was first

obtained as Lemma 2.4 in the extended version of [24], and reads as follows.

Corollary 3.7 ([24]). Given an integer r ∈ N+, and setting

J =

{
(i1, i2, . . . , im) ∈ Nm :

m∑
j=1

ij < r

}
,

we obtain that

#V�r(I) ·
(
m + r − 1

m

)
� #Δ

(
I +

〈{ m∏
j=1

Gj(xj)
rj :

m∑
j=1

rj = r

}〉)
,

where V�r(I) denotes the set of zeros of multiplicity at least r of the ideal I in S .

Another particular case is obtained when upper-bounding each coordinate of the

multi-indices separately.

Corollary 3.8. Given a multi-index (r1, r2, . . . , rm) ∈ Nm
+, and setting

J = {(i1, i2, . . . , im) ∈ Nm : ij < rj , j = 1, 2, . . . , m},

we obtain that

#VJ (I) ·
m∏
j=1

rj � #Δ(I + 〈G1(x1)r1 , G2(x2)r2 , . . . , Gm(xm)rm〉).

Finally, we obtain a footprint bound for weighted multiplicities.

Corollary 3.9. Given an integer r ∈ N+, a vector of positive weights

w = (w1, w2, . . . , wm) ∈ N+,

and setting

J = {i ∈ Nm : |i|w < r},

we obtain that

#V�r,w(I) · B(w; r) � #Δ

(
I +

〈{ m∏
j=1

Gj(xj)
rj :

m∑
j=1

rjwj � r

}〉)
,

where V�r,w(I) denotes the set of zeros of weighted multiplicity at least r of the ideal I in

S , and where B(w; r) = #{i ∈ Nm : |i|w < r}.
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To conclude, we give a more explicit form of the bound in the previous corollary by

estimating the number B(w; r).

Corollary 3.10. Given an integer r ∈ N+ and a vector of positive weights

w = (w1, w2, . . . , wm) ∈ N+,

it holds that (
m + r − 1

m

)
� w1w2 · · ·wmB(w; r). (3.5)

In particular, we deduce from the previous corollary that

#V�r,w(I) ·
(
m + r − 1

m

)
� w1w2 · · ·wm · #Δ

(
I +

〈{ m∏
j=1

Gj(xj)
rj :

m∑
j=1

rjwj � r

}〉)
.

Proof. Define the map Tj : Nm −→ Nm by

Tj(i) = (i1w1 + j1, i2w2 + j2, . . . , imwm + jm),

for all i = (i1, i2, . . . , im), j = (j1, j2, . . . , jm) ∈ Nm. Now define

J (w; r) = {i ∈ Nm : |i|w < r}.

By the Euclidean division, we see that

J ((1, 1, . . . , 1); r) ⊆
⋃

j∈
∏m

k=1[0,wk)

Tj(J (w; r)).

By counting elements on both sides of the inclusion, the result follows.

3.3. Interpretation of the bound and illustration of the set Δ(IJ )

In this subsection, we give a graphical description of the footprint Δ(IJ ) which will allow

us to provide an interpretation of the bound (3.1).

Observe that the ideal IJ always contains the polynomials
∏m

i=1 Gi(xi)
ri , for (r1, r2, . . . , rm)

/∈ J . Hence the set Δ(IJ ) is contained in a larger set JS ⊆ Nm, which is independent of I

and consists in removing the monomials that are multiples of the leading monomials of∏m
i=1 Gi(xi)

ri , for (r1, r2, . . . , rm) /∈ J .

Definition 3.11. We define the set

JS = {i ∈ Nm : i � (r1#S1, r2#S2, . . . , rm#Sm), ∀(r1, r2, . . . , rm) /∈ J }.

For clarity, we now give a description of this set by a positive defining condition.

Lemma 3.12. It holds that

JS = {(p1#S1 + t1, p2#S2 + t2, . . . , pm#Sm + tm) ∈ Nm :

(p1, p2, . . . , pm) ∈ J , 0 � tj < #Sj , ∀j = 1, 2, . . . , m}.
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Proof. Take i = (i1, i2, . . . , im) ∈ JS . Performing the Euclidean division of ij by #Sj , there

exist pj , tj ∈ N such that 0 � tj < #Sj and ij = pj#Sj + tj , for j = 1, 2, . . . , m. Since i ∈ JS

and ij � pj#Sj , for j = 1, 2, . . . , m, then it must hold that (p1, p2, . . . , pm) ∈ J by definition

of JS .

Conversely, take i = (p1#S1 + t1, p2#S2 + t2, . . . , pm#Sm + tm), where p = (p1, p2, . . . , pm) ∈
J and 0 � tj < #Sj , for j = 1, 2, . . . , m. Assume that i � (r1#S1, r2#S2, . . . , rm#Sm), for some

r = (r1, r2, . . . , rm) /∈ J . Since tj < #Sj , it must hold that pj � rj , for j = 1, 2, . . . , m. Since

p ∈ J and J is decreasing, we deduce that r ∈ J , a contradiction. Thus i ∈ JS .

We may then state the fact that the footprint is bounded by this set as follows.

Lemma 3.13. It holds that

Δ(IJ ) ⊆ {xi : i ∈ JS}.

Moreover, the set JS can be easily seen as the union of #Jm-dimensional grids in

Nm whose sides have lengths #1,#S2, . . . ,#Sm, respectively. In particular, we obtain the

following.

Lemma 3.14. It holds that

#JS = #S · #J . (3.6)

The footprint bound (3.1) can then be interpreted as follows. Consider the set JS ⊆ Nm.

For each xi ∈ LM(IJ ), remove from JS all points j such that i � j. The remaining points

correspond to the multi-indices in Δ(IJ ), and thus there are #Δ(IJ ) of them.

In particular, if F1(x), F2(x), . . . , Ft(x) ∈ I , then we may only remove the points corres-

ponding to LM(Fi(x)), for i = 1, 2, . . . , t, and we obtain an upper bound on #Δ(IJ ).

Example 3.15. Let us assume now that m = 2, #S1 = #S2 = 2, and

J = {(0, 1), (1, 1), (2, 1), (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)}.

In Figure 1(a) we represent by black dots the monomials whose multi-indices belong

to JS , among which medium-sized dots correspond to multi-indices that belong to J
when each coordinate is multiplied by 2. Blank dots correspond to multi-indices that do

not belong to JS , and the largest ones correspond to minimal multi-indices that do not

belong to JS .

In Figure 1(b) we represent in the same way the set Δ(IJ ), whenever 〈LM(IJ )〉 is

generated by x2
1x

3
2, x8

1x2, and the leading monomials of G1(x1)r1G2(x2)r2 , for minimal

(r1, r2) /∈ J , which in this case are x4
2, x6

1x
2
2 and x12

1 .

In conclusion, the bound (3.1) says that the number of zeros in S of I of multiplicity

at least J is at most 3.

As a consequence of this interpretation, we may deduce the following useful fact.
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1

x2

x2
2

x3
2

x4
2

x1 x2
1 x3

1 x4
1 x5

1 x6
1 x7

1 x8
1 x9

1 x10
1 x11

1 x12
1

The set JS

(a)

1

x2

x2
2

x3
2

x4
2

x1 x2
1 x3

1 x4
1 x5

1 x6
1 x7

1 x8
1 x9

1 x10
1 x11

1 x12
1

The set Δ(IJ )

(b)

Figure 1. Illustration of the sets JS (a) and Δ(IJ ) (b) in N
m.

Lemma 3.16. Assume that the finite set J ⊆ Nm is decreasing and xi = LM(F(x)) with

respect to some monomial ordering, for some polynomial F(x) ∈ F[x]. If i ∈ JS , then it

holds that

#Δ(〈F(x)〉J ) < #S · #J . (3.7)

We conclude with a simple description of JS in the cases of multi-indices bounded by

weighted orders and multi-indices bounded on each coordinate separately, which follow

by straightforward calculations.

Remark 3.17. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a positive

integer r ∈ N+, and

J = {r ∈ Nm : |r|w < r},

it holds that

JS =

{
(i1, i2, . . . , im) ∈ Nm :

m∑
j=1

⌊
ij

#Sj

⌋
wj < r

}
.

On the other hand, given (r1, r2, . . . , rm) ∈ Nm
+ and

J = {(i1, i2, . . . , im) ∈ Nm : ij < rj , j = 1, 2, . . . , m},
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it holds that

JS = {(i1, i2, . . . , im) ∈ Nm : ij < rj#Sj , j = 1, 2, . . . , m}.

3.4. Sharpness and equality conditions

To conclude the section, we study the sharpness of the bound (3.1). We will give sufficient

and necessary conditions on the ideal I for (3.1) to be an equality, and we will see that

(3.1) is the sharpest bound that can be obtained as a strictly increasing function of the

size of the footprint Δ(IJ ).

We start by defining the ideal associated with a set of points and a set of multi-indices.

Definition 3.18. Given V ⊆ Fm, we define

I(V;J ) = {F(x) ∈ F[x] : F (i)(a) = 0, ∀a ∈ V , ∀i ∈ J }.

In the next proposition we show that this set is indeed an ideal and gather other

properties similar to those of ideals and algebraic sets in algebraic geometry.

Proposition 3.19. Given a set of points V ⊆ Fm, the set I(V;J ) in the previous definition

is an ideal in F[x]. Moreover, the following properties hold.

(1) I ⊆ I(VJ (I);J ).

(2) V ⊆ VJ (I(V;J )).

(3) I = I(VJ (I);J ) if and only if I = I(W;J ), for some set W ⊆ Fm.

(4) V = VJ (I(V;J )) if and only if V = VJ (K), for some ideal K ⊆ F[x].

Proof. The fact that I(V;J ) is an ideal follows from the Leibniz formula (Lemma 3.3)

and the fact that J is decreasing. The properties in items (1), (2), (3) and (4) follow as in

classical algebraic geometry and are left to the reader.

The following is the main result of the subsection.

Theorem 3.20. Fixing a monomial ordering, the bound (3.1) is an equality if and only if

IJ = I(VJ (I);J ). (3.8)

In particular, for any choice of decreasing finite set J ⊆ Nm and a finite set of points

V ⊆ Fm, there exists an ideal, I = I(V;J ), satisfying equality in (3.1).

Proof. With notation as in the proof of Theorem 3.2, the evaluation map Ev : F[x] −→
F#VJ (I)·#J from Definition 3.4 is F-linear and surjective by Lemma 3.5. By definition, its

kernel is

Ker(Ev) = I(VJ (I);J ).
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On the other hand, we saw in the proof of Theorem 3.2 that IJ ⊆ Ker(Ev). This means

that the evaluation map

Ev : F[x]/IJ −→ F#VJ (I)·#J

is an isomorphism if and only if IJ = I(VJ (I);J ).

Finally, the fact that this evaluation map is an isomorphism is equivalent to (3.1) being

an equality, by the proof of Theorem 3.2. Together with Proposition 3.19 and the fact

that I = IJ if I = I(V;J ) by the proof of Theorem 3.2, the theorem follows.

Thanks to this result, we may establish that the bound (3.1) is the sharpest bound that

is a strictly increasing function of the size of the footprint Δ(IJ ), in the following sense:

if equality holds for such a bound, then it holds in (3.1).

Corollary 3.21. Let f : N −→ R be a strictly increasing function, and assume that

#VJ (I) � f(#Δ(IJ )), (3.9)

for all ideals I ⊆ F[x]. If equality holds in (3.9) for a given ideal I ⊆ F[x], then equality

holds in (3.1) for such an ideal.

Proof. First we have that IJ ⊆ I(VJ (I);J ) as we saw in the proof of the previous

theorem. Hence the reverse inclusion holds for their footprints and thus

f(#Δ(I(VJ (I);J ))) � f(#Δ(IJ )). (3.10)

Now, since VJ (I) = VJ (I(VJ (I);J )) by Proposition 3.19, and equality holds in (3.9) for

I , we have that

f(#Δ(IJ )) = #VJ (I) = #VJ (I(VJ (I);J )) � f(#Δ(I(VJ (I);J ))). (3.11)

Combining (3.10) and (3.11), and using that f is strictly increasing, we conclude that

#Δ(I(VJ (I);J ))) = #Δ(IJ ),

which implies that equality holds in (3.1) for I by Theorem 3.20, and we are done.

4. Applications of the footprint bound for consecutive derivatives

In this section, we present a brief collection of applications of Theorem 3.2, which are

extensions to consecutive derivatives of well-known important results from the literature.

Throughout the section, we will again fix finite sets S1, S2, . . . , Sm ⊆ F and S = S1 × S2 ×
· · · × Sm.

4.1. Alon’s combinatorial Nullstellensatz

The combinatorial Nullstellensatz is a non-vanishing theorem by Alon [1, Theorem 1.2]

with many applications in combinatorics. It has been extended to non-vanishing theorems

for standard multiplicities in [3, Corollary 3.2] and for multisets (sets with multiplicities)

in [21, Theorem 6].

https://doi.org/10.1017/S0963548318000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000342


Bounding Number of Common Zeros of Polynomials and Their Derivatives 265

In this subsection, we establish and prove a combinatorial Nullstellensatz for consecutive

derivatives and derive the well-known particular cases as corollaries. The formulation in

[1, Theorem 1.1] is equivalent in essence. We will extend that result in the next subsection

in terms of Gröbner bases.

Theorem 4.1. Let J ⊆ Nm be a decreasing finite set, let F(x) ∈ F[x] be a non-zero polyno-

mial, and let xi = LM(F(x)) for some monomial ordering. If i ∈ JS , then there exist s ∈ S

and j ∈ J such that

F (j)(s) �= 0.

Proof. By Lemma 3.16, the assumptions imply that

#Δ(〈F(x)〉J ) < #S · #J .

On the other hand, Theorem 3.2 implies that

#VJ (F(x)) · #J � #Δ(〈F(x)〉J ).

Therefore not all points in S are zeros of F(x) of multiplicity at least J , and the result

follows.

We now derive the original theorem [1, Theorem 1.2]. This constitutes an alternative

proof. See also [23] for another recent short proof.

Corollary 4.2 ([1]). Let F(x) ∈ F[x]. Assume that the coefficient of xi in F(x) is not zero

and deg(F(x)) = |i|. If #Sj > ij for all j = 1, 2, . . . , m, then there exist s1 ∈ S1, s2 ∈ S2, . . . , sm
∈ Sm, such that

F(s1, s2, . . . , sm) �= 0.

Proof. There exists a graded monomial ordering such that xi = LM(F(x)) since

deg(F(x)) = |i|. Now, the assumption implies that

i � (r1#S1, r2#S2, . . . , rm#Sm),

for all r = (r1, r2, . . . , rm) such that rj = 1 for some j, and the rest are zero. These are in

fact all minimal multi-indices not in J = {0}. Thus i ∈ JS , and the result follows from

the previous theorem.

The next consequence is a combinatorial Nullstellensatz for weighted multiplicities,

where the particular case w1 = w2 = · · · = wm = 1 coincides with [3, Corollary 3.2] (recall

the definition of weighted degree from Definition 2.5).

Corollary 4.3. Let F(x) ∈ F[x], let w = (w1, w2, . . . , wm) ∈ Nm
+ and let r ∈ N+. Assume that

the coefficient of xi in F(x) is not zero and degw(F(x)) = |i|w.
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Assume also that, for all r = (r1, r2, . . . , rm) with |r|w � r, there exists a j such that rj#Sj >

ij . Then there exist s1 ∈ S1, s2 ∈ S2, . . . , sm ∈ Sm, and some j ∈ Nm with |j|w < r, such that

F (j)(s1, s2, . . . , sm) �= 0.

Proof. It follows from Theorem 4.1 like the previous corollary.

We conclude with a combinatorial Nullstellensatz for multi-indices bounded on each

coordinate separately.

Corollary 4.4. Let F(x) ∈ F[x], let (r1, r2, . . . , rm) ∈ Nm
+, and assume that xi = LM(F(x)),

i = (i1, i2, . . . , im), for some monomial ordering and ij < rj#Sj , for all j = 1, 2, . . . , m. There

exist s1 ∈ S1, s2 ∈ S2, . . . , sm ∈ Sm, and some j = (j1, j2, . . . , jm) ∈ Nm with jk < rk , for all k =

1, 2, . . . , m, such that

F (j)(s1, s2, . . . , sm) �= 0.

4.2. Gröbner bases of ideals of zeros in a grid

An equivalent but more refined consequence is obtaining a Gröbner basis for ideals I(S;J )

associated with the whole grid S and to a decreasing finite set of multi-indices (recall

Definition 3.18). This result is also usually referred to as combinatorial Nullstellensatz in

many works in the literature (see [1, Theorem 1.1], [3, Theorem 3.1] and [21, Theorem 1]).

We briefly recall the notion of Gröbner basis. We will also make repeated use of the

Euclidean division on the multivariate polynomial ring and its properties. See [7, Chapter

2] for more details.

Definition 4.5 (Gröbner bases). Given a monomial ordering �m and an ideal I ⊆ F[x],

we say that a finite family of polynomials F ⊆ I is a Gröbner basis of I with respect to

�m if

〈LM�m
(I)〉 = 〈LM�m

(F)〉.

Moreover, we say that F is reduced if, for any two distinct F(x), G(x) ∈ F , LM�m
(F(x))

does not divide any monomial in G(x).

Recall that a Gröbner basis of an ideal generates it as an ideal. To obtain reduced

Gröbner bases, we need a way to minimally generate complements of decreasing finite

sets in Nm, which is given by the following object.

Definition 4.6. For any decreasing finite set J ⊆ Nm, we define

BJ = {i /∈ J : j /∈ J and j � i =⇒ i = j}.

The main result of this subsection is the following.
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Theorem 4.7. For any decreasing finite set J ⊆ Nm, the family

F =

{ m∏
j=1

Gj(xj)
rj : (r1, r2, . . . , rm) ∈ BJ

}

is a reduced Gröbner basis of the ideal I(S;J ) with respect to any monomial ordering. In par-

ticular, for any F(x) ∈ I(S;J ), there exist polynomials Hr(x) ∈ F[x], for r = (r1, . . . , rm) ∈
BJ , such that

deg(Hr(x)) +

m∑
j=1

rj deg(Gj(xj)) � deg(F(x))

and

F(x) =
∑
r∈BJ

(
Hr(x)

m∏
j=1

Gj(xj)
rj

)
.

Proof. It suffices to prove that if F(x) ∈ I(S;J ) and we divide it by the family F (in an

arbitrary order), then the remainder must be the zero polynomial.

Performing such a division, we obtain F(x) = G(x) + R(x), where R(x) is the remainder

of the division and G(x) ∈ I(S;J ). Assume that R(x) �= 0 and let xi be the leading

monomial of R(x) with respect to the chosen monomial ordering. Since no leading

monomial of the polynomials in F divides xi, we conclude that

i � (r1#S1, r2#S2, . . . , rm#Sm),

for all minimal r = (r1, r2, . . . , rm) /∈ J , that is, for all r ∈ BJ . Thus by Theorem 4.1, we

conclude that not all points in S are zeros of R(x) of multiplicity at least J , which is

absurd since R(x) = F(x) − G(x) ∈ I(S;J ), and we are done.

The fact that F is reduced follows from observing that the multi-indices r ∈ BJ are

minimal among those not in J . The last part of the theorem follows by performing the

Euclidean division.

The following particular case is [1, Theorem 1.1].

Corollary 4.8 ([1]). If F(x) ∈ F[x] vanishes at all points in S , then there exist polynomials

Hj(x) ∈ F[x] such that deg(Hj(x)) + deg(Gj(xj)) � deg(F(x)), for j = 1, 2, . . . , m, and

F(x) =

m∑
j=1

Hj(x)Gj(xj).

To study the case of weighted multiplicities, we observe the following.
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Remark 4.9. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a positive

integer r ∈ N+, and the set J = {i ∈ Nm : |i|w < r}, it holds that BJ = Bw, where

Bw =

{
(i1, i2, . . . , im) ∈ Nm : r �

m∑
j=1

ijwj < r + min{wj : ij �= 0}
}
.

We then obtain the next consequence, where the particular case w1 = w2 = · · · =

wm = 1 coincides with [3, Theorem 3.1], which in turn extends the finite-field result

[5, Theorem 1.3].

Corollary 4.10. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+ and a positive

integer r ∈ N+, if F(x) ∈ F[x] vanishes at all points in S with weighted multiplicity at least

r, then there exist polynomials Hr(x) ∈ F[x] such that

deg(Hr(x)) +

m∑
j=1

rj deg(Gj(xj)) � deg(F(x)),

for all r = (r1, r2, . . . , rm) ∈ Bw, and

F(x) =
∑
r∈Bw

(
Hr(x)

m∏
j=1

Gj(xj)
rj

)
.

We conclude with the case of multi-indices bounded on each coordinate separately.

Corollary 4.11. Given a vector (r1, r2, . . . , rm) ∈ Nm
+, if F(x) ∈ F[x] is such that F (j)(s) = 0,

for all s ∈ S and all j = (j1, j2, . . . , jm) ∈ Nm satisfying jk < rk , for all k = 1, 2, . . . , m, then

there exist polynomials Hj(x) ∈ F[x] such that

deg(Hj(x)) + rj deg(Gj(xj)) � deg(F(x)),

for all j = 1, 2, . . . , m, and

F(x) =

m∑
j=1

Hj(x)Gj(xj)
rj .

Proof. It follows from Theorem 4.7 observing that if

J = {(j1, j2, . . . , jm) ∈ Nm : jk < rk, k = 1, 2, . . . , m},

then

BJ = {rjej ∈ Nm : j = 1, 2, . . . , m},

where e1, e2, . . . , em ∈ Nm are the vectors in the canonical basis.

4.3. Hermite interpolation over grids with consecutive derivatives

In the Appendix we show that the evaluation map (Definition 3.4) is surjective. This

has been used to prove Theorem 3.2. In this subsection, we see that the combinatorial
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Nullstellensatz (Theorem 4.1) implies that the evaluation map over the whole grid S , with

consecutive derivatives, is an isomorphism when taking an appropriate domain. More

concretely, we show the existence and uniqueness of Hermite interpolating polynomials

over S with derivatives in J when choosing monomials in JS . Finding appropriate sets

of points, derivatives and polynomials to guarantee existence and uniqueness of Hermite

interpolating polynomials has been extensively studied [10, 19, 22]. The next result is new

to the best of our knowledge.

Theorem 4.12. Given a decreasing finite set J ⊆ Nm, the evaluation map in Definition 3.4

for the finite set S = S1 × S2 × · · · × Sm, defined as

Ev : 〈JS 〉F −→ F#S ·#J ,

is a vector space isomorphism. In other words, for all bj,a ∈ F, where j ∈ J and a ∈ S , there

exists a unique polynomial of the form

F(x) =
∑
i∈JS

Fix
i ∈ F[x],

where Fi ∈ F for all i ∈ JS , such that F (j)(a) = bj,a, for all j ∈ J and all a ∈ S .

Proof. The map is one-to-one by Theorem 4.1, and both vector spaces have the same

dimension over F by Lemma 3.14, hence the map is a vector space isomorphism.

Remark 4.13. Observe that we may similarly prove that the following two maps are

vector space isomorphisms:

〈JS 〉F

ρ
−→ F[x]/I(S;J )

Ev−→ F#S ·#J ,

where ρ is the projection to the quotient ring. We may then extend the notion of reduction

of a polynomial as follows (see [6, Section 3.1] and [10, Section 6.3], for instance). Given

F(x) ∈ F[x], we define its reduction over the set S with derivatives in J as

G(x) = ρ−1(F(x) + I(S;J )).

As an immediate consequence, we obtain the following result on Hermite interpolation

with weighted multiplicities.

Corollary 4.14. For every vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, every posit-

ive integer r ∈ N+, and elements bj,a ∈ F, for j ∈ Nm with |j|w < r and for a ∈ S , there exists

a unique polynomial of the form

F(x) =
∑
i∈Nm

Fix
i,

where Fi ∈ F for all i = (i1, i2, . . . , im) ∈ Nm, and Fi = 0 whenever
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m∑
j=1

⌊
ij

#Sj

⌋
wj � r,

such that F (j)(a) = bj,a, for all j ∈ Nm with |j|w < r and all a ∈ S .

We conclude with the case of multi-indices bounded on each coordinate separately.

Corollary 4.15. Given (r1, r2, . . . , rm) ∈ Nm
+ and elements bj,a ∈ F, for j = (j1, j2, . . . , jm) ∈ Nm

with jk < rk , for all k = 1, 2, . . . , m, and for a ∈ S , there exists a unique polynomial of the

form

F(x) =

r1#S1−1∑
i1=0

r2#S2−1∑
i2=0

· · ·
rm#Sm−1∑
im=0

Fix
i,

such that F (j)(a) = bj,a, for all j = (j1, j2, . . . , jm) ∈ Nm with jk < rk , for all k = 1, 2, . . . , m,

and all a ∈ S .

4.4. Evaluation codes with consecutive derivatives

In this subsection, we extend the notion of evaluation code from the theory of error-

correcting codes (see [12, Section 2] and [17, Section 4.1], for instance) to evaluation

codes with consecutive derivatives. By doing so, we generalize multiplicity codes [20],

which have been shown to achieve good parameters in decoding, local decoding and list

decoding [19, 20]. We compute the dimensions of the new codes and give a lower bound

on their minimum Hamming distance.

Definition 4.16. Given a decreasing finite set J ⊆ Nm and a set of monomials M ⊆ JS ,

we define the F-linear code (that is, the F-linear vector space)

C(S,M,J ) = Ev(〈M〉F) ⊆ F#S ·#J ,

where Ev is the evaluation map from Definition 3.4.

As in [20], we will consider these codes over the alphabet F#J , that is, each evaluation

(F (i)(a))i∈J ∈ F#J , for a ∈ S , constitutes one symbol of the alphabet. Thus each codeword

has length #S over this alphabet. This leads to the following definition of minimum

Hamming distance of an F-linear code.

Definition 4.17. Given an F-linear code C ⊆ (F#J )#S , we define its minimum Hamming

distance as

dH (C) = min{wtH(c) : c ∈ C, c �= 0},

where, for any c ∈ (F#J )#S , wtH(c) denotes the number of its non-zero components over

the alphabet F#J .

As a consequence of Theorem 4.12, we may exactly compute the dimensions of the

codes in Definition 4.16 and give a lower bound on their minimum Hamming distance.
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Corollary 4.18. The code in Definition 4.16 satisfies that

dimF(C(S,M,J )) = #M, and

dH (C(S,M,J )) �
⌈

min{#Δ(〈F(x)〉J ) : F(x) ∈ 〈M〉F}
#J

⌉
.

Remark 4.19. Given a vector of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+, a positive

integer r ∈ N+, and a set of monomials

M ⊆
{
xi11 x

i2
2 · · · ximm :

m∑
j=1

⌊
ij

#Sj

⌋
wj < r

}
,

we may define, as a particular case of the codes in Definition 4.16, the corresponding

weighted multiplicity code as the F-linear code

C(S,M,w, r) = Ev(〈M〉F) ⊆ (FB(w;r))#S .

Observe that weighted multiplicity codes contain as particular cases classical Reed–Muller

codes (see [18, Section 13.2]), by choosing w = (r, r, . . . , r) for a given r ∈ N+, and classical

multiplicity codes [20] by choosing w = (1, 1, . . . , 1) and an arbitrary r ∈ N+. Therefore,

choices of w ∈ Nm such that 1 � wi � r, for i = 1, 2, . . . , m, give codes with the same length

but intermediate alphabet sizes between those of Reed–Muller and multiplicity codes.

This has the extra flexibility (see [20, Section 1.2]) of choosing alphabets of sizes #(FB(w;r))

(whenever F is finite), where

1 � B(w; r) �
(
m + r − 1

m

)
.

4.5. Bounds by DeMillo, Lipton, Zippel, Alon and Füredi

In this subsection, we obtain a weaker but more concise version of the bound (3.1) for

a single polynomial, which has as particular cases the bounds by DeMillo and Lipton

[8], Zippel [26, Theorem 1], [27, Proposition 3] and Alon and Füredi [2, Theorem 5]. We

observe that Counterexample 7.4 in [4] shows that a straightforward extension of these

bounds to standard multiplicities as in (1.1) is not possible, in contrast with the bound

given by Schwartz in [25, Lemma 1], which has been already extended in [9, Lemma 8].

Theorem 4.20. For any decreasing finite set J ⊆ Nm and any polynomial F(x) ∈ F[x], if

xi = LM(F(x)) ∈ JS , for some monomial ordering, then it holds that

#(S \ VJ (F(x)))#J � #{j ∈ JS : j � i}. (4.1)

Proof. First, from the bound (3.1) and Lemma 3.14, we obtain that

#(S \ VJ (F(x)))#J � #S#J − #Δ(〈F(x)〉J ) = #(JS \ Δ(〈F(x)〉J )), (4.2)

where we consider Δ(〈F(x)〉J ) ⊆ Nm by abuse of notation. As explained in Section 3.3,

we may lower-bound #(JS \ Δ(〈F(x)〉J )) by the number of multi-indices j ∈ JS satisfying

j � i, and we are done.
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The following consequence summarizes the results by DeMillo and Lipton [8], and

Zippel [26, Theorem 1], [27, Proposition 3].

Corollary 4.21 ([8, 26, 27]). Let F(x) ∈ F[x] be such that its degree in the jth variable is

dj ∈ N, for j = 1, 2, . . . , m. If dj < #Sj , for j = 1, 2, . . . , m, then the number of non-zeros in

S of F(x) is at least

m∏
j=1

(#Sj − dj).

Proof. The result is the particular case J = {0} of the previous theorem using any

monomial ordering and the facts that JS = S and ij � dj , for j = 1, 2, . . . , m.

The following is a similar bound due to Alon and Füredi [2, Theorem 5].

Corollary 4.22 ([2]). Let F(x) ∈ F[x]. If not all points in S are zeros of F(x), then the

number of its non-zeros in S is at least

min

{ m∏
j=1

yj : 1 � yj � #Sj ,

m∑
j=1

yj �
m∑
j=1

#Sj − deg(F(x))

}
.

Proof. The result follows from Theorem 4.20 as in the previous corollary, taking any

monomial ordering and considering yj = #Sj − ij , for j = 1, 2, . . . , m.

Similarly, we may derive the following generalization given in [4, Theorem 1.2].

Corollary 4.23 ([4]). Let F(x) ∈ F[x] and let 1 � bj � #Sj , for j = 1, 2, . . . , m. If the de-

gree of F(x) in the jth variable is at most #Sj − bj , for j = 1, 2, . . . , m, then the number of

its non-zeros in S is at least

min

{ m∏
j=1

yj : bj � yj � #Sj ,

m∑
j=1

yj �
m∑
j=1

#Sj − deg(F(x))

}
.

We omit the case of weighted multiplicities. In the next section, we will give an extension

of the bound given by Schwartz in [25, Lemma 1] to weighted multiplicities in the sense

of (1.1), which is stronger than the bound in Corollary 3.9 in some cases.

We conclude with the case of multi-indices bounded on each coordinate separately.

Corollary 4.24. Let F(x) ∈ F[x] with xi = LM(F(x)), i = (i1, i2, . . . , im), for some monomial

ordering. If ij < rj#Sj , for j = 1, 2, . . . , m, then the number N of elements s ∈ S such that

F (j)(s) �= 0, for some j = (j1, j2, . . . , jm) ∈ Nm with jk < rk , for all k = 1, 2, . . . , m, satisfies

N ·
m∏
j=1

rj �
m∏
j=1

(rj#Sj − ij).
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4.6. The Schwartz–Zippel bound on the whole grid

In the next section, we will give an extension of bound given by Schwartz in [25, Lemma 1]

for weighted multiplicities that can be proved as the extensions to standard multiplicities

given in [9, Lemma 8] and [12, Theorem 5]. In this subsection, we observe that the case

where all points in S are zeros of a given weighted multiplicity follows from Corollary 4.3.

Corollary 4.25. Let F(x) ∈ F[x], let w = (w1, w2, . . . , wm) ∈ Nm
+, let r ∈ N+, and assume that

s = #S1 = #S2 = · · · = #Sm. If all points in S = S1 × S2 × · · · × Sm are zeros of F(x) of

weighted multiplicity at least r, then

r#S � degw(F(x))sm−1.

Proof. Assume that the bound does not hold, take xi such that |i|w = degw(F(x)) and

whose coefficient in F(x) is not zero, and take a vector r = (r1, r2, . . . , rm) ∈ Nm with |r|w � r.

Then

sw1r1 + sw2r2 + · · · + swmrm � sr > degw(F(x)) = |i|w,

hence there exists a j such that rj#Sj > ij . By Corollary 4.3, some element in S is not a

zero of F(x) of weighted multiplicity at least r, which contradicts the assumptions and we

are done.

5. The Schwartz–Zippel bound for weighted multiplicities

As we will see in Proposition 5.5, the bound given by Schwartz in [25, Lemma 1] can

be derived by those given by DeMillo and Lipton [8], and Zippel (see [26, Theorem 1],

[27, Proposition 3]), and is usually referred to as the Schwartz–Zippel bound. This bound

has recently been extended to standard multiplicities in [9, Lemma 8], and further in

[12, Theorem 5]. In this section, we observe that it may be easily extended to weighted

multiplicities (see Definition 2.4), due to the additivity of weighted order functions. We

show the sharpness of this bound and compare it with the bound (3.1) with an example,

whenever it makes sense to compare the two bounds.

5.1. The bound

Theorem 5.1. Let w = (w1, w2, . . . , wm) ∈ Nm
+ be a vector of positive weights, let F(x) ∈ F[x]

and let xi = LM(F(x)), i = (i1, i2, . . . , im), with respect to the lexicographic ordering. It holds

that

∑
a∈S

mw(F(x), a) � #S

m∑
j=1

ijwj

#Sj
. (5.1)

When w1 = w2 = · · · = wm = 1, observe that [12, Theorem 5] is recovered from this

theorem, and [9, Lemma 8] is recovered from the next corollary. Observe also that this

corollary is stronger than Corollary 4.25.
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Corollary 5.2. Let F(x) ∈ F[x] and w ∈ Nm
+. If s = #S1 = #S2 = · · · = #Sm, then

∑
a∈S

mw(F(x), a) � degw(F(x))sm−1.

To prove Theorem 5.1, we need an auxiliary lemma, whose proof can be directly

translated from those of [9, Lemma 5] and [9, Corollary 7].

Lemma 5.3. If F(x) ∈ F[x] and a = (a1, a2, . . . , am) ∈ Fm, then

(1) mw(F (i)(x), a) � mw(F(x), a) − |i|w, for all i ∈ Nm, and

(2) mw(F(x), a) � mwm
(F(a1, a2, . . . , am−1, xm), am).

We may now prove Theorem 5.1. We follow closely the steps in the proof of [9,

Lemma 8].

Proof of Theorem 5.1. We will prove the result by induction on m, where the case

m = 1 follows from (1.1). Fix then m > 1. We may assume without loss of generality that

x1 ≺l x2 ≺l · · · ≺l xm, where �l is the lexicographic ordering. Write x′ = (x1, x2, . . . , xm−1).

There are unique polynomials Fj(x
′) ∈ F[x′], for j = 1, 2, . . . , t, such that

F(x) =

t∑
j=0

Fj(x
′)xjm,

where LM(F(x)) = LM(Ft(x
′))xtm. Let a = (a1, a2, . . . , am) ∈ S and write a′ =

(a1, a2, . . . , am−1) and w′ = (w1, w2, . . . , wm−1). Take k ∈ Nm−1 such that |k|w′ = mw′(Ft(x
′), a′)

and F
(k)
t (a′) �= 0. By the previous lemma, we see that

mw(F(x), a) � |(k, 0)|w + mw(F (k,0)(x), a)

� mw′(Ft(x
′), a′) + mwm

(F (k,0)(a′, xm), am).

Summing these inequalities over all am ∈ Sm and applying the case m = 1, we obtain that∑
am∈Sm

mw(F(x), a) � mw′(Ft(x
′), a′)#Sm + wmt.

Using this last inequality, summing over ai ∈ Si, for i = 1, 2, . . . , m − 1, and applying the

case of m − 1 variables, it follows that

∑
a∈S

mw(F(x), a) �
∑
a1∈S1

· · ·
∑

am−1∈Sm−1

mw′(Ft(x
′), a′)#Sm + wmt

#S

#Sm

�
m−1∑
j=1

wjij
#S

#Sj
+ wmt

#S

#Sm
,

and the result follows.
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5.2. Sharpness of the bound

In this subsection, we prove the sharpness of the bound (5.1), whose proof can be

translated word by word from that of [13, Proposition 7]. Therefore, we only present a

sketch of the proof.

Proposition 5.4. For all finite sets S1, S2, . . . , Sm ⊆ F, S = S1 × S2 × · · · × Sm, all vectors

of positive weights w = (w1, w2, . . . , wm) ∈ Nm
+ and all i = (i1, i2, . . . , im) ∈ Nm, there exists a

polynomial F(x) ∈ F[x] such that xi = LM(F(x)) with respect to the lexicographic ordering,

and such that

∑
a∈S

mw(F(x), a) = #S

m∑
j=1

ijwj

#Sj
.

Sketch of proof. Denote sj = #Sj and Sj = {a(j)
1 , a

(j)
2 , . . . , a(j)

sj
}, and choose r

(j)
k ∈ N such that

ij = r
(j)
1 + r

(j)
2 + · · · + r(j)

sj
, for k = 1, 2, . . . , sj and j = 1, 2, . . . , m. Now define

F(x) =

m∏
j=1

sj∏
k=1

(xj − a
(j)
k )r

(j)
k .

Now, fixing integers 1 � kj � sj , for j = 1, 2, . . . , m, translating the point (a(1)
k1
, a

(2)
k2
, . . . , a

(m)
km

)

to the origin 0, and using the Gröbner basis from Corollary 4.10, we see that

mw(F(x), (a(1)
k1
, a

(2)
k2
, . . . , a

(m)
km

)) = r
(1)
k1
w1 + r

(2)
k2
w2 + · · · + r

(m)
km

wm,

for all kj = 1, 2, . . . , sj and all j = 1, 2, . . . , m. The result then follows by summing these

multiplicities.

5.3. Comparison with the footprint bound

In this subsection, we will compare the bounds (3.1) and (5.1) whenever it makes sense

to do so. To that end, we will write them as follows: fix a vector of positive weights

w = (w1, w2, . . . , wm) ∈ Nm
+, a positive integer r ∈ N+, and a polynomial F(x) ∈ F[x] such

that xi = LM(F(x)), i = (i1, i2, . . . , im), with respect to the lexicographic ordering. We first

consider the footprint bound as in Corollary 3.9:

#V�r,w(F(x)) · B(w; r) � #Δ

(〈
{F(x)}

⋃{ m∏
j=1

Gj(xj)
rj :

m∑
j=1

rjwj � r

}〉)
. (5.2)

And next we consider the bound (5.1) as follows:

#V�r,w(F(x)) · r � #S

m∑
j=1

ijwj

#Sj
. (5.3)

First we observe that the bound (5.2) also holds for any other monomial ordering, and

not only the lexicographic one, as is the case with (5.3). Second we observe that (5.3) gives
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Table 1. Upper bounds on the number of zeros of weighted multiplicity at least r = 5 when w1 = 2,

w2 = 3 and #S1 = #S2 = 4, from Example 5.6

x7
1 15 15 15 15

x6
1 14 14 15 15

x5
1 13 13 14 15

x4
1 12 13 14 15

x3
1 9 10 11 12 14 14 14 14 15 15 15 15

x2
1 6 7 9 10 12 12 13 13 14 14 15 15

x1 3 4 6 8 10 10 11 12 13 13 14 15

1 0 2 4 6 8 9 10 11 12 13 14 15

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x7

2 x8
2 x9

2 x10
2 x11

2

x7
1 – – – –

x6
1 14 – – –

x5
1 12 13 15 –

x4
1 9 11 12 14

x3
1 7 8 10 12 13 15 – – – – – –

x2
1 4 6 8 9 11 12 14 – – – – –

x1 2 4 5 7 8 10 12 13 15 – – –

1 0 1 3 4 6 8 9 11 12 14 – –

1 x2 x2
2 x3

2 x4
2 x5

2 x6
2 x7

2 x8
2 x9

2 x10
2 x11

2

no information whereas (5.2) does, whenever

m∑
j=1

⌊
ij

#Sj

⌋
wj < r �

m∑
j=1

ijwj

#Sj
, (5.4)

by the discussion in Section 3.3.

Next, we observe that when we do not count multiplicities, that is, w1 = w2 = · · · =

wm = r = 1, then (5.2) implies (5.3) via Theorem 4.20.

Proposition 5.5. If w1 = w2 = · · · = wm = r = 1, that is, J = {0}, it holds that B(w; r) = 1

and

#Δ(〈F(x), G1(x1), G2(x2), . . . , Gm(xm)〉) � #S −
m∏
j=1

(#Sj − ij) � #S

m∑
j=1

ij

#Sj
.

In particular, (5.2) implies (5.3) in this case.

Moreover, when m = 1 and we count multiplicities, all bounds coincide, giving (1.2).

In the following example we show that this is not the case in general. As we will see,

each bound, (5.2) and (5.3), can be tighter than the other one in different cases, hence

complementing each other.
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Example 5.6. Consider m = 2, w1 = 2, w2 = 3, r = 5 and #S1 = #S2 = 4. Thus we have

that

J = {(0, 0), (1, 0), (0, 1), (2, 0)}, and

JS = ([0, 11] × [0, 3]) ∪ ([0, 3] × [0, 7]).

Consider all pairs (i1, i2) ∈ JS and polynomials F(x1, x2) such that LM(F(x1, x2)) = xi11 x
i2
2 ,

with respect to the lexicographic ordering. In Table 1, we show the upper bounds on the

number of zeros of F(x1, x2) of weighted multiplicity at least 5 given by (5.2) (table above)

and (5.3) (table below), respectively. As is clear from the figure, in some regions of the set

JS , the first bound is tighter than the second (bold numbers in the table above) and vice

versa (bold numbers in the table below). Furthermore the first bound gives non-trivial

information in the region given by (5.4), where the second does not (depicted by dashes).

Appendix: Proof of Lemma 3.5

In this appendix, we give the proof of Lemma 3.5. We first treat the univariate case

(m = 1) in the classical form. The proof for Hasse derivatives can be directly translated

from the result for classical derivatives.

Lemma A.1. Let a1, a2, . . . , an ∈ F be pairwise distinct and let M ∈ N+. There exist poly-

nomials Fi,j(x) ∈ F[x] such that

F
(k)
i,j (al) = δi,kδj,l ,

for all i, k = 0, 1, 2, . . . ,M and all j, l = 1, 2, . . . , n, where δ denotes the Kronecker delta.

Now, since J is finite, we may fix an integer M such that J ⊆ [0,M]m. Similarly, we

may find a finite set S ⊆ F such that T ⊆ Sm. Then denote s = #S and S = {a1, a2, . . . , as},

and let Fi,j,k(xk) ∈ F[xk] be polynomials as in the previous lemma in each variable xk , for

i = 0, 1, 2, . . . ,M, j = 1, 2, . . . , s and k = 1, 2, . . . , m. Now define

Fi,j(x) = Fi1 ,j1 ,1(x1)Fi2 ,j2 ,2(x2) · · ·Fim,jm,m(xm) ∈ F[x],

for i = (i1, i2, . . . , im) ∈ [0,M]m and j = (j1, j2, . . . , jm) ∈ [1, s]m. By the previous lemma and

Lemma 3.3, we see that

F
(k)
i,j l(al1 , al2 , . . . , alm ) = (δi1 ,k1

δi2 ,k2
· · · δim,km )(δj1 ,l1δj2 ,l2 · · · δjm,lm) = δi,kδj,l,

for all i, k ∈ [0,M]m and all j, l ∈ [1, s]m. Finally, given values bi,j ∈ F, for i ∈ J and j ∈ T ,

define

F(x) =
∑
i∈J

∑
j∈T

bi,jFi,j(x) ∈ F[x].

We see that Ev(F(x)) = ((bi,j)i∈J )j∈T , and we are done.
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