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It has been conjectured that a connected matroid with largest circuit size c > 2 and largest

cocircuit size c∗ > 2 has at most 1
2 cc
∗ elements. Pou-Lin Wu has shown that this conjecture

holds for graphic matroids. We prove two special cases of the conjecture, not restricted to

graphic matroids, thereby providing the first nontrivial evidence that the conjecture is true

for non-graphic matroids. Specifically, we prove the special case of the conjecture in which

c = 4 or c∗ = 4. We also prove the special case for binary matroids with c = 5 or c∗ = 5.

1. Introduction

An active area of research in matroid theory is concerned with producing Ramsey theoretic

results (see, for example, [1, 2, 3, 4, 5, 6, 8, 9]). The purpose of these results is to provide

a deeper understanding of the structure of matroids by finding substructures that any

sufficiently large matroid must contain. Circuits and cocircuits are basic substructures of

matroids and hence Ramsey theoretic results that provide information on these sets are

of interest.

The size of a largest circuit and cocircuit in a matroid M are denoted by cM and c∗M ,

respectively. The subscript M is often omitted. A fundamental open Ramsey question

for matroids is whether the size of a connected matroid can be bounded above by a

polynomial in c and c∗? It is believed that the answer to this question is ‘yes’ and the

following specific conjecture about the size of M has been made [1].

Conjecture 1.1. Connected matroids with largest circuit size c > 2 and largest cocircuit

size c∗ > 2 have at most 1
2
cc∗ elements.

Bonin, McNulty and Reid [1, Theorem 1.1] showed that the conjecture holds for

matroids containing a spanning circuit. Wu [9] showed that the conjecture holds for
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graphic matroids. For a non-graphic connected matroid M, the least upper bound in c

and c∗ known for the size of M is
(
c+c∗−2
c−1

)
, when c, c∗ > 3 [8].

The validity of Conjecture 1.1 is difficult to establish even for specific small values of c

and c∗. Specific small values for which the conjecture is known to be true are: 1 6 c 6 3,

1 6 c∗ 6 3, or (c, c∗) = (4, 4) [8]; (c, c∗) = (4, 5) or (c, c∗) = (5, 4) [4]; and (c, c∗) = (5, 5) [1].

The two main results of the paper are given next. They provide the best evidence to

date that Conjecture 1.1 holds for non-graphic matroids.

Theorem 1.2. If M is a connected matroid with maximum circuit size c = 4 (or maximum

cocircuit size c∗ = 4), then |E(M)| 6 1
2
cc∗.

Theorem 1.3. If M is a connected binary matroid with maximum circuit size c = 5 (or

maximum cocircuit size c∗ = 5), then |E(M)| 6 1
2
cc∗.

The proofs of these theorems are given in Section 2. The geometric structures obtained

in these proofs support the plausibility of Conjecture 1.1. The increasing complexity of the

cases obtained indicate that it is difficult to extend our proof technique to larger values

of c and c∗. Section 1 concludes with terminology and results that are used in the proofs

of the main theorems.

The terminology used here follows Oxley [7]. Let M be a matroid. Then E(M) denotes

the ground set of M. If X ⊆ E(M), then clM(X) and rM(X) denote the closure and rank

of X in M, respectively. We denote rM(E(M)) by r(M). A matroid is connected if and only

if, for each pair of distinct elements, there is a circuit containing both.

If X and Y are sets, then the symmetric difference of X and Y , denoted by X 4 Y , is

the set (X − Y ) ∪ (Y −X). We use the following well-known fact about binary matroids.

Theorem 1.4. A matroid M is binary if and only if the symmetric difference of any two

distinct circuits is a disjoint union of circuits.

Suppose that B = {C1, C2, . . . , Cn} is a collection of 4-element circuits of a matroid M

such that there is a 2-element subset S of M that is contained in every member of B. Then

B is called a book with spine S if and only if (Ci+1− S)∩ clM(C1 ∪C2 ∪ · · · ∪Ci) = ∅ for all

i ∈ {1, 2, . . . , n − 1} (see, for example, Figure 1 with S = {a0, b0} and Ci = {a0, b0, ai, bi}).
The members of B are called the pages of the book. A 2-element independent set in M

is called a book with no pages. As each page is added to a book, the rank of the book is

raised by one. This implies that rM(B) = rM(∪ni=1Ci) = n+ 2.

2. The proofs

The following geometric lemmas are used in the proofs of our main results. The first of

these follows from basic properties of circuits (see Figure 2(a)).

Lemma 2.1. If C is a maximum size circuit of a matroid M, then there is no triangle T

of M such that |C ∩ T | = 1 and (T − C) ∩ clM(C) = ∅.
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Figure 1

Figure 2

Lemma 2.2. Let M be a connected matroid with cM = 4. Let C be a 4-element circuit of

M and e ∈ E(M)\clM(C). Then there is a circuit D containing e such that {C,D} is a book.

Moreover, if {C,D} is a book, then C 4 D is a circuit of M.

Proof. Let C = {a, b, c, d}. There is a circuit C ′ containing d and e because M is

connected. There are at least two elements in each of C and C ′ not in the intersection of

their closures, say a and b in C and e and f in C ′. The 5-element set {a, b, d, e, f} contains

a circuit D. This circuit meets each of C\(clM(C) ∩ clM(C ′)) and C ′\(clM(C) ∩ clM(C ′)) at

least twice. Thus D = {a, b, e, f} (see Figure 2(b)). Note that {C,D} is a book. Moreover,

the above argument may be applied to the pair C and D to obtain that C4D is a circuit

of M.

Suppose that B is a book in a connected matroid M as pictured in Figure 1. Suppose

that M is binary. Then, for any fixed i ∈ {0, 1, . . . , n}, {ai, bi} is the spine of a book with

pages {ai, bi, aj , bj}, j ∈ {0, 1, . . . , n}\{i}. Lemma 2.2 implies that this holds for non-binary

matroids N with cN = 4 as well. This symmetry, where the spine of the book B may be

taken as any of the sets {ai, bi}, will be invoked in the proofs of our main results.

Lemma 2.3. Let M be a connected matroid with C1 a circuit of maximum size cM ∈
{4, 5}. Suppose that C2 and C3 are 4-element circuits of M that meet C1 twice such that

rM(C1 ∪ C2 ∪ C3) = rM(C1 ∪ C2) + 1 = rM(C1) + 2. Then C1 ∩ C2 and C1 ∩ C3 either agree

or are disjoint.
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Figure 3

Proof. Suppose otherwise. Then C1∩C2 and C1∩C3 meet in exactly one element. Suppose

that a, b, and c are distinct elements of C1 such that C2 = {a, b, d, e} and C3 = {b, c, f, g}
(see Figure 3).

Let C = {a, d, e, c, f, g}. Whether cM is 4 or 5, it follows that r(C) = 5. However, every

5-element subset of C spans clM(C), proving that all proper subsets of C are independent.

This gives the contradiction that the 6-element set C is a circuit.

Proof of Theorem 1.2. We may assume that cM = 4 by duality. Hence r(M) > 3. If

r(M) = 3, then M has a spanning circuit. Thus the result holds by [1, Theorem 1.1].

Hence we may assume that r(M) > 4.

We first argue that the theorem will follow if M contains two disjoint hyperplanes. Let

X and Y be disjoint hyperplanes of M and H = {X,Y }. Suppose that N denotes the

number of pairs (H, e) such that H ∈ H and e ∈ H . Each member of H is a hyperplane

containing at least |E(M)| − c∗ elements. Thus N > 2 · (|E(M)| − c∗). Each member of

E(M) is in at most one hyperplane of H. Thus N 6 |E(M)|. It follows from combining

these two inequalities that |E(M)| 6 2c∗ = 1
2
cc∗. The remainder of the proof is devoted to

producing two disjoint hyperplanes in M.

Lemma 2.4. There is a book B of M with r(B) = r(M).

Proof. It follows from Lemma 2.2 that M contains a book with at least two pages.

Suppose that B is a book of M of largest rank. Assume that r(B) < r(M). Then there

exists e ∈ E(M)\clM(B). Let C and D be distinct pages of B. By Lemma 2.2, there is a

4-element circuit P of M containing e such that {C, P } is a book of M. By Lemma 2.3,

the spines C ∩ D and C ∩ P of {C,D} and {C, P }, respectively, are either identical or are

disjoint. If the former occurs, then B ∪ {P } is a book of M. Suppose the latter occurs.

By Lemma 2.2, C 4 P is a 4-element circuit of M. Hence B ∪ {C 4 P } is a book of M.

In either case we obtain the contradiction that there exists a book of M with larger rank

than B. Thus r(B) = r(M).
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Let B = {C1, C2, . . . , Cr(M)−2} be a book of M of rank r(M). Suppose that {a0, b0} is

the spine of B and Ci − {a0, b0} = {ai, bi} for i ∈ {1, 2, . . . , r(M) − 2} (see Figure 1). Let

A = {a0, a1, . . . , ar(M)−2} and B = {b0, b1, . . . , br(M)−2}.

Lemma 2.5. Let C ⊆ A ∪ B. Then C is a circuit of M if and only if C = {ai, aj , bi, bj}
for distinct i, j ∈ {0, 1, . . . , r(M)− 2}.

Proof. Any set C = {ai, aj , bi, bj} for distinct i, j ∈ {0, 1, . . . , r(M)− 2} is a circuit by the

construction of the book and Lemma 2.2. Suppose T is a subset of A ∪ B that contains

no set of the form C = {ai, aj , bi, bj} for i and j distinct. We complete the proof by

showing that T is independent. This is accomplished by inducting on the number of

pages in the book. The result is easily established if the book has two pages. Suppose the

number of pages exceeds two and the result holds for books with fewer pages. There is

an i ∈ {0, 1, . . . , r(M) − 2} such that T meets {ai, bi} at most once. If T does not meet

{ai, bi}, then the result follows by induction. If T meets {ai, bi} in a single element e, then

T − e is independent by the induction hypothesis. But e is not in the closure of T − e by

the construction of the book. Thus T is independent.

Lemma 2.6. clM(A) ∩ clM(B) = ∅.

Proof. Suppose e is in the closure of both A and B. Let CA and CB be subsets of A and

B, respectively, such that CA ∪ e and CB ∪ e are circuits of M. By circuit elimination and

Lemma 2.5, there are distinct i and j such that {ai, aj , bi, bj} ⊆ CA ∪ CB . In particular,

both CA and CB have at least two elements. Lemma 2.1 implies that CA and CB do not

have cardinality two. Thus cM 6 4 implies that both of these sets contain exactly three

elements. Let k, l ∈ {0, 1, . . . , r(M)− 2} be such that CA = {ai, aj , ak} and CB = {bi, bj , bl},
where k = l is possible. Then the circuits {ai, aj , ak, e} and {ai, aj , bi, bj} form the pages of a

book so that Lemma 2.2 implies that {ak, bi, bj , e} is a circuit of M. By circuit elimination,

there is a circuit contained in ({ak, bi, bj , e} ∪ {bi, bj , bl , e}) − {e} = {ak, bi, bj , bl}. But this

contradicts that B is independent and ak /∈ clM(B).

We have shown that M contains disjoint hyperplanes clM(A) and clM(B). This completes

the proof of Theorem 1.2 by the remarks made near the beginning of the proof.

Proof of Theorem 1.3. We may assume that cM = 5 by duality. Let Z be a 5-element

circuit of M. If Z is a spanning circuit of M, then the result holds by [1, Theorem 1.1].

Assume that Z is not a spanning circuit of M. Hence r(M) > 5.

This proof is similar in structure to the proof of Theorem 1.2. Here we show that

there is a set H of five hyperplanes of M such that each element of M is in at most

three of the hyperplanes. As before, N denotes the number of pairs (H, e) such that

H ∈ H and e ∈ H . Each hyperplane of H contains at least |E(M)| − c∗ elements. Thus

N > |H| · (|E(M)| − c∗) = 5 · (|E(M)| − c∗). Each element of E(M) is in at most three

hyperplanes of H. Thus N 6 3|E(M)|. Hence 3|E(M)| > 5 · (|E(M)| − c∗) implies that

|E(M)| 6 5
2
c∗ = 1

2
cc∗. The remainder of the proof is devoted to constructing H.
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Figure 4

We next present several lemmas that specify geometric substructures of M.

Lemma 2.7. If f ∈ E(M)\clM(Z), then there is a 4-element circuit of M containing f

that meets Z twice.

Proof. It follows from M being connected that there is a circuit D of M containing

f that meets Z . Let D be such a circuit with |D − Z | minimum. Then, as f /∈ clM(Z),

|D − Z | > 2.

Suppose |D − Z | > 3. Then |D ∩ Z | 6 2 implies that |D 4 Z | > 6. By Theorem 1.4,

D4Z is the disjoint union of at least two circuits. Each circuit contained in D4Z meets

both D − Z and Z − D as both of these sets are independent. Thus there is a circuit

X ⊆ (D4Z) that contains f such that |X −Z | < |D −Z |. This contradicts the choice of

D. Thus |D − Z | = 2.

It follows from Lemma 2.1 that |D ∩ Z | 6= 1. If |D ∩ Z | = 2, then D has the required

properties. If |D ∩ Z | = 3, then Theorem 1.4 implies that D4 Z is a 4-element circuit of

M having the required properties.

The main lemma used in the proof of Theorem 1.3 is given next. The geometric

structure obtained in this lemma is depicted in Figure 4(a). This set is spanning in M.

The 5-element set Z = {a0, b0, c0, d0, e} is the circuit mentioned near the beginning of the

proof of Theorem 1.3. These five elements are drawn as coplanar in Figure 4(a) in order

to simplify the drawing even though they are not coplanar in M. When the elements of

Figure 4(a) are mentioned as members of circuits and hyperplanes of M in the remainder

of the proof of Theorem 1.3, the reader may find it helpful to view these elements as

edges in the graph of Figure 4(b) even though the matroid M may not be graphic. For

example, the edge set consisting of those edges labelled bi, 0 6 i 6 m together with edge e

forms a bond in the graph of Figure 4(b). This illustrates that the complementary edges

in that graph, those labelled by an a, c, or d with a subscript, can be shown to span a

hyperplane in the matroid M.
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Lemma 2.8. There are disjoint books B1 and B2 of M with spines being subsets of Z

and rM(B1∪B2∪Z) = r(M) satisfying the following independence condition. If P is a page

of B1 ∪B2, then the two elements of P\Z are not in clM(B1 ∪B2 ∪ Z)\(P\Z).

Proof. By Lemma 2.7, there are books B1 and B2 satisfying all of the conditions of the

present lemma except perhaps the condition r(B1 ∪ B2 ∪ Z) = r(M) . Let B1 and B2 be

books satisfying these conditions with the rank of B1 ∪B2 ∪ Z maximum.

Suppose that r(B1 ∪ B2 ∪ Z) < r(M). Hence there exists f ∈ E(M)\clM(B1 ∪ B2 ∪ Z).

By Lemma 2.7, there is a 4-element circuit P of M that meets Z twice. It follows from

Lemma 2.3 (possibly by relabelling the elements of Z if one of the two books has no

pages), that P ∩ Z is the spine of B1 or B2. Suppose the former by symmetry. Then

B1 ∪ P and B2 are a pair of books satisfying the independence condition stated in the

lemma and the rank of these sets together with Z exceeds the rank of B1 ∪B2 ∪ Z . This

contradicts the choice of B1 and B2. Hence rM(B1 ∪B2 ∪ Z) = r(M).

It follows from the above lemma that we may assume that the elements of Z are

labelled by a0, b0, c0, d0, and e so that there are books B1 and B2 with pages {a0, b0, ai, bi},
1 6 i 6 m, and {c0, d0, cj , dj}, 1 6 j 6 n, respectively, with r(B1 ∪ B2 ∪ Z) = r(M) and

the pages of the books satisfy the independence condition given in the statement of the

lemma (see Figure 4). Let A = {a0, a1, . . . , am}, B = {b0, b1, . . . , bm}, C = {c0, c1, . . . , cn}, and

D = {d0, d1, . . . , dn}. Let m = 0 or n = 0 as appropriate if B1 or B2 have no pages. At

least one of these books will contain pages by Lemma 2.7.

Lemma 2.9. Let X ⊆ A ∪ B ∪ C ∪ D ∪ e. Then X is a circuit of M if and only if X is

a page of B1 or B2, X is the symmetric difference of two pages of one of these books, or

X = {ai, bi, cj , dj , e} for i ∈ {0, 1, . . . , m} and j ∈ {0, 1, . . . , n}.

Proof. The pages of B1 and B2 are circuits by definition. The symmetric difference of

two pages of one of these books is a circuit by Lemma 2.2. Suppose that i ∈ {0, 1, . . . , m},
j ∈ {0, 1, . . . , n}, and X = {ai, bi, cj , dj , e}. Suppose that both i and j are 0. Then X = Z ,

so X is a circuit of M. Suppose that exactly one of i and j, say i, is 0. It follows from

Theorem 1.4 and X = {c0, d0, cj , dj} 4 Z that X is a circuit of M. Suppose that neither

i nor j is 0. Then Theorem 1.4 and X = {a0, b0, cj , dj , e} 4 {a0, b0, ai, bi} imply that X is

a circuit of M. Hence Figure 4 is symmetric in the sense that any set {ai, bi} may be

swapped for {a0, b0} as the spine of B1. Likewise, any set {cj , dj} may be taken to be the

spine of B2.

Suppose that S is a subset of A ∪ B ∪ C ∪ D ∪ e that contains no set of the form listed

in the statement of the lemma. We complete the proof by showing that S is independent;

we do this by induction on the total number of pages in the two books. If there are no

pages between these two books, then the result is straightforward. Suppose m + n > 1

and the result holds for sets as in Figure 4(a) containing fewer than m + n pages in the

two books. Since m+ n > 1 and S does not contain a page of either book, it follows that

either some intersection S ∩ {ai, bi} or S ∩ {cj , dj} is empty or one of these intersections

is a singleton. If such an intersection is empty, then S is independent by the induction
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hypothesis. If some intersection S ∩ {ai, bi} or S ∩ {cj , dj} is a singleton f, then S − f is

independent by the induction hypothesis, and so S is independent by our construction.

Let H1, H2, H3, H4, and H5 be the five hyperplanes of M determined by the subsets

A ∪ C ∪ D, A ∪ B ∪ D, B ∪ C ∪ e, A ∪ C ∪ e, and B ∪ D ∪ e, respectively. These five

hyperplanes are pairwise distinct, as otherwise a spanning set for A∪B∪C ∪D with fewer

than r(M)− 4 elements could be constructed. Let H = {H1, H2, H3, H4, H5}.

Lemma 2.10. Each element f of M is in at most three hyperplanes of H.

Proof. Suppose that f is in at least four hyperplanes inH. Each element of A∪B∪C∪D
is in exactly 3 hyperplanes in H. This fact follows as otherwise, again, a spanning set for

A∪B ∪C ∪D with fewer than r(M)− 4 elements could be constructed. Thus, f is neither

in A ∪ B ∪ C ∪ D nor is it in parallel with a member of this set.

Suppose that f ∈ clM(A). Then there is a circuit X containing f with at most five

elements such that X ⊆ A ∪ f and |A ∩X| > 2. Assume |A ∩X| = 2, say A ∩X = {ai, aj}
for distinct i and j. Then we obtain a contradiction to Lemma 2.1 by considering the

circuits {ai, aj , f} and {ai, bi, ci, di, e}. Thus |A ∩X| > 3.

Suppose |A ∩ X| = 3, say A ∩ X = {ai, aj , ak} for distinct i, j, and k. By Theo-

rem 1.4, {ai, aj , ak, f} 4 {ai, bi, ci, di, e} = {aj , ak, bi, ci, di, e, f} is a disjoint union of circuits

Y1, Y2, . . . , Yp. The maximum circuit size of M being five implies that p > 2. We may

assume that e ∈ Y1. The set {aj , ak, bi, ci, di} is independent by Lemma 2.9. It follows

from e not being in the closure of {aj , ak, bi, ci, di} that f ∈ Y1. We obtain the contra-

diction that the circuit Y2 is a subset of the independent set {aj , ak, bi, ci, di}. Likewise,

we obtain a contradiction if |A ∩ X| > 3. Thus f /∈ clM(A). By a similar argument,

f /∈ clM(B) ∪ clM(C) ∪ clM(D).

Suppose that f ∈ H1 ∩ H2. The rank r(M) − 2 set A ∪ D spans H1 ∩ H2. Thus there

is a circuit X containing f with at most five elements such that X ⊆ A ∪ D ∪ f. Then

f /∈ clM(A) and f /∈ clM(D) implies that X meets both A and D. Thus |X| > 3. Suppose

|X| = 3, say A ∩ X = {ai} and D ∩ X = {dj}. Suppose that i = j. By Lemma 2.9 and the

fact that m and n are not both 0, we may choose k 6= i. It follows that {ai, bi, ck, dk, e} is

a circuit of M. But then |{ai, dj , f} 4 {ai, bi, ck, dk, e}| > 5 and we obtain a contradiction

by arguing as in the previous paragraph. Thus i 6= j. Hence we obtain a contradiction as

above by considering the symmetric differences of the circuits {ai, dj , f} and {ai, bi, ci, di, e}.
Thus |X| > 3 and proceeding as in the |X| = 3 case, we obtain a contradiction. Thus

f /∈ H1∩H2. But A∪C spans H1∩H4 and B∪D spans H2∩H5. Hence a similar argument

to that above may be employed to show that f /∈ H1 ∩ H4 and f /∈ H2 ∩ H5. But f not

being in any of H1 ∩ H2, H1 ∩ H4, and H2 ∩ H5 contradicts that f is in at least four

members of H.

It follows from Lemma 2.10 that H is a set of five hyperplanes such that each element

of M is in at most three of the hyperplanes. This completes the proof of Theorem 1.3 by

the remarks made at the beginning of the proof.
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