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Abstract
An equitable colouring of a graph G is a vertex colouring where no two adjacent vertices are coloured the
same and, additionally, the colour class sizes differ by at most 1. The equitable chromatic number χ=(G)
is the minimum number of colours required for this. We study the equitable chromatic number of the
dense random graph G(n,m) where m= �p(n2)� and 0< p< 0.86 is constant. It is a well-known question
of Bollobás [3] whether for p= 1/2 there is a function f (n)→ ∞ such that, for any sequence of intervals
of length f (n), the normal chromatic number of G(n,m) lies outside the intervals with probability at least
1/2 if n is large enough. Bollobás proposes that this is likely to hold for f (n)= log n. We show that for
the equitable chromatic number, the answer to the analogous question is negative. In fact, there is a sub-
sequence (nj)j∈N of the integers where χ=(G(nj,mj)) is concentrated on exactly one explicitly known value.
This constitutes surprisingly narrow concentration since in this range the equitable chromatic number, like
the normal chromatic number, is rather large in absolute value, namely asymptotically equal to n/(2 logb n)
where b= 1/(1− p).

2010 MSC Codes: Primary 05C80; Secondary 05C15

1. Introduction
An assignment of colours to the vertices of a graph G is called a (proper) colouring if no two
adjacent vertices are coloured the same. The chromatic number χ(G) is the minimum number of
colours required for this.

An equitable colouring is a colouring where, additionally, the colour classes (i.e. the sets of
vertices of each colour) are as equal in size as possible. Since the number of colours does not
necessarily divide the number of vertices, this means that the colour class sizes may differ by
at most 1. The least number of colours where this is possible is called the equitable chromatic
number χ=(G).

Finally, the equitable chromatic threshold χ∗(G) is defined as the smallest k such that, for all
l� k, G allows an equitable colouring with exactly l colours. Note that, for any graph G,

1� χ(G)� χ=(G)� χ∗=(G)� n.
The famous Hajnal–Szemerédi theorem [6] states that if G has maximum degree �(G), then

χ∗=(G)��(G)+ 1.
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In this paper we will study the equitable chromatic number of dense random graphs. For p ∈
[0, 1], we let G∼ G(n, p) denote the binomial random graph with n labelled vertices where each
of the N = (n

2
)
possible edges is present independently with probability p. Given integers n and

m ∈ {0, . . . ,N}, the uniform random graph G∼ G(n,m) is chosen uniformly at random from all
graphs with n labelled vertices and exactlym edges.

Determining the chromatic number is a classic challenge in random graph theory and was
raised in one of the earliest papers by Erdős and Rényi [4]. In a landmark contribution, Bollobás
first determined the asymptotic value of the chromatic number of the dense random graph G∼
G(n, p) where p is constant [2]. Usingmartingale concentration inequalities, he proved that w.h.p.1

χ(G)= (1+ o(1))
n

2 logb n
,

where b= 1/(1− p). This result has been sharpened several times [5, 9, 10, 11], most recently in
[7], where the first and second moment methods were used to show that w.h.p.

χ(G)= n
2 logb n− 2 logb logb n− 2 logb 2− x0(n)+ o(1)

(1.1)

for a certain function x0(n) ∈ [0, 1]. If p� 1− 1/e2 ≈ 0.86, x0(n)= 0 for all n.
In general, χ(G) and χ=(G) can be far apart from each other: for example, ifG is the starK1,n−1,

then χ(G)= 2 and χ=(G)= 1+ 
(n− 1)/2�. However, for dense random graphs G∼ G(n, p)
where n−1/5+ε � p� 0.99, Krivelevich and Patkós [8] proved that w.h.p.

χ=(G)∼ χ(G).

They also showed (amongst other things) that if p� 0.99 and log log n� log (np), then

χ∗=(G)� (2+ o(1))χ(G).

Rombach and Scott have announced further results.
While the results above concern the likely values of χ(G(n, p)), χ=(G(n, p)) and χ∗=(G(n, p)), the

concentration of the chromatic number is similarly well studied. Shamir and Spencer [13] showed
that for any function p= p(n), χ(G(n, p)) is w.h.p. concentrated on an interval of length about√
n. If p tends to 1 sufficiently quickly, for example if p= 1− 1/(10n), this result is asymptotically

optimal (see [1]). In contrast, for the equitable chromatic number no general concentration results
are known. This is because the martingale concentration arguments used in [13] do not apply in
the equitable setting.

For sufficiently sparse random graphs, there are much sharper concentration results: Alon and
Krivelevich [1] proved that if p= n−1/2−ε with ε > 0, the chromatic number of G(n, p) is con-
centrated on only two consecutive values, which is generally best possible. For the wide range
of values of p which are larger than n−1/2−ε but not close to 1 – in particular for p= 1/2 –
the question of the concentration of χ(G(n, p)) is still wide open. Alon and Krivelevich specu-
late in [1] that the answer for G(n, 1/2) might be different for n in different subsequences of the
integers.

One very simple reason why extremely sharp concentration of χ(G(n, p)) would be surprising
is that the chromatic number is quite large in absolute value, namely of order �(n/log n). In
[1], Alon and Krivelevich give an argument showing non-concentration of any graph parameter
which changes considerably as p increases from ε to 1− ε. This argument only works for graph
parameters of order at least n.

For p constant, the number of edges in G(n, p) is of order n2 with standard deviation of order
n, so part of the variance of χ(G(n, p)) may simply be due to variations in the number of edges.

1We say that an event E= E(n) holds with high probability (w.h.p.) if limn→∞ P(E)= 1.
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Therefore, to study the concentration of the chromatic number, it makes sense to focus our
attention on the random graph G(n,m) where the number of edges is fixed atm= �pN�.

In [3], Bollobás asks whether there is a function f (n)→ ∞ such that, for any sequence of inter-
vals In where In is of length f (n), χ(G(n, � 1

2N�)) does not lie in any interval of length f (n) with
probability at least 1/2, and conjectures that f (n)= log n, and maybe even f (n)= nε could do.

In this paper we will show that the corresponding statement about the equitable chromatic
number does not hold. In fact, we will show that for constant p ∈ (0, 0.86), there is a subsequence
(nj)j�1 of the integers such that the equitable chromatic number of G(nj,mj) withmj =

⌊
p
(nj
2
)⌋

is
concentrated on exactly one explicitly known value.

Theorem 1.1. Let 0< p< 1− 1/e2 ≈ 0.86 be constant. There exists a strictly increasing sequence
of integers (nj)j�1 such that:

(a) for all j� 1, j|nj,
(b) letting b= 1/(1− p) and γ (n)= 2 logb n− 2 logb logb n− 2 logb 2,

γ (nj)= j+ o(1) as j→ ∞,

(c) letting G∼ G(nj,mj) with mj =
⌊
p
(nj
2
)⌋
, with high probability as j→ ∞,

χ=(G)= nj
j
.

In other words, we can pick a subsequence (nj)j�1 of the integers so that w.h.p. as j→ ∞, the
equitable chromatic number ofG∼ G(nj,mj) withmj =

⌊
p
(nj
2
)⌋

is exactly nj/j. This concentration
is perhaps surprisingly sharp because, like the normal chromatic number, the equitable chromatic
number of these dense random graphs is of order �(n/ log n). For a discussion of the condition
that p< 1− 1/e2, see the end of the next section.

We prove Theorem 1.1 in Sections 2–5. The proof is based on a very accurate calculation of
the second moment of the number of equitable k-colourings, and relies on choosing the sequence
(nj)j�1 in such a way that just as the expected number of equitable colourings starts tending to
infinity, all colour classes are of exactly the same size. We will use several lemmas from [7], where
the second moment method was recently used to obtain the currently best bounds for the normal
chromatic number of G(n, p) where p is constant.

2. Outline and notation
From now on, fix p< 1− 1/e2, let q= 1− p and b= 1/q. Let N = (n

2
)
, m=m(n)= �pN� and

G∼ G(n,m(n)).
For two functions f = f (n), g = g(n), we say that f is asymptotically at most g, denoted by

f <∼ g, if f (n)� (1+ o(1))g(n) as n→ ∞. We write f =O(g) if there are constants C and n0 such
that | f (n)|� Cg(n) for all n� n0. We write f = �(g) if g(n)� 0 and there are constants c> 0 and
n0 such that f (n)� cg(n) for all n� n0. Furthermore, we use the notation f = �(g) if f =O(g)
and g =O( f ).

For k� 1, we call an ordered partition of n vertices into k parts an ordered k-equipartition if
all k parts have size 
n/k� or �n/k� and decrease in size (so the parts of size 
n/k� come first,
followed by the parts of size �n/k�). Let Xn,k denote the number of ordered k-equipartitions of G
which induce valid colourings.

We start with a straightforward analysis of the first moment of Xn,k in Section 3. Next, in
Section 4, we show that there is a strictly increasing sequence (nj)j�1 which fulfils parts (a) and (b)
of Theorem 1.1, so that, letting kj = nj/j, E[Xnj,kj] tends to infinity slowly as j→ ∞. Using a first
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moment argument, we then show that w.h.p. G has no equitable k-colouring if k< kj, so w.h.p.

χ=(G)� kj = nj
j
.

We prove the matching upper bound through the second moment method. By the Paley–
Zygmund inequality, for any non-negative integer random variable Z,

P(Z > 0)� E[Z]2

E[Z2]
.

Hence, to show that an equitable kj-colouring exists w.h.p., it suffices to show that as j→ ∞
E[X2

nj,kj]/E[Xnj,kj]
2 � 1+ o(1). (2.1)

This will be proved in Section 5, using a number of lemmas from [7] where the corresponding
ratio was bounded for colourings of G(n, p) which could have two different colour class sizes. In
that context, it was sufficient to bound the corresponding expression by exp (n/( log7 n)).

We need much more accurate calculations in this paper to obtain the bound 1+ o(1), which
only holds in G(n,m) (see the discussion below). We will also require all colour class sizes to be
exactly equal, which simplifies calculations considerably. This enables us to use lemmas from [7],
which in that paper either gave worse bounds or only held if the expected number of colourings
was very large, to prove the bound 1+ o(1) in our case.

Remark 2.1. We conclude this section with some remarks on why the method fails for G(n, p),
and also for G(n, ⌊p(n2)⌋) in the case p> 1− 1/e2.

Since E[X2]�E[X]2 holds for any random variable X, (2.1) implies E[X2
nj,kj]∼E[Xnj,kj]2. Let

π be an arbitrary fixed ordered k-equipartition; then it is not hard to show this is equivalent to

E[Xnj,kj | π induces a valid colouring]∼E[Xnj,kj]. (2.2)

In other words, if we condition the random graph on the presence of one particular equitable
colouring, this should not change the expected number of equitable colourings significantly;
otherwise, the second moment method breaks down.

If G(n, p) is conditioned on the event that π induces a valid colouring, this decreases the
expected number of edges by �(n log n). This is more than the standard deviation of the num-
ber of edges in G(n, p), and other equitable colourings are now more likely simply because there
are significantly fewer edges than in the unconditional random graph. This boosts the expectation
of Xnj,kj (by a factor of size exp (�( log2 n))), so (2.2) does not hold.

A similar situation occurs if the equitable colouring contains very large colour classes. If
p> 1− 1/e2, it follows from the work in [7] that an optimal equitable colouring of Gn,�pN� con-
tains colour classes which are close to the likely value of the independence number of Gn,�pN�.
Since the expected number of such large independent sets is relatively small, conditioning on π

increases their number significantly. This makes other colourings more likely, and increases the
expectation of Xnj,kj so much that (2.2) does not hold. There is no particular reason to believe that
the corresponding statement to Theorem 1.1 is true if p� 1− 1/e2.

3. The first moment
We start by analysing the first moment of Xn,k and give a number of technical lemmas which will
be needed to choose the sequence (nj)j�1. Recall that

γ = γ (n)= 2 logb n− 2 logb logb n− 2 logb 2. (3.1)
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We will only consider k-colourings where

k= n
γ +O(1)

. (3.2)

Let

δ = δn,k = n
k

−
⌊
n
k

⌋
.

If k does not divide n, an ordered k-equipartition of n vertices consists of kL = kL(n)= δn,kk larger
parts of size 
n/k�, followed by kS = kS(n)= (1− δn,k)k smaller parts of size �n/k�. If k divides n,
then all k= kS(n) parts are of size exactly n/k= �n/k�. By Stirling’s formula n! ∼ √

2πnnn/en, the
total number of ordered k-equipartitions with k=O(n/log n) as in (3.2) is

Pn,k = n!

n/k�!kL�n/k�!kS = kn exp (o(n)). (3.3)

A k-equipartition induces a valid equitable colouring if and only if exactly

f = fn,k = kL
(
n/k�

2

)
+ kS

(�n/k�
2

)
= n(n/(k)− 1)

2
+ δn,k(1− δn,k)

2
k∼ n logb n (3.4)

forbidden edges within the parts of the partition are not present in G. Let
ε =Np−m ∈ [0, 1).

Since f = fn,k ∼ n logb n, using Stirling’s formula, the probability that a given k-equipartition
induces a valid colouring is(

N − f
m

)/(
N
m

)
= (N − f )!(qN + ε)!

N!(qN − f + ε)!
∼ (N − f )N−f (qN + ε)qN+ε

NN(qN − f + ε)qN−f+ε

= q f (1− f /N)N−f (1+ ε/(qN))qN+ε

(1− f /(qN)+ ε/(qN))qN−f+ε
.

Using log (1+ x)= x− x2/2+O(x3) for x→ 0 and that ε ∈ [0, 1) and f = �(n log n),

log
((

N − f
m

)/(
N
m

))
= f log q− f 2p

2qN
+O

(
f 3

N2

)
.

Since f 3/N2 = o(1), the expected number of ordered k-equipartitions which induce a valid colouring
is

μn,k := E[Xn,k]= Pn,k
((

N − fn,k
m

)/(
N
m

))
∼ Pn,kq fn,k exp

(
− f 2n,kp
2qN

)
. (3.5)

The expected number of unordered equitable partitions which induce valid colourings is

μ̄n,k = μn,k
kL!kS! ∼ Pn,kq fn,k

kL!kS! exp
(

− f 2n,kp
2qN

)
. (3.6)

If k is close to n/γ , we can approximate μ̄n,k with the following lemma, which is proved in the
Appendix.

Lemma 3.1. Given n and k and x=O(1) such that

k= n
γ + x

,
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then
μ̄n,k = b−(x/2)n+o(n).

Corollary 3.2. Given integers n and k such that |n/k− γ (n)|� 10,

• if μ̄n,k � 1, then k� n/(γ (n)+ on(1)),
• if μ̄n,k � n, then k� n/(γ (n)+ on(1)).

In Lemma 4.1, we will pick a sequence (nj)j�1 such that μ̄nj,kj starts tending to infinity just as
all parts of a kj-equipartition are of size exactly j. For this we will need some technical lemmas
which examine how much μn,k and μ̄n,k change if we increase n or k by 1. Both are proved in the
Appendix.

Lemma 3.3. Given n and k such that k= n/(γ +O(1)),
μ̄n,k+1
μ̄n,k

� exp (�( log n log log n)).

Lemma 3.4. Given n and k such that k= n/(γ +O(1)),
μn+1,k
μn,k

= �

(
log n
n

)
.

Note that for any graph G, χ=(G)� χ(G). So the lemma below follows directly from (1.1) and
standard arguments about the equivalence of G(n,m) and G(n, p); it is also easy to prove directly
through the first moment method (see [11]).

Lemma 3.5. Let p ∈ (0, 1) be constant and let G∼ G(n,m) with m= �pN�. Then w.h.p.

χ=(G)�
n

γ (n)+ o(1)
.

4. Choice of the subsequence
We are now ready to choose the sequence (nj)j�1 from Theorem 1.1.

Proposition 4.1. There is a strictly increasing sequence (nj)j�1 such that the following holds for all
j� 1:

(a) kj := nj/j ∈Z,
(b) γ (nj)= j+ o(1) as j→ ∞, where γ (nj)= 2 logb nj − 2 logb logb nj − 2 logb 2,
(c) μ̄nj,kj → ∞ as j→ ∞,
(d) let G∼ G(nj,mj) with mj =

⌊
p
(nj
2
)⌋
; then w.h.p. as j→ ∞, for all k� kj − 1, G has no

equitable k-colouring.

Proof. It suffices to show that there is some constant j0 > 0 and a strictly increasing sequence
(nj)j�j0 which fulfils (a)–(d) for all j� j0: given such a sequence, by (b) nj grows exponentially in j,
so without loss of generality we can assume that nj0 � j0 and let nj = j for 1� j< j0.

For j� 1, let nj be the smallest multiple of j such that, letting kj = nj/j:

(1) γ (nj) ∈ [j− 10, j+ 10],
(2) μ̄nj,kj � log j.
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Claim 1. If j is large enough, nj is well-defined.

Proof. Roughly speaking, nj is well-defined because γ (n) is logarithmic in n and grows slowly as n
is increased (so we are able to find amultiple n= tj of j so that γ (tj) lies in the interval [ j+ 1, j+ 2],
say), and because by Lemma 3.1, letting k= n/j, μ̄n,k is exponentially large if γ (n)− j is positive
and bounded away from zero.

In more detail, fix j and consider the sequence (γ (tj))t�j. If j is large enough and t� j, then

0< γ ((t + 1)j)− γ (tj)� 3( logb ((t + 1)j)− logb (tj))= 3 logb

(
1+ 1

t

)
<

1
2
. (4.1)

Furthermore, if j is large enough, then γ ( j2)� j and γ (tj)→ ∞ as t → ∞. Therefore, there is an
integer t0 � j such that

γ (t0j) ∈ [ j+ 1, j+ 2].
By Lemma 3.1, letting n′ = t0j,

μ̄n′,t0 � b(
1
2+o(1))n′ � log n′ � log j.

Therefore, n′ is a multiple of j such that the two conditions (1) and (2) from the definition of nj
are fulfilled, so nj is well-defined.

The definition of nj immediately implies (a) and (c). We now show that (b) holds.

Claim 2. As j→ ∞, γ (nj)= j+ o(1).

Proof. By the definition of nj, if j is large enough we have
μ̄nj,kj � log j� 1.

Since kj = n/j, together with Corollary 3.2 this implies that j� γ (nj)+ o(1). In particular, this
implies that nj grows (at least) exponentially in j.

For the other direction, first note that by (4.1), for j large enough,

γ (nj)� γ (nj − j)� γ (nj)− 1
2
� j− o(1)− 1

2
� j− 1.

In particular,
γ (nj − j) ∈ [ j− 10, j+ 10].

So nj − j is another multiple of j for which part (1) of the definition of nj holds. As nj is defined as
the smallest multiple of j such that (1) and (2) hold, we must have

μ̄nj−j,kj−1 < log j. (4.2)

Since nj grows (at least) exponentially in j, for j large enough we have log j� nj − j, and therefore
by (4.2),

μ̄nj−j,kj−1 < nj − j.

By Corollary 3.2,
nj − j
j

= kj − 1�
nj − j

γ (nj − j)+ o(1)
,

so j� γ (nj − j)+ o(1). Note that

γ (nj)− γ (nj − j)=O
(
log

( nj
nj − j

))
=O( log (1+ o(1)))= o(1),
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and thus
j� γ (nj)+ o(1)

as required, so (b) holds.

By (b), γ (nj)= j+ o(1), and hence nj grows exponentially in j. In particular, this implies that
nj is strictly increasing if j is large enough.

It only remains to prove (d). By Lemma 3.5, w.h.p. G∼ G(nj,mj) has no equitable colouring
with fewer than nj/(γ (nj)+ o(1)) colours. To prove that (d) holds, it is therefore sufficient to show
that w.h.p. G has no equitable colouring with more than, say, nj/(γ (nj)+ 1) and at most kj − 1
colours. We first show that the expected number μ̄nj,kj−1 of (unordered) equitable colourings of
G(nj,mj) with kj − 1 colours tends to 0.

Claim 3. If j is large enough, then

μ̄nj,kj−1 �
1
j
.

Proof. As kj = nj/j, an equitable partition of nj vertices into kj − 1 parts consists of exactly j larger
parts of size j+ 1 and kj − 1− j smaller parts of size j, so

μ̄nj,kj−1 = μnj,kj−1

j!(kj − 1− j)! . (4.3)

By Lemma 3.4 and as kj − 1 divides nj − j, we have

μnj,kj−1 = μnj−j,kj−1

(
�

( log nj
nj

))j
= μ̄nj−j,kj−1 (kj − 1)!

(
�

( log nj
nj

))j
.

Note that by (4.2), μ̄nj−j,kj−1 < log j, so with (4.3),

μ̄nj,kj−1 < log j
(kj − 1)!

j!(kj − 1− j)!
(

�

( log nj
nj

))j
= log j

(
kj − 1

j

)(
�

( log nj
nj

))j
.

As (
kj − 1

j

)
<

(e(kj − 1)
j

)j

and kj = �(nj/ log nj), if j is large enough this gives

μ̄nj,kj−1 � log j
(

�

(kj log nj
jnj

))j
= log j(�(1/j))j < 1/j.

By Lemma 3.3 and Claim 3, the expected number of unordered equitable colourings with
between nj/(γ (nj)+ 1) and kj − 1 colours is∑

n/(γ (nj)+1)�k�kj−1

μ̄nj,k =O(μ̄nj,kj−1)=O(1/j)= o(1),

so w.h.p. G has no such colouring. This completes the proof of Proposition 4.1.

5. The secondmoment
For the proof of Theorem 1.1, it remains to show that for the sequence (nj)j�1 from
Proposition 4.1,

E[X2
nj,kj]/E[Xnj,kj]

2 � 1+ o(1) as j→ ∞. (5.1)
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We will be able to re-use large parts of the calculations from [7], but will need to be more accurate
here than in [7], where it was sufficient to bound the corresponding ratio by exp (n/log8 n) rather
than 1+ o(1).

Let j� 1, Nj =
(nj
2
)
, mj = �pNj� and fj = fnj,kj as in (3.4) and Pj = Pnj,kj as in (3.3), and

G∼ G(nj,mj). To simplify notation, we will omit the indices of nj, mj, kj and so on when the
context is clear.

Note that since j= n/k is an integer, we can simplify the expressions for P and f :

P = n!
j!k and f = n( j− 1)

2
. (5.2)

As

Xn,k =
∑

π ordered k-equipartition
1π induces a valid colouring,

by linearity of the expectation,

E[X2
n,k]=

∑
π1,π2 ordered k-equipartitions

P(both π1 and π2 induce proper colourings).

The terms in the last sum may vary considerably depending on how similar π1 and π2 are. To
quantify this, we define the overlap sequence r= r(π1, π2)= (ri)

j
i=2 of π1 and π2. We let ri denote

the number of pairs of parts (with the first part in π1 and the second part in π2) which intersect in
exactly i vertices.

Conversely, given an overlap sequence r, let Pr denote the number of ordered pairs π1, π2 which
overlap according to r. We call an intersection of size at least 2 between two parts an overlap block.
Let

v= v(r)=
j∑

i=2
iri (5.3)

be the number of vertices involved in the overlap, and denote the proportion of such vertices in the
graph by

ρ = v/n.

If π1 and π2 overlap according to r, then they share exactly

d = d(r)=
j∑

i=2
ri
(
i
2

)
(5.4)

forbidden edges. Therefore, π1 and π2 with overlap sequence r both induce valid colourings at
the same time if and only if exactly 2f − d(r) given forbidden edges are not present in G, so
by (3.5),

E[X2
n,k]=

∑
r

Pr
((

N − 2f + d(r)
m

)/(
N
m

))
= μ2

n,k
∑
r

Pr
P2

·
(N−2f+d

m
)(N

m
)

(N−f
m

)2 .

Let

Qr = Pr
P2

,

Sr =
((

N − 2f + d(r)
m

)(
N
m

))/(
N − f
m

)2
. (5.5)
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Then, to prove (5.1), we need to show that as j→ ∞,
∑
r

QrSr � 1+ o(1). (5.6)

We will determine the asymptotic value of Sr in Section 5.1. To bound the sum (5.6), we will split
up the calculations into three different ranges in Sections 5.2–5.4, corresponding to the different
cases of the calculations in [7]. In the first case we need to obtain a much more accurate bound
than in [7], and this is where most of the work in calculating the second moment lies. The other
two cases follow more or less directly from lemmas in [7].

More specifically, in Section 5.2 we will consider all those overlap sequences r where
ρ = v/n� c for some constant c> 0. Most pairs of k-equipartitions belong in this range, and this
is also where the main contribution to (5.6) comes from. While in [7] it was sufficient to bound
the contribution from this range to the equivalent of (5.6) by exp (n/log8 n), in this paper we will
show how to obtain the sharpest possible bound 1+ o(1) (which only holds in G(n,m)).

In Section 5.3 we consider those r where there are at least v= cn vertices involved in the over-
lap, but there are either many vertices not in the overlap or many small overlap blocks.We will use
a simplification of arguments in [7] to show that the contribution from these overlap sequences r
to (5.6) is o(1).

Finally, Section 5.4 concerns overlap sequences r corresponding to pairs of partitions which are
very similar to each other. A lemma from [7] shows that if all colour classes are of exactly the same
size, then the contribution from this range of r isO(1/μ̄n,k), which tends to 0 since μ̄n,k → ∞. This
will conclude the proof of Theorem 1.1.

5.1 Asymptotics of Sr
Consider an overlap sequence r. Again letting ε =Np−m ∈ [0, 1], and d = d(r),

Sr = (N − 2f + d)!N! (N −m− f )!2
(N − f )!2 (N −m)! (N −m− 2f + d)! = (N − 2f + d)!N! (qN + ε − f )!2

(N − f )!2 (qN + ε)! (qN + ε − 2f + d)! .

Since d� f =O(n log n)= o(N), applying Stirling’s formula n! ∼ √
2πn nn/en gives

Sr ∼ (N − 2f + d)N−2f+dNN(qN + ε − f )2qN+2ε−2f

(N − f )2N−2f (qN + ε)qN+ε(qN + ε − 2f + d)qN+ε−2f+d

= q−d · (1− (2f − d)/N)N−2f+d(1− ( f − ε)/(qN))2qN+2ε−2f

(1− f /N)2N−2f (1+ ε/(qN))qN+ε(1− (2f − d − ε)/(qN))qN+ε−2f+d .

Using log (1+ x)= x− x2/2+O(x3) for x→ 0, and as d� f =O(n log n) and ε < 1, we get

log Sr = −d log q+ −p(d2 + 2f 2 − 4df )
2qN

+ o(1). (5.7)

Details of this calculation can be found in the Appendix. Therefore,

Sr ∼ q−d exp
(

−p(d2 + 2f 2 − 4df )
2qN

)
= bd exp

(
−p(d2 + 2f 2 − 4df )

2qN

)
, (5.8)

where d = d(r) is given in (5.4).
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5.2 The typical overlap case
In this section we bound the contribution to (5.6) from overlap sequences r corresponding to
pairs of equipartitions with relatively few vertices involved in the overlap. Most pairs of equipar-
titions fall in this range. To see this, note that if we pick an equipartition with k= �(n/log n)
parts uniformly at random, the probability that t =O(1) given vertices are in the same part is
of order O((log n/n)t−1). Therefore, if we sample two equipartitions independently and uni-
formly at random, the expected number of joint forbidden edges is of order O( log2 n), and
the expected number of triples of vertices which are in the same part in both equipartitions is
O(log4 n/n)= o(1). So most pairs of equipartitions share O( log2 n) (disjoint) forbidden edges
and have no larger overlap blocks in common; in our notation, this means r2 =O( log2 n) and
r3 = r4 = · · · = rj = 0. We will cover a much larger range of sequences r here, namely all those
r where only a certain constant fraction cn of all vertices is contained in overlap clusters, that
is, v= ∑

i iri � cn. As this is where the main contribution of 1+ o(1) to (5.6) comes from, our
calculations will need to be quite accurate, at least in the case r2 =O( log2 n) and ri = 0 for i� 3.

For any r, Lemma 9 from [7] gives

Qrbd <∼
j∏

i=2

(
1
ri!

(
eρib(

i
2)k2j!2

nii!( j− i)!2
)ri)

exp
(

−1
2

(
n− v
k

− 1
)2)

.

(Note that the quantity x0 from [7] is 0 as p< 1− 1/e2.) Together with (5.8), this gives

QrSr <∼
j∏

i=2

(
1
ri!

(
eρib(

i
2)k2j!2

nii!( j− i)!2
)ri)

exp
(

−1
2

(
n− v
k

− 1
)2

− p(d2 + 2f 2 − 4df )
2qN

)
.

Letting

Ti := eρib(
i
2)k2j!2

nii!( j− i)!2 ,
we have

QrSr <∼ exp
(

−1
2

(
n− v
k

− 1
)2

− p(d2 + 2f 2 − 4df )
2qN

) j∏
i=2

Tri
i
ri! . (5.9)

If ρ = ρ(r)= v/n is small enough, the terms T3, . . . , Tj are all small. This is the content of
the following lemma, which is proved in the Appendix. Noting that p< 1− 1/e2 and therefore
log b< 2, let

c= 1
2

(
1− log b

2

)
∈ (0, 1). (5.10)

Lemma 5.1. If j (and therefore n= nj) is large enough and ρ � c, then for all 3� i� j,

Ti � n−c̃,
where

c̃=min
(
1
2

(
1

log b
− 1

2

)
,
1
2

)
∈ (0, 1).

In this section we will bound the contribution to (5.6) from all sequences r so that Lemma 5.1
applies. So let

R1 = {r | ρ = ρ(r)� c}.
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For r ∈R1, the terms T3, . . . , Tj are small, leaving the main contribution to (5.6) to come from
the terms T2. Using Lemma 5.1, we bound the terms T3, . . . , Tj by a single term depending only
on R3, where

R3 =
j∑

i=3
ri.

By Lemma 5.1, (5.9) and the definition (5.2) of f , for r ∈R1,

QrSr <∼ exp
(

−1
2

(
n− v
k

− 1
)2

− p(d2 + 2f 2 − 4df )
2qN

)Tr2
2
r2! n

−c̃R3 . (5.11)

Before summing (5.11) over r ∈R1, we give a simple lemma which will enable us to take the sum
over R3 rather than r3, . . . , rj.

Lemma 5.2. Given R3, there are at most (2e logb n)R3 ways to select r3, . . . , rj so that
∑j

i=3 ri = R3.

Proof. Since j� 2 logb n, there are at most
(
R3 + j− 3

R3

)
�

(
e(R3 + j− 3)

R3

)R3
� (e(1+ j− 3))R3 � (2e logb n)

R3

ways to write R3 as an ordered sum of j− 2 non-negative summands.

We will see below that if v and d are not too large, the term T2 in (5.11) is roughly (b/2)( j− 1)2.
Also, the exponential term in (5.11) is then roughly exp (− (b/2)( j− 1)2); this will exactly cancel
out

∑
r2 (T

r2
2 /r2!) when summing (5.11) over r, giving an overall sum of 1+ o(1). Before giving the

details of this calculation, we need to handle the case where either v or d are very large (too large
for the approximations of T2 and the exponential term to hold), and show that the contribution
from this case is o(1).

So letRex
1 be the set of all r ∈R1 where v= v(r)� n/( log3 n) or d = d(r)� n/( log3 n).

Lemma 5.3. ∑
r∈Rex

1

QrSr = o(1).

Proof. Again we assume throughout that j is large enough for all estimates to be valid. Let r ∈Rex
1 .

As d� f =O(n log n) and n/k= j=O( log n),

exp
(

−1
2

(
n− v
k

− 1
)2

− p(d2 + 2f 2 − 4df )
2qN

)
= exp (O( log2 n)), (5.12)

and

T2 �
e2b(

2
2)k2j4

n22! = �( log2 n). (5.13)

Since

v=
j∑

i=2
iri � 2r2 + 2R3 logb n and d =

j∑
i=2

(
i
2

)
ri � r2 + 2R3 log2b n,

if r ∈Rex
1 , then either r2 � n/ log6 n or R3 � n/ log6 n.
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Case 1. r2 � n/ log6 n. Then from (5.11), (5.12) and (5.13), and as r2!� r2r2/er2 ,

QrSr <∼ exp (O( log2 n))
(�( log2 n))r2

r2! n−c̃R3

� exp (O( log2 n))
(

�( log2 n)
r2

)r2
n−c̃R3

<∼ exp (O( log2 n))
(
log9 n
n

)r2
n−c̃R3 .

With Lemma 5.2, we can bound the sum of (5.11) over those r with r2 � n/ log6 n crudely by a
sum over r2 and R3:

∑
r∈Rex

1
r2�n/ log6 n

QrSr � exp (O( log2 n))
∑

r2�n/ log6 n, R3

((
log9 n
n

)r2(2e logb n
nc̃

)R3)

= o(1).

Case 2. R3 � n/ log6 n. By Lemma 5.2, (5.12) and (5.13),
∑
r∈Rex

1
R3�n/ log6 n

QrSr � exp (O( log2 n))
∑
r2

O( log2 n)r2
r2!

∑
R3�n/ log6 n

(
2e logb n

nc̃

)R3

= exp (O( log2 n))
∑

R3�n/ log6 n

(
2e logb n

nc̃

)R3

= o(1).

We will now sum (5.11) for all r ∈R1 \Rex
1 . Note that p/q= b− 1 and that by (5.2), f 2/N =

1
2 ( j− 1)2 + o(1), so if v< n/( log3 n) and d < n/( log3 n),

exp
(

−1
2

(
n− v
k

− 1
)2

− p(d2 + 2f 2 − 4df )
2qN

)
∼ exp

(
−1
2

(
n
k

− 1
)2

− pf 2

qN

)

∼ exp
(

−b
2
( j− 1)2

)
. (5.14)

Note that for r ∈R1 \Rex
1 , ρ = v/n< 1/( log3 n), so

T2 = e2ρb(
2
2)k2j!2

n22!( j− 2)!2 = e2ρ
b
2
( j− 1)2 � e2/( log

3 n) b
2
( j− 1)2 =: T.

Therefore, from (5.11) and together with (5.14) and Lemma 5.2,
∑

r∈R1\Rex
1

QrSr <∼ exp
(

−b
2
( j− 1)2

) ∑
r2,R3�0

Tr2

r2! (2en
−c̃ logb n)

R3

∼ exp
(

−b
2
( j− 1)2

) ∑
r2�0

Tr2

r2!

= exp
(

−b
2
( j− 1)2 + T

)
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= exp
(

−b
2
( j− 1)2(1− e2/( log

3 n))
)

= exp
(

−b
2
( j− 1)2O( log−3 n)

)

= 1+ o(1),
since j=O( log n). Together with Lemma 5.3, it follows that the contribution from R1 to (5.6) is
1+ o(1).

5.3 The intermediate overlap case
Now let 0< c′ < 1 be an arbitrary constant. As in [7], we let Rc′

2 denote the set of all overlap
sequences which are not in R1 and where there are either at least c′n vertices not involved in the
overlap at all, or at least c′n vertices in ‘small’ overlap blocks of size at most 0.6γ (the maximum
size of any overlap block is j= γ + o(1)), that is,

Rc′
2 =

{
r
∣∣∣ ρ > c∧

( ∑
2�i�0.6γ

iri � c′n∨ ρ � 1− c′
)}

.

We will simplify arguments from [7] to show that the contribution to (5.6) from overlap sequences
r ∈Rc′

2 is o(1). Fix an arbitrary ordered k-equipartition π1, and let

Pc′
2 = {ordered k-equipartitions π2 such that r(π1, π2) ∈Rc′

2 }.
Following [7], for an overlap sequence r, we let P′

r denote the number of ordered k-equipartitions
with overlap r with π1. By symmetry, P′

r does not depend on the choice of π1, and in particular
Pr = PP′

r. By the definition (5.5) of Qr,

Qr = Pr
P2

= P′
r
P
.

Using (5.8) and that by (3.3), P = kn exp (o(n)),
∑
r∈Rc′

2

QrSr =
∑
r∈Rc′

2

P′
r
P
bd exp (o(n))

=
∑

π2∈Pc′
2

P−1bd(π1,π2) exp (o(n))

=
∑

π2∈Pc′
2

k−nbd(π1,π2) exp (o(n)). (5.15)

In [7], three sets of partitions P I, P II and P III were defined. We will not repeat the exact def-
initions of P I and P II here, as they are quite technical; they can be found in the Appendix. Note
that

P III := {ordered k-equipartitions π2 such that c< ρ � 1− c′} \P I \P II. (5.16)
In Lemma 13 of [7] – which is also given in the Appendix – it was proved that

Pc′
2 ⊂P I ∪P II ∪P III, (5.17)

and Lemma 15 showed that ∑
π2∈P I∪P II

k−nbd(π1,π2) exp (o(n))= o(1). (5.18)
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Therefore, to bound the contribution of Rc′
2 to (5.6) by o(1), we only need to consider the parti-

tions π2 ∈P III. In [7], two types of vertices involved in the overlap were distinguished: those v1
vertices which are in parts of size a in π1, and those v2 vertices which are in parts of size at most
a− 1 in π1, where

a= �γ � + 1.
With this notation, of course v= v1 + v2. Similarly, there are d1 shared forbidden edges in parts of
size a in π1, and d2 shared forbidden edges in parts of size at most a− 1 in π1, so that d1 + d2 = d.
Fixing integers v1, v2, d1 and d2 and letting

P ′(v1, v2, d1, d2)= {π2 ∈P III | vi(π1, π2)= vi, di(π1, π2)= di, i= 1, 2}, (5.19)
Lemma 17 of [7] states that∑

π2∈P ′(v1,v2,d1,d2)
k−nbd(π1,π2) � bn(1−ρ) logb (1−ρ)+v1/2−(�v)/2 exp (o(n)).

In the context of this paper, this last expression can be simplified as all parts are of size exactly j.
As j= γ + o(1), a= �γ � + 1 is either j+ 1 or j. In the first case, we have v1 = 0, v2 = v and
� = γ − �γ � = o(1). In the second case, we have v1 = v, v2 = 0 and � = 1− o(1). In both
cases, ∑

π2∈P ′(v1,v2,d1,d2)
k−nbd(π1,π2) � bn(1−ρ) logb (1−ρ) exp (o(n)).

By the definitions (5.16) and (5.19), we have c� ρ � 1− c′, so∑
π2∈P ′(v1,v2,d1,d2)

k−nbd(π1,π2) � b−c′′n,

where

c′′ = 1
2
min (|(1− c) log (1− c)|, |c′ log c′|)> 0.

Bounding crudely, there are at most n2 choices for the values of v1, v2 and (as d� f � n2) at most
n4 choices for d1 and d2, so ∑

π2∈P III

k−nbd(π1,π2) � n6b−c′′n = o(1).

Together with (5.15), (5.17) and (5.18), this gives∑
r∈Rc′

2

QrSr = o(1).

5.4 The large overlap case
Given c′ ∈ (0, 1), let

Rc′
3 =

{
r
∣∣∣ ρ > 1− c′,

∑
2�i�0.6γ

iri � c′n
}

be the remaining set of overlap sequences r, where c′ is still an arbitrary constant. To finish the
proof of Theorem 1.1, it remains to show that we can choose c′ ∈ (0, 1) so that the contribution
from the overlap sequences r ∈Rc′

3 to (5.6) is o(1). This is a direct consequence of the following
lemma from [7].
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Lemma 5.4 (Lemma 22 of [7]). There is a constant c′ > 0 such that
∑
r∈Rc′

3

Qrbd =O
(
kS!kL!
Pq f

(
k
kS

))
=O

(
k!
Pq f

)
.

As in our case all k colour classes are of the same size, by (3.6) we have

μ̄ = μ

k! = Pq f

k! exp
(

− f 2p
2qN

)
,

and thus
∑
r∈Rc′

3

Qrbd =O
(
1
μ̄

)
exp

(
− f 2p
2qN

)
.

By (5.8) and since d� f ,
∑
r∈Rc′

3

QrSr =O
(
1
μ̄

)
exp

(
−p(3f 2 − 4df + d2)

2qN

)

=O
(
1
μ̄

)
exp

(
−p((2f − d)2 − f 2)

2qN

)

=O
(
1
μ̄

)
.

This expression is o(1) as soon as μ̄ → ∞, which is indeed the case by our choice of (nj)j�1: see
Proposition 4.1(c). This completes the proof of Theorem 1.1.

6. Open problems
While Theorem 1.1 establishes one point concentration of χ=(G(n,m)) on a subsequence of the
integers, we have no general result which holds for all n. For the normal chromatic number, Shamir
and Spencer [13] showed concentration on at most about

√
n integers for every function p= p(n).

It would be interesting to obtain a more general concentration result for the equitable chromatic
number which holds for all n, or indeed for different functions p(n) orm(n).

We also have not addressed the equitable chromatic threshold of dense random graphs in
Theorem 1.1. It may be possible to extend the second moment arguments to equitable k′-
colourings where k′ � k. However, this would only show that an equitable k′-colouring exists
w.h.p. for one particular value of k′, not that equitable k′-colourings exist w.h.p. for all such val-
ues k′ simultaneously. To prove such a statement via the second moment method, we would need
good bounds on the rate of convergence of E[X2

n,k′]/E[Xn,k′]2 → 1. Nevertheless, it seems like a
reasonable conjecture that in the context of Theorem 1.1, w.h.p.

χ∗=(Gnj,mj)= χ=(Gnj,mj)= n/j.
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Appendix
Proof of Lemma 3.1. Since 1�

( k
kS

)
� 2k and k∼ n/(2 logb n),

kS!kL! = k! exp (o(n))= bn/2 exp (o(n)). (A.1)
Furthermore, by (3.1) and (3.4),

q fn,k = b−(n/2)(n/k−1) exp (o(n))= b(n/2)(1−γ−x) exp (o(n))= bn((1−x)/2)
(
2 logb n

n

)n
exp (o(n)).

(A.2)
Finally, note that

exp
(

− f 2n,kp
2qN

)
= exp (O( log2 n))= exp (o(n)).

Together with (3.3), (3.6), (A.1) and (A.2), this gives

μ̄n,k = knbn((1−x)/2)

bn/2

(
2 logb n

n

)n
exp (o(n))= b−(x/2)n(1+ o(1))n exp (o(n))= b−(x/2)n+o(n).

Proof of Lemma 3.3. We first examine how much μn,k increases if we increase k in the following
lemma.

Lemma A.1. Given n and k such that k= n/(γ +O(1)),
μn,k+1
μn,k

>∼ bn
2/(2k(k+1))−n/(2k).

Proof. Recall that by (3.5),

μn,k ∼ Pn,kq fn,k exp
(

− f 2n,kp
2qN

)
, (A.3)

where

Pn,k = n!

n/k�!kL�n/k�!kS .
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The product 
n/k�!kL�n/k�!kS contains exactly n factors, and increasing k by 1 can only decrease
those n factors, so

Pn,k+1 � Pn,k. (A.4)

Next, we will compare fn,k and fn,k+1 using (3.4). For this, let

x= n
k

− n
k+ 1

= n
k(k+ 1)

.

Recall that δn,k := n/k− �n/k�. If �n/k� = �n/(k+ 1)�, then δn,k+1 = δn,k − x. Otherwise,
�n/k� = �n/(k+ 1)� + 1 and δn,k + (1− δn,k+1)= x. In both cases,

|δn,k+1(1− δn,k+1)− δn,k(1− δn,k)|� x.

Therefore, by (3.4),

fn,k − fn,k+1 �
n2

2k(k+ 1)
− x

2
(k+ 1)= n2

2k(k+ 1)
− n

2k
. (A.5)

Furthermore,

| fn,k − fn,k+1| = n2

2k(k+ 1)
+O

(
n
k

)
=O( log2 n),

so as fn,k ∼ n logb n,

exp
(

− f 2n,k+1p
2qN

+ f 2n,kp
2qN

)
= exp (o(1))∼ 1.

Plugging this, (A.4) and (A.5) into (A.3), and using b= 1/q, we have

μn,k+1 ∼ Pn,k+1q fn,k+1 exp
(

− f 2n,k+1p
2qN

)
>∼ μn,k bn

2/(2k(k+1))−n/(2k).

It should be noted that μ̄n,k behaves in a slightly irregular way: whileμn,k increases steadily if we
increase k, as seen in Lemma A.1, the increases in μ̄n,k are not as large as one might expect if n/k is
close to an integer. This is because the product kL!kS! is larger when n/k is close to an integer (i.e.
if either kL or kS is close to k) than when n/k is sufficiently far away from any integers. However,
we will see that even in the ‘worst-case scenario’, μ̄n,k still increases by a sufficient amount.

For this, let k′
L = δn,k+1(k+ 1) and k′

S = (1− δn,k+1)(k+ 1), and then

k′
L + k′

S = k+ 1= kL + kS + 1.

If kL > �n/k�, then given a k-equipartition of n vertices, we can form a (k+ 1)-equipartition by
removing one vertex from �n/k� parts of size 
n/k� and forming a new part of size �n/k� from
the removed vertices. In this case, k′

L = kL − �n/k� and k′
S = kS + �n/k� + 1, and therefore

k′
L!k′

S!
kL!kS! =

∏�n/k�+1
t=1 (kS + t)∏�n/k�−1
t=0 (kL − t)

� (k+ 1)�n/k�+1

�n/k�! . (A.6)

Otherwise, if kL � �n/k�, then starting with a k-equipartition, we can form a (k+ 1)-equipartition
by removing one vertex from each of the kL parts of size 
n/k� and from �n/k� − kL parts of size
�n/k�, and forming a new part of size �n/k� from the removed vertices. In this case, k′

S = �n/k� −
kL and k′

L = k+ 1− �n/k� + kL. Note that if kL � k′
S, we also have kS = k− kL � k− k′

S = k′
L − 1,

and therefore

kL � k′
S � k′

L − 1� kS.
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As for any integers 1� x1 � x2 � x3 � x4 with x1 + x4 = x2 + x3, we have x1!x4!� x2!x3!, this
implies

(k+ 1)kL!kS!� (k+ 1)(k′
L − 1)!k′

S!� k′
L!k′

S!. (A.7)
Otherwise, if k′

S = �n/k� − kL < kL � �n/k�, then
k′
L!k′

S!
kL!kS! = k′

L!/kS!
kL!/k′

S!
� (k+ 1)k′

L−kS

(kL − k′
S)!

= (k+ 1)1+kL−k′
S

(kL − k′
S)!

� (k+ 1)�n/k�+1

�n/k�! .

Comparing this to (A.6) and (A.7), we can see that in every case,

k′
L!k′

S!
kL!kS! �

(k+ 1)�n/k�+1

�n/k�!
� e�n/k�(k+ 1)�n/k�+1

�n/k��n/k�

�
(
e(k+ 1)
n/k− 1

)�n/k�
(k+ 1)

�
(
e(k+ 1)k
n− k

)n/k
(k+ 1).

Together with Lemma A.1, and since n/k= γ +O(1)= �( log n), this gives

μ̄n,k+1
μ̄n,k

>∼ bn
2/(2k(k+1))−n/(2k)

(
n− k

(k+ 1)k

)n/k
nO(1)

= b(γ n)/(2(k+1))
(
n
k2

)γ

nO(1)

=
(

n
2 logb n

)n/(k+1)( n
k2

)γ

nO(1)

=
(

n2

k2 logb n

)γ

nO(1)

= (�( log n))γ nO(1)

= exp (�( log n log log n)).

Proof of Lemma 3.4. Given a k-equipartition of n vertices, adding a vertex to a part of size �n/k�
yields a k-equipartition of n+ 1 vertices, so

fn+1,k = fn,k +
⌊
n
k

⌋
. (A.8)

Therefore, since �n/k� = γ (n)+O(1) and by (3.1),

q fn+1,k−fn,k = �(1)
(
2 logb n

n

)2
. (A.9)

Furthermore, as fn,k =O(n log n) and from (A.8),

− f 2n+1,kp
2qN

+ f 2n,kp
2qN

=O
(
log2 n
n

)
= o(1). (A.10)

Finally, note that by (3.3),
Pn+1,k
Pn,k

∼ n
2 logb n

,
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since the factorial in the numerator is multiplied by n+ 1∼ n and the product in the denominator
is multiplied by exactly one factor �n/k� + 1∼ γ ∼ 2 logb n if n is increased to n+ 1. Together
with (3.5), (A.9) and (A.10), this completes the proof.

Calculations for equation (5.7). Note that log (1+ x)= x− x2/2+O(x3) for x→ 0. Therefore,
for any y and z so that y/z → 0, we have

log
((

1− y
z

)z−y)
= −y+ y2

2z
+O

(
y3

z2

)
.

Using this, and recalling that d� f =O(n log n) and 0� ε < 1,

log Sr = −d log q− 2f + d + (2f − d)2

2N
− 2f + 2ε + ( f − ε)2

qN
+ 2f − f 2

N
− ε − ε2

2qN

+ 2f − d − ε − (2f − d − ε)2

2qN
+O

(
f 3

N2

)

= −d log q+ q(2f − d)2 + 2( f − ε)2 − 2q f 2 − (2f − d − ε)2

2qN
+O

(
f 3

N2

)

= −d log q+ −p(d2 + 2f 2 − 4df )
2qN

+ o(1).

Proof of Lemma 5.1. First note that p< 1− 1/e2 and therefore log b< 2, so indeed c̃ ∈ (0, 1).
We assume throughout that j is large enough for all bounds to hold. We will first check that
the claim holds for the first and last terms, T3 and Tj. Next, we will see that Ti+1/Ti � 1 if i is
small (i< 0.8 logb n) and Ti+1/Ti � 1 is i is large (i> 1.2 logb n), which means we can bound Ti
by max (T3, Tj) for all such i. Finally we check that the claim holds for the intermediate terms Ti
where 0.8 logb n< i< 1.2 logb n.

So consider the case i= 3. Note that

T3 �
e3b3k2j6

n33! = n−1+o(1) � n−c̃.

Next, consider i= j. Since j= γ (nj)+ o(1)= 2 logb n− 2 logb logb n− 2 logb 2+ o(1),

b(
j
2) =

(
n

2 logb n

)j−1
no(1),

so with Stirling’s formula and as k= n/j= n1+o(1) and j∼ 2 logb n, we have

Tj = eρjb(
j
2)k2j!
nj = no(1)

eρjnj j

(2 logb n) j−1e j
= n1+o(1)e−j+ρj.

As e j = n2/( log b)+o(1), and ρ � c= 1
2 (1− ( log b)/2) since r ∈R1,

Tj � n1−(1−ρ)(2/log b)+o(1) = n
1
2−(1/log b)+o(1) � n−c̃.

Note that
Ti+1
Ti

= eρbi( j− i)2

n(i+ 1)
.

In particular, for all i� 0.8 logb n,

Ti+1
Ti

� n−0.2+o(1) � 1,
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so for all 3� i� 0.8 logb n, we have Ti � T3 � n−c̃. If i� 1.2 logb n, then
Ti+1
Ti

� n0.2+o(1) � 1,

so for all 1.2 logb n� i� j, we have Ti � Tj � n−c̃. For the remaining case 0.8 logb < i< 1.2 logb n,
note that as j� 2 logb n,

Ti �
eibi2/2n2j2i

ni
� nO(1)

n0.6ij2i

ni
� nO(1)−0.3i = n−�( log n) � n−c̃.

On the sets PI, PII and PIII. We give the definitions of the sets P I, P II and P III, as well as the
statement of Lemma 13 of [7].

Let a= �γ � + 1. In the context of this paper, we have γ = j+ o(1) and hence a ∈ { j, j+ 1}.
Given some π2 ∈Pc′

2 , let
V1 =V1(π2)= set of vertices in the overlap of π1 and π2 which are in parts of size a in π1,
V2 =V2(π2)= set of vertices in the overlap of π1 and π2 which are in parts of size at most a− 1

in π1,
D1 =D1(π2)= set of forbidden edges between vertices in V1,
D2 =D2(π2)= set of forbidden edges between vertices in V2.
For i ∈ {1, 2}, let vi = |Vi| and di = |Di|. Finally, let

β1 = 2d1
v1(a− 1)

� 1, β2 = 2d2
v2(a− 2)

� 1.

The parameters β1 and β2 quantify how close the overlap of π1 and π2 is to consisting only of
large overlap blocks of size a or a− 1 – for details; see §5.3.1 of [7]. We are now ready to state
Lemma 13.

LemmaA.2 (Lemma 13 of [7]). If π2 ∈Pc′
2 and n is large enough, then at least one of the following

three conditions applies:

(I) v1 �
n

( log log n)2
and β1 � 1− ( log log n)4

log n
,

(II) v2 �
n

( log log n)2
and β2 � 1− ( log log n)4

log n
,

(III) neither (I) nor (II) holds, and c< ρ � 1− c′.

Now let

P I =
{
ordered k-equipartitions π2 such that v1 �

n
( log log n)2

and β1 � 1− ( log log n)4

log n

}
,

P II =
{
ordered k-equipartitions π2 such that v2 �

n
( log log n)2

and β2 � 1− ( log log n)4

log n

}
,

P III = {ordered k-equipartitions π2 such that c< ρ � 1− c′} \P I \P II.
By the lemma above,

Pc′
2 ⊂P I ∪P II ∪P III.
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