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(e-mail: paul-henry.cournede@ecp.fr)

2University of Strasbourg, ICube Laboratory, Team ‘Informatique Géométrique et Graphique’, France
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Formal grammars such as L-systems have long been used to describe plant growth dynamics.

In this article, they are used for a new purpose. The aim is to build a symbolic method

that enables the computation of the stochastic distribution associated with the number

of complex structures in plants whose organogenesis is driven by a multitype branching

process. For that purpose, a new combinatorial framework is set in which plant structure is

coded by a Dyck word. Moreover, organogenesis is represented by stochastic F0L-systems.

In doing so, the problem is equivalent to determining the distribution of patterns in random

words generated by a stochastic F0L-system. This method finds interesting applications in

the parameter identification of stochastic models of plant development.

2010 Mathematics subject classification: Primary 05A

Secondary 92B, 60J

1. Introduction

In botany, organogenesis is the process during which the buds of a plant produce

new organs. Formal grammars have long been used to describe plant organogenesis. In

particular, the parallel rewriting grammar introduced by [22] (called the L-system) is well

adapted to modelling the development of branching patterns, and its algorithmic power

has been widely exploited since [36, 32]. It has thus provided efficient algorithms and

subsequently software languages for plant simulation (see [32, 21, 16, 17]). For structures

as complex as trees, bud production rules are influenced by many factors and are usually

modelled by stochastic processes. In that case, organogenesis can be represented by

stochastic 0L-systems [32, 5, 25, 23]. This type of grammar gives interesting results from

simulation and graphic-theoretic perspectives by increasing the realistic aspect of virtual

plants (see [32, 27, 13]). However, in the context of plant growth modelling, the full

mathematical potential of L-systems [35, 8] has not been fully exploited.

In this article, stochastic 0L-systems are used for a new purpose. The objective is to

write a method allowing the computation of the distribution associated with the number
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of complex structures in plants whose organogenesis is driven by a multitype Galton–

Watson branching process. This method relies on a symbolic approach derived from

combinatorics and the analysis of algorithms (see [9]). Plants are seen as combinatorial

structures. In this new combinatorial framework, plant topology is described by a Dyck

word [19], which is an original contribution, since other representations such as bracketed

strings [32] are generally used. The development of the structure of the plant is given by

a set of stochastic rules contained in a stochastic F0L-system. Therefore, this framework

allows the use of powerful methods of combinatorics such as the symbolic method [9].

Including a symbolic approach in a dynamic branching structure gives a more complete

description of the system. It enables the computation of the distribution of patterns in a

sequence of words whose dynamic evolution is driven by a branching process. Such results

find applications in the comparison and parameter identification of stochastic models.

Some basic concepts of botany and the main features of stochastic organogenesis

models driven by a multitype branching process are first recalled in Section 2. Then, a new

combinatorial framework is set up in Section 3. Plants are seen as labelled ordered rooted

trees. This allows the description of their structures by Dyck words. The development

rules of the organogenesis model are represented by a stochastic F0L-system. Section 4

proposes a symbolic method adapted to plant growth models. In the last section, we

show how to use the symbolic method for the parameter identification of the stochastic

processes during plant development.

2. Stochastic modelling of organogenesis with a multitype branching process

Models of plant development (or organogenesis) describe the dynamic creation of organs

(internodes, buds, leaves, flowers or fruits) and how they arrange themselves to form plant

structure. When the smallest scale of interest is that of organs (and not cells), discrete

models are generally used to simulate plant structural development.

2.1. Modelling of plant structure

In this article, only the above-ground parts of plants are considered. As explained

for example in [3], organogenesis results from the functioning of undifferentiated cells

constituting the apical meristem and located at the tip of axes. When in the active phase,

this meristem forms buds that will develop into agglomerates of organs composed of one

or several phytomers. A phytomer is a botanical entity chosen as the elementary unit used

to represent the plant architecture. It is composed of an internode and one or more leaves

(see Figure 1). Depending on the type of plant, the internode may also bear flowers and

fruits. When a phytomer (or group of phytomers) is built, the apical meristem forms a new

terminal bud and the internode may often bear lateral buds. These buds may potentially

generate new phytomers later on.

Plant development can be discretized in time. In plants with rhythmic growth, a terminal

bud produces a set of subsequent phytomers, called a growth unit (or shoot), and then

rests for a while. The time between the appearance of new growth units (i.e., the time step

of the discrete model) defines the growth cycle [6]. Consecutive growth units form axes.
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Figure 1. (Colour online) Schematic representation of a phytomer

.

Figure 2. (Colour online) Example of a plant with two morphological categories (MC). The fruit has no MC

attached.

Concerning the architecture of the plant, axes and architectural units can be divided

into different categories depending on their morphological parameters. These categories

will be called morphological categories (MC) below. Other names can be found in the

literature. (For example, [2] introduced the concept of physiological age to represent the

different types of axes resulting from the meristematic differentiation in a plant. The

concept of MC is more general and is chosen to allow for cases that do not correspond

to the strict botanical concept of physiological age.) By convention, the terminal bud of

an axis is thus characterized by the MC of the phytomer that bears it (Figure 2 gives an

example of a plant with two MCs).

Here, an organ will be characterized by its type (e.g., internode, bud, fruit) and by its

botanical characteristics (e.g., MC, chronological age).

2.2. Stochastic organogenesis

Plant development can be discretized in time. The time between the appearances of new

growth units (or shoots) (i.e., the time step of the discrete model) defines the growth cycle

(GC). For example, most temperate trees grow rhythmically, new shoots appearing at

spring. If we do not consider polycyclism and neoformation, the GC corresponds to one

year. The chronological age (CA) of a plant (or an organ) is defined as the number of

GCs for which it has existed.

The structure of a plant changes from one GC to another. For example, a bud may

create new organs or the botanical characteristics of an organ may change (such as its

CA). A set of rules called development rules defines the way organs evolve from one GC
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Figure 3. (Colour online) Example of a stochastic automaton for an organogenesis model.

to another. In a stochastic organogenesis model, an organ may have several possible

evolutions. In that case, a probability of occurrence is associated with each of these. As

explained in [15], the probabilities involved in the organogenesis model are the result of

botanical phenomena (e.g., bud survival, bud dormancy, differentiation).

In this paper we consider a class of organogenesis models satisfying the following

hypotheses.

(1) At each GC, the organs behave independently: the evolution of an organ is not

influenced by the other organs of the plant.

(2) The probabilities of evolution associated with an organ depend only on its type and

its characteristics.

Under these hypotheses, a plant structure of CA N is built recursively by using the

following algorithmic procedure.

• Initialization: the structure of the plant at GC 0 is given by a seed (i.e., a bud of

MC 1).

• For all n = 0 · · ·N − 1, the plant structure at GC n+ 1 is built from the plant structure

at GC n by replacing all the organs randomly by one of their possible evolutions

according to their probabilities of occurrence.

The underlying stochastic process associated with this class of organogenesis models

is a multitype Galton–Watson branching process (see [28] and [1]). Galton–Watson

branching processes are frequently used to describe development processes in biology

from the development of cell populations (see [4] for angiogenesis or [14] for plant

pathogens). Likewise, organs created to build plant structure can be seen as individuals in

a population process. Therefore, the previous algorithmic procedure creates a Markovian

sequence of random plants indexed by the GCs. The development rules associated with

the organogenesis model are usually represented by a set of stochastic automata (see [36]

and [32] and Figure 3).

Figure 3 shows an example of an organogenesis model with one MC; p represents

the death probability for a bud. In this example, a bud has probability p of dying and

probability 1 − p of creating one internode with two lateral buds. Note that there is no

stochastic automaton concerning the possible evolutions of an internode. In that case, it

means that internodes do not evolve from one GC to another (they stay in the same state
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Figure 4. Examples of ordered rooted trees.

with probability equal to 1). The plant on the right is one possible structure occurrence

after two GCs. The associated probability of occurrence is p(1 − p)2.

Here, S will denote a stochastic organogenesis model driven by a multitype branching

process. A ‘plant’ refers to a branched structure generated from a seed (i.e., a bud of

MC 1) according to the development rules of S . In the following section, a combinatorial

framework is set up to describe plant architecture and its development. The structure of

a plant is given by a Dyck word in a bijective way. Since the organogenesis is driven by

a multitype Galton–Watson branching process, the development rules can be represented

by a stochastic 0L-system (see [23] for more details).

3. Plants as combinatorial structures

3.1. Some combinatorial concepts

We recall some basic definitions and properties of combinatorics (see [9] and [34] for

more details).

Definition 3.1 (ordered rooted tree (ORT)). A rooted tree is a connected and acyclic

graph with a node specifically distinguished called root. A plane tree is defined as a tree

in which subtrees coming from a common node are ordered and represented from left to

right.

Figure 4 gives examples of an ORT. The trees (2) and (3) are equivalent as rooted trees,

but they become distinct objects when regarded as ORTs.

ORTs can be coded in several ways, one of the most classical being the Dyck word

coding [19]. The latter relies on a tree traversal using the prefix order (see [9, p. 74]).

Definition 3.2 (prefix order). An ORT is traversed according to the prefix order if it is

traversed starting from the root, proceeding depth-first and left-to-right, and backtracking

upwards once a subtree has been completely traversed.

Figure 5 gives an example of preorder traversal.

Definition 3.3 (Dyck word coding). Every ORT is described by a Dyck word on the

alphabet V1 = {z, z′} as follows.

• The tree is traversed according to the prefix order.
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Figure 5. (Colour online) Correspondence between plants and labelled ordered rooted trees. For the sake of

clarity, only the labels of edges are represented.

• An edge visited from the parent node to the child node is represented by the letter z.

• An edge visited from the child node to the parent node is represented by the letter z′.

In the case of labelled trees (trees with characteristics attached to nodes and edges), a

new code deriving from Dyck word coding can be used.

Definition 3.4 (extended Dyck word coding). Let L = {l1, . . . , lM} be a set of labels. Every

labelled ORT with labels in L is described by an extended Dyck word on the alphabet

V2 = {zl1 , z′
l1
,. . . , zlM , z

′
lM

} as follows.

• The tree is traversed according to the prefix order.

• An edge with a label li and visited from the parent node to the child node is represented

by the letter zli .

• An edge with a label li and visited from the child node to the parent node is represented

by the letter z′
li
.

3.2. Coding a plant structure with a Dyck word

Every plant generated by the organogenesis model S can be represented by a labelled

ORT.

Definition 3.5 (labelled ORT associated with a plant). Let P be a plant generated by the

organogenesis model S . Let us build a labelled ORT from the plant P as follows.

• Every organ is represented by an edge and ends with a node at each extremity.

• Two connected organs are represented by two edges having a common node.

• The root is the node below the edge representing the internode at the basis of the

plant.

• The label of an edge is given by the botanical information of the associated organ: its

nature (e.g., bud, leaf, internode) and its characteristics (e.g., MC, CA).

• The label of a node (different from the root) is the label of the edge below it. The root

has the label of the edge above it.

Such an ORT is called the labelled ORT associated with the plant P .
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Note. The labelled ORT defined in Definition 3.5 is unique for a given plant structure

and the converse is true.

Since a plant can be represented by a labelled ORT, it has an associated extended

Dyck word. Let OS be the minimal set of letters coding for the type of organs needed to

describe plant structures generated by S . Generally, the letter b codes for a bud, m for an

internode, L for a leaf and F for a fruit. In the same way, let CS be the minimal set of all

possible characteristics associated with S . In Figure 5, the extended Dyck word associated

with the plant (i.e., its ORT) is thus w = zm,1zm,2zFz
′
Fzb,2z

′
b,2z

′
m,2zm,1zb,2z

′
b,2zb,1z

′
b,1zL z

′
Lz

′
m,1z

′
m,1

where the first letter of a label represents the type of an organ and the second its MC.

Note that no MC is associated with leaves and fruits.

For the sake of clarity, some coding conventions will be used.

• Every organ of nature o ∈ OS having the characteristics c ∈ CS is represented by the

symbols oc and o′
c (instead of zo,c and z′

o,c).

• For some organs (e.g., buds, leaves, fruits), it is not necessary to represent the visit

from the child node to the parent node of the associated edge. In fact, a visit from

the parent node to the child node is always immediately followed by a visit from the

child node to the parent node. Thus, only the symbol representing the visit from the

parent node to the child node is used to describe that type of organ.

By taking into account the previous conventions of coding, the plant of Figure 5 is thus

coded by w = m1m2Fb2m
′
2m1b2b1Lm

′
1m

′
1.

The set of all labelled ORTs generated by organogenesis model S is denoted by T S .

Let VS = {oc, o′
c}o∈OS ,c∈CS be the minimal alphabet containing all the letters needed to

describe plant structures generated by S , let WVS be the set of all words built on VS

and let DWVS be the set of all extended Dyck words generated by S (with the previous

conventions of notation). Let DVS : T S → DWVS be the map which associates for each

labelled ORT t its corresponding extended Dyck word DVS (t). Then, DVS is a bijection

from T S to DWVS [19].

Remark. In the plant modelling community, other representations for trees exist, partic-

ularly bracketed strings, with brackets to delimit branching structures [32]. The plant in

Figure 5 could be coded by w = m1[m2[F]b2]m1[L][b2]b1. The symbolic method described

in the following sections to compute the distributions of patterns can similarly be applied

with such a representation. The introduction of this representation of plants as Dyck

words proves interesting since this new representation is often more synthetic for very

branched structures or structures without clear hierarchy in branching orders (no main

trunk, for example, such as for plants of the Leeuwenberg-type growth model [11]). Such

characteristic is crucial for combinatorial purposes.

3.3. Growth dynamics and L-systems

In Section 3.2 it was proved that the structure of a plant at a given growth cycle can

be represented by an extended Dyck word. We are now interested in the development of

the structure with its chronological age starting from a seed (or a bud). As for stochastic
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organogenesis models driven by multitype branching processes, this evolution is given by

a Markovian sequence of random plants indexed by the growth cycles (see Section 2.2).

Thus, it can be described by a sequence (tn)n∈N of T S (or the corresponding sequence

(DV (tn))n∈N of DWVS ). To complete the combinatorial framework, we need to define tools

which describe the stochastic organogenesis model when the structure is coded by an

extended Dyck word (i.e., tools which enable the building of DV (tn+1) from DV (tn)).

Stochastic 0L-systems are well suited to achieving this goal (see [32] and [20]). They

are generative parallel rewriting grammars whose production rules are associated with a

set of probability distributions.

Definition 3.6 (stochastic 0L-system). Let V be an alphabet and let WV be the set of all

words built on V . A stochastic 0L-system is a construct L = 〈ωa, π〉 where:

• ωa ∈ WV is called the axiom,

• π is a transition matrix from V to WV (i.e., for all (u, v) ∈ V ×WV , 0 � πu,v � 1 and∑
w∈WV

πu,w = 1) with a finite number of non-zero components.

A stochastic 0L-system L = 〈ωa, π〉 generates a random sequence of words (wn)n∈N

built on the alphabet V . By definition, the axiom is the word which initiates the sequence

generated by L. Then, w0 = ωa. We get wn+1 by replacing randomly every letter x of wn

by a word y with probability πx,y (note that the evolution of a letter is independent from

the evolution of the other letters). By doing so, we create a Markov chain on WV : (wn)n∈N.

We can now define a more general class of 0L-systems called the stochastic F0L-system,

extending the classical definition of the F0L-system [35, p. 89] to the stochastic case.

Definition 3.7 (stochastic F0L-system). Let V be an alphabet and let WV be the set of

all words built on V . A stochastic F0L-system is a construct L = 〈A, π〉 where:

• A is a non empty subset of WV (called the set of axioms of L),

• for every ωa ∈ A, L[ωa] = 〈ωa, π〉 is a stochastic 0L-system (called the component

system of L).

The stochastic organogenesis model S can be described by a stochastic F0L-system

L = 〈WVS , π〉. The development rules of S are described by a set of stochastic automata

(see Section 2.2). This set is used to fill the transition matrix π. Let us take the example

of Figure 6. From the stochastic automata, we deduce πb1 ,b1
= p, πb1 ,m1b2b1m

′
1
= 1 − p and

πb2 ,m2b2m
′
2
= 1. Note that the development rules concerning the internodes of MC 1 and

MC 2 are not specified. In that case, it means that they stay in the same state from one

GC to another. Therefore, πm1 ,m1
= 1 and πm2 ,m2

= 1. All the other components of π are

equal to 0. The stochastic F0L-system L = 〈WVS , π〉 generates a Markov chain on DWVS ,

(wn)n∈N, coding for plant structures. The associated Markov kernel Π (called the Markov

kernel associated with L) can be built very easily from π (see [23] for more details).

For all (u, v) ∈ WVS ×WVS , (Πn)u,v is the probability of getting the word v by using the

stochastic 0L-system L[u] after n steps; w0 codes for the seed (i.e., a bud of MC 1). Since

the development rules of S are contained in π, wn+1 is built randomly from wn by using
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Figure 6. (Colour online) Stochastic automata and the associated stochastic F0L-system.

the same rules as those described by S . Therefore, studying the development of plant

structures generated by S is completely equivalent to studying the sequence (wn)n∈N from

a combinatorial perspective.

Here L = 〈WVS , π〉 will denote a stochastic F0L-system associated with the stochastic

organogenesis model S . When there is no confusion as to the model used, the letter S will

not be specified in the corresponding sets. In that case, L = 〈WV , π〉. Π will denote the

Markov kernel associated with L. For all s ∈ WV , DWπ,n
V [s] (⊂ DWV ) denotes the set of

all possible extended Dyck words generated by the component system L[s] after n steps.

Let T π,n[s] = D−1
V (DWπ,n

V [s]) be the set of all labelled ORTs (T π,n[s] ⊂ T ) generated by

L[s] after n steps.

4. The symbolic method

The symbolic method is a very effective method for analysing combinatorial structures

and, as a consequence, plays an important role in analytic combinatorics (see [9] for more

details). The complete theoretical framework associated with this section can be found in

[24]. As far as plants are concerned, it enables us to compute not only the distribution of

the number of organs (of any type) but also of specific structures in the plant architecture.

4.1. Combinatorial class and generating function

In this section, basic tools of combinatorics are recalled (see [9] for more details).

Definition 4.1 (combinatorial class). A combinatorial class, or simply a class, is a finite

or denumerable set on which a size function is defined, satisfying the following conditions:

• the size of an element is a non-negative integer,

• the number of elements of any given size is finite.

For example, for all n ∈ N, DWπ,n
V [s] is a combinatorial class. Many size functions can

be defined (e.g., counting the number of letters coding for internodes).

Definition 4.2 (stochastic combinatorial class). A stochastic combinatorial class is a set

SC = {(t, pt), t ∈ C}
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such that:

• C is a combinatorial class,

• for all t ∈ C , 0 � pt � 1,

•
∑

t∈Cpt = 1.

The set SDWπ,n
V [s] = {(w, (Πn)s,w), w ∈ DW

π,n
V [s]} is a stochastic combinatorial class.

Definition 4.3 (generating function (GF) associated with a size function in a stochastic

combinatorial class). Let C be a combinatorial class and let SC = {(t, pt), t ∈ C} be a

stochastic combinatorial class. Let m be a size function in C . The generating function ψ

associated with m in SC is a mapping from [0, 1] to [0, 1] defined as follows:

for all z ∈ [0, 1], ψ(z) =
∑
t∈C

pt z
m(t).

GFs are very useful for analysing a stochastic combinatorial class SC from a prob-

abilistic perspective. Suppose we are interested in getting the distribution of a particular

element c in SC . Let m be the size function (SC → N) such that, for all t ∈ SC , m(t) gives

the number of elements c in t. By reordering the terms of the GF, we get the following

power series:

for all z ∈ [0, 1], ψ(z) =
∑
t∈C

pt z
m(t) =

∑
k∈N

p(k)zk.

Here p(k) is the probability of getting k elements c in SC . Therefore, by determining the

coefficients of the GF associated with the size function m in SC , we get the distribution

of the number of c in SC .

4.2. Description of the method

Suppose we are interested in computing the distribution of a particular structure (e.g.,

a specific sequence of phytomers or a particular element in the plant) in a plant of CA

n generated by an organogenesis model S . To solve this issue in the deterministic case,

there is the possibility of simulating the organogenesis model and then exploring the

graph structure obtained, as proposed by the GroIMP software [18]. In the stochastic

case, the combinatorial complexity of the organogenesis model makes the Monte Carlo

simulation approach difficult, since the number of samples necessary to approximate the

distribution of patterns may be prohibitively large, specifically since the exploration of

the graph structure is also costly. The theoretical approach that we propose here is thus

an interesting alternative.

The particular structure of interest can be coded on the alphabet V by a word u.

Therefore, this problem is equivalent to determining the distribution of elements u in the

stochastic combinatorial class SDWπ,n
V [s], for the size function m chosen as the function

counting the number of elements u, as detailed below. The characteristic word u of interest

will be called a pattern.
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Definition 4.4 (counting function). Let V be an alphabet and let WV be the set of all

words built on V . The counting function c is a map from WV ×WV to N such that, for

all (w, u) ∈ WV ×WV , c(w, u) gives the number of words u in the word w.

Note that this definition implies that two overlapping words are counted as two different

elements. In order to exclude overlapping, some additional rules have to be included (e.g.,

a priority rule based on the order of appearance) that induce some technical adaptations

below.

For all u ∈ WV and n ∈ N, the mapping w 	→ c(w, u), from DW
π,n
V [s] to N, is a size

function for the combinatorial class DWπ,n
V [s]. Therefore, to get the distribution of a

pattern u in SDW
π,n
V [s], we need to compute the GF associated with the size function

w 	→ c(w, u) in SDWπ,n
V [s]. Henceforth we will call the GF associated with a pattern u in

SDW
π,n
V [s] the GF denoted by ψn[s](z) and given by:

for all z ∈ [0, 1], ψn[s](z) =
∑

w∈DWπ,n
V

[s]

(Πn)s,wz
c(w,u) =

∑
k∈N

Pn,s(k)zk,

where Pn,s(k) is the probability of getting k patterns u in a plant structure generated by

L[s] = 〈s, π〉 after n steps. However, this GF is rarely determined directly. Usually, we get

it from functional equations which, most of the time, are recurrence relations between

ψn[s] and ψn+1[s]. To obtain these equations, we use a symbolic approach as developed

in [9].

Let C be a combinatorial class and let SC = {(t, pt), t ∈ C} be a stochastic combinatorial

class. Suppose we are interested in a particular size function m taking its argument in C .

Thus, we want to determine the GF ψ associated with m in SC . The idea of the symbolic

method is to build an equation which decomposes SC into smaller classes, either of the

same type or of simpler types (we will refer to this equation as the set equation). Then,

it is transformed into an equation composed of the GFs of the previous combinatorial

classes. If possible, we solve the transformed equation directly and we get ψ. When the

structure of the class SC is too complex, we extract recurrence relations satisfied by the

coefficients of ψ from the transformed equation.

When dealing with plants, for a given n ∈ N, we have C = DW
π,n
V [s] and SC =

SDW
π,n
V [s], where s is an extended Dyck word coding for a seed. The idea is to decompose

DW
π,n
V [s] into a combination of sets of type DWπ,k

V [s′] with k < n and s′ ∈ WV . By doing

so, we get a set equation which can be transformed into an equation composed of GFs.

The symbolic method can be decomposed into the following steps.

(1) Identify the structure of the plant and all stochastic behaviours.

(2) Deduce the associated stochastic automata.

(3) Find the appropriate alphabet V to describe the plant and write the stochastic F0L-

system L = 〈WV , π〉.
(4) Identify the pattern u ∈ WV whose distribution you want to compute.

(5) Write the structural property associated with each DW
π,n
V [s] for n ∈ N where s is an

extended Dyck word coding for a seed and try to decompose it into a combination

of sets of type DWπ,k
V [s′] with k < n and s′ ∈ WV .
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Figure 7. (Colour online) Plant with one morphological category and dormancy probabilities.

(6) Write the transformed equation satisfied by the GF ψn[s] associated with u in

SDW
π,n
V [s] for each n ∈ N.

(7) Either solve the set of transformed equations directly or find a recurrence relation

between ψn[s] and ψn+1[s] with n ∈ N.

(8) Extract from these equations the coefficients of the GFs.

4.3. Examples

4.3.1. Example with simple elements. We want to compute the distribution associated

with the number of internodes in the following plant growth model: a plant with only one

MC and a dormancy probability p. The behaviour of a bud is characterized by Figure 7.

The alphabet is simply V = {m,m′, b}, where m codes for an internode and b for a bud.

The transition matrix of the associated stochastic F0L-system L = 〈WV , π〉 can be easily

deduced from Figure 7. We have πb,b = p, πb,mbm′ = 1 − p, πm,m = 1 and πm′ ,m′ = 1. All the

other components of π are equal to zero. The pattern of interest is m. From Figure 7, we

deduce that a word w ∈ DW
π,n+1
V [b] can be:

• either a word v ∈ DW
π,n
V [b] with probability p,

• or a word of the form mvm′ with v ∈ DW
π,n
V [b] with probability 1 − p.

Let ψn[b] be the GF associated with m in DWπ,n
V [b]:

ψn[b](z) =
∑

w∈DWπ,n
V

[b]

(Πn)b,w z
c(w,m) =

∑
k∈N

Pn,b(k)zk

where Pn,b(k) is the probability of getting k internodes in a plant structure generated by

the organogenesis model described in Figure 7 after n GCs. Then we have

ψn+1[b](z) =
∑

v∈DWπ,n
V

[b]

p(Πn)b,v z
c(v,m) +

∑
v∈DWπ,n

V
[b]

(1 − p)(Πn)b,v z
c(mvm′ ,m).

Given that c(mvm′, m) = c(v, m) + 1, we have

ψn+1[b](z) = p
∑

v∈DWπ,n
V

[b]

(Πn)b,v z
c(v,m) + (1 − p)z

∑
v∈DWπ,n

V
[b]

(Πn)b,v z
c(v,m),

and then

ψn+1[b](z) = pψn[b](z) + (1 − p)zψn[b](z) = (p+ (1 − p)z)ψn[b](z). (4.1)
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Figure 8. (Colour online) Illustration of Y-structures in a plant.

Figure 9. (Colour online) Leeuwenberg-type growth model with death probability.

Given that ψ0[b] = 1, the solution of the previous geometric progression is then

ψn[b](z) = (p+ (1 − p)z)n.

We deduce Pn,b(k) =
(
n
k

)
pn−k(1 − p)k if 0 � k � n, and 0 otherwise.

Note. As detailed in [23], the underlying stochastic process in this section is that of a

Galton–Watson multitype branching process (see [28] and [1]). In fact, let Bn and Mn

be two random variables on some probability space (Ω,F ,P) (where P is a probability

measure) such that Bn and Mn, respectively, give the number of letters b and m in a word

generated randomly by either the component system L[b] or the component system L[m]

after n steps. Then, the sequence of random vectors
(
(Bn,Mn)

)
n∈N

is a Galton–Watson

multitype branching process. Let Φn be the probability generating function associated

with (Bn,Mn) for all n ∈ N. In that case, equation (4.1) is simply the translation of the

composition formula for branching processes, Φn+1 = Φ1(Φn) [12].

4.3.2. Example with a complex structure. In this section, we introduce an example that

is a good illustration of the benefit of the symbolic approach. We want to compute

the distribution associated with the number of ‘Y-structures’ (see Figure 8). The plant

development model is given by Figure 9. The alphabet is V = {m,m′, b, d}, where d

represents a dead bud and the stochastic F0L-system can be easily deduced from

Figure 9. We have πb,d = p, πb,mbbm′ = 1 − p, πm,m = 1, πm′ ,m′ = 1 and πd,d = 1. All the

other components of π are equal to zero. Counting the number of ‘Y-structures’ is

equivalent to counting the number of patterns m′m. Thus, the pattern of interest is m′m.

As for the structural property of DWπ,n
V [s], we have to break down the structure of an

ORT in a way that highlights how Y-structures appear in the topology and how they
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Figure 10. (Colour online) Decomposition of branched structures of CA n+ 1.

are connected to substructures (see Figure 9). From Figure 9, we deduce that a word

w ∈ DW
π,n+1
V [b] can be:

• either a dead bud d with probability p,

• or a word of the form mvm′ with v ∈ DW
π,n
V [bb] with probability 1 − p, in which case

v represents a branched structure.

Let ψn[b] be the GF associated with m′m in DWπ,n
V [b]:

ψn[b](z) =
∑

w∈DWπ,n
V

[b]

(Πn)b,w z
c(w,m′m) =

∑
k∈N

Pn,b(k)zk,

where Pn,b(k) is the probability of getting k Y-structures in a plant generated by the

organogenesis model described in Figure 9 after n GCs. Then, we have

ψn+1[b](z) = pzc(d,m
′m) +

∑
v∈DWπ,n

V
[bb]

(1 − p)(Πn)bb,vz
c(mvm′ ,m′m)

= p+ (1 − p)ψn[bb](z). (4.2)

Now we need to find a recurrence relation for ψn[bb](z). It can be deduced straightfor-

wardly by the decomposition of Figure 10. We deduce that a word w ∈ DW
π,n+1
V [bb] (i.e.,

a branched structure) can be:

• two dead buds dd with probability p2,

• one branched structure mvm′ with v ∈ DW
π,n
V [bb] and one dead bud d (either vd or dv)

with probability p(1 − p) for each case,

• two branched structures mv1m
′ and mv2m

′ with (v1, v2) ∈ DW
π,n
V [bb] × DW

π,n
V [bb] with

probability (1 − p)2.

Therefore,

ψn+1[bb](z) = p2zc(dd,m
′m)

+
∑

v∈DWπ,n
V

[bb]

(1 − p)p(Πn)bb,v z
c(mvm′d,m′m)

+
∑

v∈DWπ,n
V

[bb]

(1 − p)p(Πn)bb,v z
c(dmvm′ ,m′m)

+
∑

(v1 ,v2)∈(DW
π,n
V

[bb])2

(1 − p)2(Πn)2bb,v z
c(mvm′mvm′ ,m′m).
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Since

c(mvm′d, m′m) = c(dmvm′, m′m) = c(v, m′m)

and c(mvm′mvm′, m′m) = 2c(v, m′m) + 1,

we obtain

ψn+1[bb](z) = p2 + 2(1 − p)pψn[bb](z) + (1 − p)2z(ψn[bb](z))2. (4.3)

By identifying the coefficients of the power series in equations (4.2) and (4.3), we get the

distribution of Y-structures. The same method would work, for example, for computing

the distributions associated with the number of apexes (i.e., terminal nodes in a tree).

5. Application to parameter identification

In plant stochastic organogenesis models, the estimation of automata parameters may

be complex, and necessitates important sampling work. For stochastic organogenesis

models driven by a multitype branching process, classical methods based on branching

processes have already been proposed (see [10] and [15]). These methods rely on the

calibration of the parameters so that the theoretical mean and variance associated with

the number of phytomers (computed from the model) are the closest to the experimental

ones. However, phytomers are not always easily identifiable in a plant (no visible marks

separating them after some time). Therefore, the idea is to use a botanical structure that

is more easy to identify and to count (e.g., apexes or Y-structures: see Section 4.3.2). By

comparing the theoretical distribution of this structure to the experimental one, we are

able to find the best set of parameters that will give the model the behaviour closest to

real plants. However, this theoretical distribution can rarely be determined with classical

branching process methods. In that case, the symbolic method of Section 4 provides a

good alternative.

Let S be a stochastic organogenesis model driven by a multitype branching process

and let L = 〈WV , π〉 be the associated stochastic F0L-system. Suppose we are interested

in computing the theoretical distribution of a particular structure in random plant

architectures generated by S . This particular structure is coded on the alphabet V by the

word u. Let ψn[s] be the GF associated with u in SDW
π,n
V [s], where s ∈ WV is the word

coding for a seed. As mentioned in Section 4.2, the theoretical distribution is given by the

coefficient of ψn[s] seen as a power series:

for all z ∈ [0, 1], ψn[s](z) =
∑

w∈DWπ,n
V

[s]

(Πn)s,wz
c(w,u) =

∑
k∈N

pn,s(k)zk.

Since card(DWπ,n
V [s]) < ∞ (the stochastic automata can only generate a finite number

of structures), then, for all n ∈ N, max{c(w, u)|w ∈ DW
π,n
V [s]} exists and is finite. In that

case, we set:

for all n ∈ N, Ln = max{c(w, u)|w ∈ DW
π,n
V [s]}.

Thus, for all l > Ln, pn,s(l) = 0. Let φn be a vector in [0, 1]L
n+1 such that:

for all n ∈ N, φn = (pn,s(0), pn,s(1), . . . , pn,s(Ln)).
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Generally, the symbolic method leads to a recursive equation between ψn[s] and ψk[r]

with k ∈ K and r ∈ R, where K and R, respectively, are finite subsets of {0, . . . , n− 1}
and WV . For the sake of clarity, we will suppose that the method gives us a recursive

equation between ψn[s] and ψn−1[s] (the extension to the general case is straightforward).

Therefore, by identifying the coefficients of the power series, we get a set of recurrence

relations between the components of φn and φn−1 which enables the building of φn from

φn−1. The stochastic automata depend on a set P of parameters which have a botanical

meaning (e.g., the survival probability). As a consequence, the set of recurrence relations

between the components of φn and φn−1 also depends on P , and thus φn = φn(P ).

Suppose we have a plot of plants of CA N ∈ N � {0}. For each of these plants, we

measure the number of patterns u. In so doing, we get the experimental distribution of the

particular structure, {pexp(l)}l∈N. Suppose that there exists l > LN such that pexp(l) �= 0.

Then the organogenesis model is not well defined. In fact, for l > LN , pN,s(l) = 0. In that

case, φN cannot get as close to the experimental distribution as we would like, and the

organogenesis model (i.e., the automata) needs to be modified. Then the model S is said

to be well defined if

max{l ∈ N|P exp(l) �= 0} � LN.

Let φexp be a vector in [0, 1]L
N+1 such that

φexp = (pexp(0), pexp(1), . . . , pexp(LN)).

The set of parameters P is estimated by the least-squares estimator P̂ ,

P̂ = argmin
P∈[0,1]card(P )

‖φexp − φN(P )‖2
2,

where, for all α = (α0, . . . , αLN ) ∈ [0, 1]L
N+1,

‖α‖2 =

( LN∑
i=0

(αi)
2

)1/2

.

Several optimization algorithms can be used to find P̂ , such as the Levenberg–

Marquardt algorithm (see [29]).

6. Conclusion

In this article, a symbolic method has been proposed to analyse the formation of complex

structures in plants whose organogenesis is driven by a multitype branching process.

For this purpose, a new combinatorial framework has been introduced. Plant structure

is represented by an ordered rooted tree and can thus be coded by a Dyck word. The

development rules of the organogenesis model are given by a stochastic 0L-system. In so

doing, the development of plant structure is coded by a Markovian sequence of Dyck

words. Therefore, studying plant structure and its development is completely equivalent to

studying the Markovian sequence from a combinatorial perspective. A symbolic method

was then established and this enables the computation of the distribution associated with

the number of complex structures in plant topology.
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This result could have interesting applications. For instance, in this article, we have

shown how such a method can be used for the parameter identification of a stochastic

organogenesis model, by comparing the theoretical distribution of a structure of a given

type with experimental data.

For this purpose, we may take advantage of some interesting techniques that have

recently been developed for automatic reconstruction of the morphology of individual

trees from terrestrial laser scanner data [31, 37]. Such techniques may prove very useful in

data acquisition, in order to evaluate the experimental distributions of the plant structural

patterns of interest, from which the parameters from the organogenesis model can be

estimated with our proposed methodology.

The type of stochastic organogenesis models considered in this paper assumes constant

probabilities for the branching process underlying plant development. This is a reasonable

hypothesis for plants with short life cycles, such as coffee or cotton plants, as well

as plantation trees such as pine, poplar or eucalyptus trees [7]. However, the complex

interactions between plant structural development and ecophysiological processes generate

morphogenetic gradients [2, 26] that, in terms of modelling, should translate into variable

probability laws evolving with plant aging or axis development [10]. The adaptation of

the method to this case is a challenging subject.

Finally, the problem of pattern occurrences in a random text has been widely studied in

various application fields, specifically molecular biology. Gene recognition and exceptional

occurrence frequencies in DNA sequences are fundamental questions (see [30] or [33]).

Since the proposed method applies to any multitype Galton–Watson branching process, it

would be interesting to explore how it can be used in other research fields and application

domains.
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