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We say a graph is (Qn,Qm)-saturated if it is a maximal Qm-free subgraph of the n-dimensional
hypercube Qn. A graph is said to be (Qn,Qm)-semi-saturated if it is a subgraph of Qn and adding
any edge forms a new copy of Qm. The minimum number of edges a (Qn,Qm)-saturated graph
(respectively (Qn,Qm)-semi-saturated graph) can have is denoted by sat(Qn,Qm) (respectively
s-sat(Qn,Qm)). We prove that

lim
n→∞

sat(Qn,Qm)
e(Qn)

= 0,

for fixed m, disproving a conjecture of Santolupo that, when m = 2, this limit is 1/4. Further, we
show by a different method that sat(Qn,Q2) = O(2n), and that s-sat(Qn,Qm) = O(2n), for fixed
m. We also prove the lower bound

s-sat(Qn,Qm) � m+1
2

·2n,

thus determining sat(Qn,Q2) to within a constant factor, and discuss some further questions.

2010 Mathematics subject classification: Primary 05C35
Secondary 05D05

1. Introduction

Let F be a (simple) graph. We say that a (simple) graph G is F-free if it contains no subgraphs
isomorphic to F . If G is a maximal F-free subgraph of H, we say that G is (H,F)-saturated.
In other words, G is F-saturated if it is an F-free subgraph of H and the addition of any edge
from E(H)\E(G) forms a copy of F . In this context, H is referred to as the host graph, F as the
forbidden graph and G as a saturated graph.

The famous Turán problem in extremal combinatorics can be expressed naturally in the lan-
guage of saturated graphs. The extremal number of F , ex(Kn,F) (often written as ex(n,F)), is
usually defined as the maximum number of edges in an F-free subgraph of Kn. However, it can
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equivalently be written as

ex(Kn,F) = max{e(G) : G is (Kn,F)-saturated}.

This formulation yields a natural ‘opposite’ of the Turán problem. We define the saturation
number of F , sat(H,F), as

sat(H,F) = min{e(G) : G is (H,F)-saturated}.

A variant of this is the semi-saturation number, s-sat(H,F). We say that a graph is (H,F)-
semi-saturated if G is a subgraph of H and adding any edge from E(H) \E(G) increases the
number of copies of F . A graph is (H,F)-saturated if and only if it is (H,F)-semi-saturated and
F-free. We define

s-sat(H,F) = min{e(G) : G is (H,F)-semi-saturated}.

The most frequently studied host graph is the complete graph, Kn. Since work in the area began
with Erdős, Hajnal and Moon [6], many others have studied s-sat(Kn,F) and sat(Kn,F): see for
instance the survey articles by Pikhurko [11] and J. Faudree, R. Faudree and Schmitt [7], and the
references contained therein.

In the literature, sat(Kn,F) is often written as sat(n,F), and (Kn,F)-saturated is usually written
as F-saturated. Since the results in this paper concern a different host graph, we will reserve this
latter abbreviation for a different meaning.

A much studied variant of the Turán problem was initiated by Erdős in [5] and expanded
upon by Alon, Krech and Szabó [1]. For a fixed graph F , they ask for ex(Qn,F), the maximum
number of edges in an F-free subgraph of the n-dimensional hypercube, Qn. The most natural
case is F = Qm, a fixed cube. This is wide open, even for the case m = 2. The asymptotic edge
density of a maximum Q2-free graph, that is,

lim
n→∞

ex(Qn,Q2)
e(Qn)

,

was conjectured by Erdős [5] to be 1/2. It is still unknown, despite the attention of many
authors: see for instance the work of Balogh, Hu, Lidický and Liu [2] and Brass, Harborth and
Nienborg [3].

In this paper we focus on the saturation and semi-saturation problems, where the host graph is
the hypercube and the forbidden graph is a subcube: i.e., we study sat(Qn,F) and s-sat(Qn,F).
For brevity, we shall often write F-saturated (respectively F-semi-saturated) rather than (Qn,F)-
saturated (respectively (Qn,F)-semi-saturated) in the remainder of this paper, when the value of
n is clear or irrelevant.

The best result along these lines is that of Choi and Guan [4]:

limsup
n→∞

sat(Qn,Q2)
e(Qn)

� 1
4
.

A conjecture that this is best possible, due to Santolupo, was reported in [7]. The same survey
article posed the more general question of determining sat(Qn,Qm).

The main result of this paper, in Section 3, is the construction, for all fixed m, of (Qn,Qm)-
saturated graphs of arbitrarily low edge density, thus both generalizing and improving the bound
of Choi and Guan.
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Theorem 1.1. For fixed m,

lim
n→∞

sat(Qn,Qm)
e(Qn)

= 0.

Slightly more precisely, we show

sat(Qn,Qm) � c1

nc2
e(Qn),

where c1 and c2 are constants depending on m. In the case m = 2, c2 = 6/7; it is higher for larger
values of m.

In Section 4 we prove a stronger bound for the semi-saturation version of the problem.

Theorem 1.2. For all n,m,

s-sat(Qn,Qm) <

(
m2 +

m
2

)
2n.

In the same section, we adapt this proof in the m = 2 case to remove all copies of Q2, and thus
prove a bound on sat(Qn,Q2) much stronger than that given by Theorem 1.1.

Theorem 1.3. For all n, sat(Qn,Q2) < 10 ·2n.

It is easy to see that both these theorems are best possible up to a constant factor, as all
(Qn,Qm)-semi-saturated graphs have minimum degree m−1.

In Section 5, we will improve this trivial lower bound, by showing that

s-sat(Qn,Qm) � m+1
2

2n.

In Section 6, we discuss an extension to our zero density upper bound and raise some open
questions.

We briefly mention here a somewhat related saturation problem on the cube. Here, Qn is
considered as P(X), the power set of an n element set, X . Let F be a fixed poset. A family
A⊆P(X) is said to be F-saturated if there is no subfamily of A with the same poset structure as
F , but adding any set to A destroys this property. Both the maximum and minimum size of such
A have been studied: see for instance Katona and Tarján [8] for the former and Morrison, Noel
and Scott [10] for the latter.

2. Preliminaries

In this section we introduce terminology, notation and concepts that will be used frequently in
the remainder of the paper.

The hypercube Qn is the graph with vertex set {0,1}n, and with edges between each pair of
vertices that differ in exactly one coordinate. Alternatively, the vertex set may be considered as
F

n
2, the n-dimensional vector space over the field with two elements. We write e1, . . . ,en for the
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canonical basis of F
n
2 (ei is the vector with a 1 in the ith coordinate, and 0s elsewhere). We can

see that x is adjacent to y if and only if y = x+ ei, for some i ∈ {1, . . . ,n}.
A subcube of Qn is an induced subgraph isomorphic to Qm, for some m � n. A set S of

vertices is the vertex set of a subcube if and only if there is some set of coordinates J ⊆ [n] =
{1,2,3, . . . ,n}, and constants aj ∈ {0,1} for each j ∈ J, such that (x1, . . . ,xn) ∈ S if and only if,
for all j ∈ J, x j = a j. Fixed coordinates are those coordinates in J, whereas free coordinates are
coordinates that are not fixed. We can thus represent a subcube as an element of {0,1,∗}n, with
stars in the free coordinates and aj in the fixed coordinates. Since edges can be thought of as
Q1s, we may represent edges as elements of {0,1,∗}n in this way. We will say that an edge or
subcube lies along the directions i1, . . . , ik if these contain all the free coordinates of the edge or
subcube. The weight of x ∈V (Qn) is the number of coordinates of x that are 1.

We may write Qn1+n2
as Qn1

�Qn2
, the graph Cartesian product of Qn1

and Qn2
. In other words,

Qn1+n2
is formed by replacing each vertex of Qn2

with a copy of Qn1
. We call these principal

Qn1
s. Where there was a Qn2

edge e, we instead put edges between corresponding vertices of
the principal Qn1

s placed at the endpoints of e. So we have two types of edges: internal edges
which have both endpoints in the same principal Qn1

and external edges which have endpoints
in different principal Qn1

s. Notice that there are n1 directions along which internal edges lie,
and n2 directions along which external edges lie. This view of Qn1+n2

is crucial in the proof of
Theorem 1.1; we will write Qn1+n2

as Qn1
�Qn2

when we wish to use this viewpoint.
Another way of encapsulating the product nature of Qn is to write a vertex v as (v1|v2| · · · |vt),

where vi ∈ {0,1}ni = V (Qni
) and n1 + · · ·+nt = n. Two vertices (v1|v2| · · · |vt) and (u1|u2| · · · |ut)

are adjacent if and only if there is a j such that v j and u j are adjacent as vertices of Qn j
and for

all i �= j,vi = ui. We will use this notation heavily in Section 4.
An object we shall use in several of our constructions is the Hamming code. The properties of

Hamming codes that we require are listed below, but see van Lint [9] for more background. For
our purposes, a Hamming code C can be thought of as a subset of V (Qn), where n = 2r − 1 for
some r, with the following properties.

(1) C is a linear subspace of F
n
2. More precisely, C is the kernel of an r× n matrix H over the

field F2, called a parity check matrix. The columns of H are precisely the non-zero vectors
in F

r
2.

(2) |C| = 2n/(n+1).
(3) C has minimum distance 3. In other words, min{d(x,y) : x,y ∈C} = 3.
(4) C is a dominating set for Qn. In other words, every vertex of Qn is either in C or adjacent to

a vertex in C.

Property (1) is usually taken as the definition of a Hamming code; the other properties are simple
consequences of it.

A subset C with these properties exists only if n = 2r −1 (and when it exists, it is the largest
set with property (3), and the smallest with property (4)). For other values of n, we make do with
an approximate Hamming code. This is any C ⊂V (Qn) satisfying the following.

(1) C is a linear subspace of F
n
2. More precisely, C is the kernel of an r = 	log(n+1)
×n matrix

H over the field F2. H has as columns any n distinct binary vectors of length r.
(2) |C| = 2n/2	log2(n+1)
.
(3) C has minimum distance 3. In other words, min{d(x,y) : x,y ∈C} = 3.
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3. Zero density bound on sat(Qn,Qm)

In this section we shall prove a quantitative version of Theorem 1.1, of which Theorem 1.1 is an
immediate consequence.

Theorem 1.1′. For all m � 1, there exist constants, cm and am, such that

sat(Qn,Qm) � cm

nam
e(Qn).

More precisely, a1 = 1 and am = 1/(7 ·3m−2), for all m > 1.

Before discussing the proof of Theorem 1.1′, we sketch a proof of the (1/4 + o(1)) bound
of Choi and Guan, as this contains the main ideas of the proof of Theorem 1.1′. This proof is
significantly different from that of Choi and Guan, which may be considered more direct. How-
ever, our approach, which uses 1/3+o(1) density-saturated graphs to build 1/4+o(1) density-
saturated graphs, naturally gives rise to an iterative approach for proving
Theorem 1.1′.

We assume that there exist three (Qn,Q2)-saturated graphs, A1,A2 and A3 of 1/3+o(1) density,
such that every edge of Qn lies in one of them. We will use these to produce a 1/4 + o(1)
density (Qn+3,Q2)-saturated graph B′. These Ai are relatively easy to construct; we will require
a generalization of them in our proof of Theorem 1.1′.

We first construct an ‘almost’ (Qn+3,Q2)-saturated graph B. We consider Qn+3 as Qn�Q3. We
leave two principal Qns corresponding to antipodal vertices of Q3 empty. Around each of these
empty Qn, we arrange copies of A1,A2,A3, as in Figure 1. We also add all external edges with
one endpoint in either of the two empty principal Qns (as indicated by the bold edges in the
figure).

The graph constructed has the property that for any edge e of an empty Qn, the corresponding
edge e′ is present in one of the Ai. So adding e forms a Q2 comprising e, e′ and the two external
edges that connect corresponding endpoints of e and e′. Since the Ai are themselves Q2-saturated
graphs, adding any internal edge forms a copy of Q2.

It is easy to see that B is still Q2-free, and a quick calculation shows that B has edge density
1/4+o(1). We now prove a simple lemma that allows us to extend B to a Q2-saturated graph.

Lemma 3.1. Fix m � 2. Suppose that G is a Qm-free subgraph of Qn and S ⊆ E(Qn). Then we
can form a Qm-free graph G′ by adding no more than |S| edges to G with the property that adding
any edge in S\E(G) forms a copy of Qm.

Proof. We order the edges in S arbitrarily. Consider these edges in this order and add them to
G if and only if doing so does not form a copy of Qm. Since only edges of S are added by the
process, we are done.

We apply this lemma to B, with S being the set of external edges that have not already
been added, that is, those represented by the thin edges in Figure 1. This forms a Q2-saturated
graph, B′. Since there are (3/(n+3))e(Qn+3) external edges, the asymptotic edge density is
still 1/4.
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Figure 1. The ‘almost’ saturated graph, B.

The proof of Theorem 1.1′ uses a similar method multiple times to produce (Qn,Qm)-saturated
graphs of arbitrarily low density. In the case where m = 2, we assume that we have a collection of
Q2-saturated graphs A1, . . . ,Ak of edge density at most ρ , such that every edge of Qn is contained
in at least one of the Ai. We will view Qn+k as Qn�Qk and leave several principal Qns empty.
We shall ensure that each empty Qn is adjacent, for every i, to a principal Qn filled with Ai,
and add every external edge leaving these empty Qn. This ensures that adding an edge within
the empty Qn forms a copy of Q2. The constraint on the empty principal Qn is that the set of
vertices that we replace with empty Qns must have minimum distance 3, and so we employ a
Hamming code, enabling us to produce a graph with a lower density, ρ ′. Of course, to apply this
method again, we need several (Qn+k,Qm)-saturated graphs of density ρ ′, which between them
cover the edges of Qn+k. This turns out to be not much harder, using cosets of the Hamming
code.

In the general m case we adapt this method. We would like to use a collection of Ais that cover
all the copies of Qm−1 in Qn. Such a collection seems hard to construct, but a modification of
the argument shows that it suffices to cover almost all copies of Qm−1. The other modification is
that instead of using empty principal Qns, we fill them with low density Qm−1-saturated graphs,
which we may assume exist by induction on m. We will use the following claim as a key part of
the inductive step in proving the theorem.

Claim 1. Suppose we have a collection A1, . . . ,Ak of (Qn,Qm)-saturated graphs, each of density
at most ρ , and some n0 such that every Qm−1 that lies along the first n0 directions is within one
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of these Ai. Suppose also that there is a (Qn,Qm − 1)-saturated graph G with no more than
(cm−1/(nam−1))e(Qn) edges. Then there is a collection of k + 1 (Qn+k,Qm)-saturated graphs,
B0, . . . ,Bk, such that every Qm−1 that lies along the first n0 directions is in one of these Bi. Further,
each of the Bi has density at most

(
1− 1

2k

)
ρ + f (n,n0),

where f is a function that tends to zero whenever n, n0 → ∞ in such a way that n0/n → 1.

A precise upper bound on the densities of the Bi is required for the quantitative part of the
theorem; this will be stated at the end of the proof of this claim.

Proof of Claim 1. We start by constructing a k + 1 colouring c0 of Qk, with the colours
0,1, . . . ,k. Fix C0, an approximate Hamming code in Qk. We set c0(x) = 0 for all x ∈ C0, and
for all j ∈ {1, . . . ,k} and all x ∈C0 we set c0(x+ e j) = j. Note that when k +1 is not a power of
2 (i.e. when we do not have a genuine Hamming code), this colouring is not fully defined, since
C0 is not dominating. For now we assign arbitrary colours other than 0 to these vertices, but we
will later decide on these colours.

We write Qn+k = Qn�Qk. We induce from c0 a colouring on the set of principal Qns in the
natural way. We start forming the graph B0 by placing a copy of Aj in each principal Qn coloured
j, for each j �= 0. Also, we add to the graph B0 every external edge with one endpoint in a
principal Qn coloured 0.

We place a graph isomorphic to G in each Qn that is coloured 0 (we will choose which
isomorphism later).

Notice that, so far, B0 is Qm-free. Indeed, suppose that B0 does contain a Qm. This Qm cannot
lie entirely within a single principal Qn, by our assumption that the Ai are saturated. As we have
only added external edges that leave Qn coloured 0, the Qm may contain an edge between two
principal Qns only if one of them is coloured 0. Since the Hamming code has minimum distance
3, the Qm must contain edges in exactly two principal Qns, one of which is coloured 0. But such
Qn are Qm−1-saturated and thus contain no Qm−1, yielding a contradiction.

So far, B0 is not quite Qm-saturated. For instance, adding an external edge may not create a
copy of Qm. However, we use Lemma 3.1 to remedy this. We add at most (k/(n+ k))e(Qn+k)
edges to B0 and we now only need to consider adding internal edges.

Adding an edge within a Qn coloured j �= 0 forms a Qm, as each Aj is Qm-saturated. Adding
an edge within a principal Qn coloured 0 will form a Qm−1 within that Qn. If that Qm−1 only
uses edges in the first n0 directions, it lies within one of the Aj by the hypothesis of Claim 1.
Since every principal Qn coloured zero is adjacent to a principal Qn of every non-zero col-
our, a Qm will be formed. Therefore, we only need to worry about adding edges to G if the
Qm−1 formed does not lie exclusively along the first n0 directions: we call such edges bad
edges. We will now show that we may assume there are not very many bad
edges.

Apply a random automorphism of Qn to G, our low density Qm−1-saturated graph. We call the
graph formed G′ ⊆ Qn, which is to be placed within a principal Qn coloured 0. Let e be a fixed
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edge of this principal Qn. Then

P(e is a bad edge) � 1− n0

n
· n0 −1

n−1
· . . . · n0 −m+2

n−m+2

� 1− (n0 −m)m−1

nm−1

=
nm−1 − (n0 −m)m−1

nm−1
.

This tells us that the expected number of bad edges, in each principal Qn coloured 0, is no
more than (

nm−1 − (n0 −m)m−1

nm−1

)
e(Qn).

We now choose the automorphism of G that we left unspecified earlier; we can do this such that
we get no more bad edges than the expected number. We use Lemma 3.1, with S being the set of
bad edges, to form a graph that we also call B0, which is Qm-saturated.

We now construct the other Bi to cover the required Qm−1s. To construct Bi, we repeat the same
method used for constructing B0, except that we use Ci := {c + ei : c ∈ C0} instead of C0. Note
that we can make the arbitrary choices of colours to ensure each principal Qn is filled with each
of the graphs A1, . . . ,Ak, in one of the Bi.

It is easy to see that the Bi satisfy the necessary Qm−1 condition. Indeed any Qm ⊆ Qn+k along
the first n0 directions must lie within a principal Qn. When considered as a subgraph of this Qn,
it must lie in a copy of one of the Ai – say Aj. This principal Qn is filled with Aj in one of the Bi,
so we are done.

It remains only to bound the number of edges in each saturated subgraph, Bi. Let

e(A) = max{e(Ai)}, e(B) = max{e(Bi)}, ρ(A) =
e(A)
n2n−1

, ρ(B) =
e(B)

(n+ k)2n+k−1
.

In the calculations that follow, we write a = am−1 and c = cm−1 for brevity.
Recall that edges were added to each Bj in four ways: from copies of Ai, from adding external

edges, from the Qm−1-saturated graphs, and from adding bad edges.
Thus we have

e(B) � 2k

(
1− 1

2	log(k+1)


)
e(A)+

k
n+ k

e(Qn+k)

+
2k

2	log(k+1)
 e(Qn)
(

cm−1n−a +
nm−1 − (n0 −m)m−1

nm−1

)
.

Therefore,

ρ(B) �
(

1− 1
2	log(k+1)


)
ρ(A)+

k
n+ k

+
1

2	log(k+1)


(
cm−1n−a +

nm−1 − (n0 −m)m−1

nm−1

)

�
(

1− 1
2k

)
ρ(A)+

k
n

+
1
k

(
cm−1n−a +

nm−1 − (n0 −m)m−1

nm−1

)
.
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Clearly, if n0 is large enough and n = (1+o(1))n0, the last two terms can be arbitrarily small,
thus concluding the proof of the claim.

We now return to prove Theorem 1.1′.

Proof of Theorem 1.1′. We use induction on m.

Base case: m = 1. This is trivial – the subgraph of Qn with no edges is Q1-saturated.

Inductive step. Take m > 1 and assume that the theorem holds for m − 1. That is, there is a
(Qn,Qm −1)-saturated graph G with no more than (cm−1/(nam−1))e(Qn) edges.

We first find a collection of subgraphs A1, . . . ,Am+1 of Qn0
that satisfy the hypothesis of

Claim 1, with ρ = 1. To do this, let Ai initially consist of all edges whose lowest weight endpoint
has weight in {i, . . . , i + m− 2} mod m + 1, and then extend greedily until Ai is Qm saturated.
Each Ai contains every Qm−1 whose lowest weight vertex has weight i mod m+1, so every Qm−1

is contained in one of these Ai. Trivially, we may bound the density of these Ai above by 1, and
it is easy to see this is best possible up to a constant.

We now apply Claim 1 repeatedly, t times. We write ki and ni for the value of k and n after the
ith iteration. Clearly, ki+1 = ki +1,k0 = m+1,ni+1 = ni + ki and

nt = n0 +
m+t

∑
i=m

i = n0 +O(t2).

After t steps, we end with saturated graphs of density ρ:

ρ �
t−1

∏
i=0

(
1− 1

2ki

)
+

t−1

∑
i=0

(
ki

ni
+

cm−1

ki
·n−a

i +
nm−1

i − (n0 −m)m−1

kin
m−1
i

)

� c
m+t

∏
m=1

(
1− 1

2i

)
+

t(m+ t +1)
n0

+
tcm−1

m
·n−a

0 +
t
m

nm−1
t − (n0 −m)m−1

nm−1
0

= c′ · exp

(
−1

2

t+m

∑
i=1

1
i

)
+O(t2n−1

0 )+O(tn−a
0 )+O

(
t3

n0

)

= c′′t−1/2 +O(tn−a
0 )+O(t3n−1

0 ).

Here, c, c′ and c′′ are constants dependent on m. If m = 2 it is optimal to take t = n2/7
0

;

otherwise, for a < 3/7, it is optimal to take t = n2a/3
0

.

This gives the required bound.

Note that the better bound for sat(Qn,Q2) in the next section can be fed into the induction in
the theorem to produce the slightly better bound of am = 1/(7 ·3m−3).

4. Bounded average degree constructions

4.1. Semi-saturation
In this section we will prove Theorem 1.2, by constructing for each m a family of Qm-semi-
saturated graphs with bounded average degree. Although it seems difficult in general to make
these graphs Qm-free, in the m = 2 case we will use similar ideas to prove Theorem 1.3.
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In what follows it will be useful to write n = m(2t − 1) + r, where 0 � r < m2t , and to let
n0 = 2t − 1. We write a vertex of Qn as (v1|v2| · · · |vm|vm+1), where vi ∈ {0,1}n0 for i � m and
vm+1 ∈ {0,1}r. The final section of the vector is only included to make the number of coordinates
exactly n but otherwise has no importance in the construction.

Proof of Theorem 1.2. Let C ⊆ {0,1}n0 be a Hamming code. We define

A = {(v1| · · · |vm|vm+1) ∈V (Qn) : ∃i ∈ {1,m} such that vi ∈C}.

We form E(G) by picking all edges with at least one endpoint in A. Note that vertices in A have
degree n in G; all other vertices have degree m. Therefore

e(G) =
1
2
((n−m)|A|+m2n) � m

2

(
n

2n

(n0 +1)
+2n

)
.

As n/n0 < 2m, e(G) satisfies the bounds of the theorem.
We now show that G is Qm-semi-saturated. Assume e ∈ E(Qn) \E(G) is along a direction

i in {1,n0} (all other cases can be dealt with similarly). We will write the endpoints of the
edges as (v1|v2| · · · |vm|vm+1) and (v′1|v2| · · · |vm|vm+1), where v′1 and all of the vi do not lie in C.
Thus for i = 2,3, . . . ,m there exists ci ∈ C adjacent to vi. Consider the 2m points of the form
(x1| · · · |xm|vm+1), where x1 ∈ {v1,v

′
1}, and for i = 2,3, . . . ,m, xi ∈ {vi,ci}. These vertices form a

subcube of Qn and all but the endpoints of e are in A. Thus, when the edge e is added, a copy of
Qm is formed, concluding our proof.

Remark. Clearly, when n = m(2t −1) for some t, we get the slightly stronger bound

s-sat(Qn,Qm) �
(

m2

2
+

m
2

)
2n.

4.2. Improved bound for sat(Qn,Q2)
In the m = 2 case, the Q2-semi-saturated graph constructed above consists of all edges incident
with vertices in

A = {(v1|v2|v3) ∈V (Qn) : v1 ∈C or v2 ∈C}.

It is easy to see that this contains large subcubes, of the form

(c|∗, . . . ,∗|∗, . . . ,∗) or (∗, . . . ,∗|c|∗, . . . ,∗), for c ∈C.

There are other Q2s in this graph, but those within these large subcubes are hardest to deal with.
We prevent subcubes of the first type by only adding edges of the form {(c|v),(c|v′)}, where
c ∈ {0,1}n0 and v ∈ {0,1}n−n0 and v has lower weight than v′, if v1 has even weight. Of course,
doing just this alteration means the graph is no longer semi-saturated; we get around this by
picking a subset D of V (Qn0

) with similar properties to C, and adding edges starting at (d|v2|v3)
if (v2|v3) contains an odd number of 1s and if d ∈ D. We make use of the following claim, which
allows us to choose a D with the required properties.
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Claim 2. There exists a Q2-free spanning subgraph, H, of Qn0
, that has two independent dom-

inating sets, C,D ⊂ V (H) = {0,1}n0 , with C disjoint from D, where |C| = 2n0/(n0 + 1) and
|D| = 3 ·2n0/(n0 +1). Further, H only contains edges incident with C∪D and e(H) � 2n0+1.

We shall prove this claim later, but first we show why it implies the theorem.

Proof of Theorem 1.3. Similarly to before, we write n = 2(2t − 1)+ r, where 0 � r < 2t+1,
and let n0 = 2t − 1. We write an element, x, of {0,1,∗}n as (x1|x2|x3), where x1,x2 ∈ {0,1,∗}n0

and x3 ∈ {0,1,∗}r. We refer to x1 as the first part of x, x2 as the second part, and so on. We will
use this notation particularly when x represents a vertex or an edge of Qn (it contains no stars or
one star).

We start by constructing a graph G that is Q2-free and will then use Lemma 3.1 add a ‘few’
edges (o(2n) edges) to form G′, a Q2-saturated graph. As in the proof of Theorem 1.2, we will
define a subset A of the vertices, which will be dominating in G:

A = {(v1|v2|v3) ∈ {0,1}n : v1 ∈C∪D or v2 ∈C∪D}.

The definition of G is slightly more complicated. We add edges to E(G) in three stages, and then
delete some of these edges to ensure G is Q2-free.

First, we add all edges e where e1 ∈ C and the remainder (e2|e3) contains an even number of
1s and a single star, as well as edges where e2 ∈ C and the remainder (e1|e3) contains an even
number of 1s and a single star. We call these type 1 edges. There are

2|C|(n−n0)2
n−n0−2 � (n−n0)

2(n0 +1)
2n

type 1 edges.
Similarly, we add those edges e where e1 ∈ D and the remainder (e2|e3) contains an odd

number of 1s and a single star, as well as edges where e2 ∈ D and the remainder contains an odd
number of 1s and a single star. We call these type 2 edges. There are

2(n−n0)|D|2n−n0−2 � 3(n−n0)
2(n0 +1)

2n

type 2 edges.
Finally, we add all edges e where e1 or e2 is an edge of H. There are

2 ·2n−n0 e(H) � 4 ·2n

type 3 edges.
We now delete all edges e which have an endpoint (v1|v2|v3) such that both v1 and v2 lie in

C∪D. Thus

e(G) �
(

2(n−n0)
n0 +1

+4

)
2n − n2n

(n0 +1)2
.

Suppose, for contradiction, that G contains a Q2. Note that as all edges of G are incident with
a vertex of A, this Q2 must contain a vertex (v1|v2|v3) ∈ A, where, without loss of generality,
v1 ∈C∪D. Note that none of the vertices can have their second part in C∪D, or there is a vertex
of the Q2 with both first and second part in C∪D, impossible by our deletion step.
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Let s be the number of stars of the Q2 that are in the first part of its vector representation. If
s = 2, all four edges are type 3 edges, impossible as H is Q2-free.

If instead s = 1, suppose the other star is in the second part (the other case is identical). Then
we may write the vertices of the Q2 as (v1|v2|v3), (v′1|v2|v3), (v′1|v′2|v3) and (v1|v′2|v3), where
v1 ∈ C∪D and v2,v

′
2 /∈ C∪D. It is easy to see that v′1 ∈ C∪D. By a parity argument, v1 and v′1

are both in C or both in D. But this is impossible as C and D are each H0-independent sets.
Finally, if s = 0, then we can have only type 1 edges or only type 2 edges (depending on

whether v1 ∈C or v1 ∈ D). But this is impossible by a simple parity argument.
We now show that while G is not quite saturated, it is ‘almost’ saturated. Suppose e is a Qn-

edge not incident with A. Without loss of generality, the endpoints are (v1|v2|v3) and (v′1|v2|v3),
where v1,v

′
1v2,v3 /∈C∪D. This is an element of E(Qn)\E(G). Assume that (v1|v3) is even (the

other case is very similar) and v′1 has higher weight than v1. Then pick c ∈ C adjacent to v2;
{(v′1|v2|v3),(v

′
1|c|v3)} and {(v1|v2|v3),(v1|c|v3)} are type 3 edges. Also, {(v1|c|v3),(v

′
1|c|v3)} is

a type 1 edge as (x|y) is even. Thus a Q2 would be formed by adding the edge.
All Qn-edges with exactly one endpoint in A are edges of G, so we only need to consider edges

where one endpoint (v1|v2|v3) has v1 and v2 ∈ C∪D. There are 2n/n edges of this type, and so
we may use Lemma 3.1 and add them greedily to G to form a Q2-saturated graph G′, which has
no more edges than the bound in the theorem.

Remark. Again, we get a stronger bound for some values of n; when n = 2(2t −1) for some t,
it is easy to see that sat(Qn,Q2) � 6 ·2n.

We now return to prove the claim.

Proof of Claim 2. Let C be a Hamming code in Qn0
. For i = 1, . . . ,n0, let vi be the image

of the basis vector ei under the parity check matrix M of the Hamming code. We may assume
that v1 = (1,0, . . . ,0), v2 = (0,1,0, . . . ,0) and v3 = (1,1,0, . . . ,0), as every vector in F

t
2 occurs

as a column of M . We shall construct H in four stages, and then prove that it has the required
properties.

(1) Add to E(H) every Qn0
-edge adjacent to an element of C.

(2) Add to E(H) every Qn0
-edge of the form {c + e1 + ek,c + e1}, where c ∈ C, and where

k ∈ [4,n0] is such that vk has a 0 in the first coordinate.
(3) Add to E(H) every Qn0

-edge of the form {c + e1 + ek,c
′ + e2}, where c,c′ ∈ C, and where

k ∈ [4,n0] is such that vk has a 1 in the first coordinate and a 0 in the second coordinate.
(4) Add to E(H) every Qn0

-edge of the form {c + e1 + ek,c
′ + e3}, where c,c′ ∈ C, and where

k ∈ [4,n0] is such that vk has a 1 in the first coordinate and a 1 in the second coordinate.

Since C is a Hamming code, it is an independent, dominating set and |C| = 2n0/(n0 +1). We
write Ci = {c+ ei : c ∈C}; in other words, Ci = M−1(vi). Let D = C1 ∪C2 ∪C3. It is easy to see
every edge of H is incident with C∪D. Since the Ci are disjoint translates of C, a Hamming code,
|D| = 3 ·2n0/(n0 +1).

Again using that C1 is a translate of a Hamming code, every x ∈ V (Qn0
) \C1 can be written

uniquely in the form c + e1 + ek for c ∈ C and k ∈ [1,n0]. The restriction k �= 1 is equivalent to
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x /∈C. The restriction k �= 2 is equivalent to x /∈C3. This is because

M(c+ e1 + e2) = M(c)+M(e1)+M(e2) = v1 + v2 = v3.

Similarly, k = 3 if and only if x ∈ C2. Thus steps (2), (3) and (4) ensure D is independent and
dominating in H.

Notice also that each x /∈ C ∪D is H-adjacent to exactly one element in D. Hence e(H) �
2|Qn0

|, as required. It remains only to show that H is Q2-free. Suppose not. Since we have only
added edges with at least one endpoint in C∪D, the Q2 must contain two opposite vertices in
C∪D. Since C has minimum distance 3, and since every x /∈C∪D is adjacent to only one element
in D, one of these vertices is in D, and one is in C. Thus the vertices of the Q2 may be written in
the form c ∈C,c+ei,c+e j and c+e j +ei ∈Ck, where i, j ∈ [4,n0] are such that vi +v j = vk, and
k ∈ {1,2,3}. But it is impossible for all the edges of this Q2 to lie in e(H). Indeed, suppose for
example that k = 3. Then vi and v j must both have 1 in the first coordinate and 1 in the second
coordinate, impossible if they sum to vk. This concludes the proof of the claim.

5. Lower bounds

All the lower bounds in this section are for s-sat; easily s-sat(Qn,Qm) � sat(Qn,Qm), so the
bounds are also valid for sat.

If a graph is (Qn,Qm)-semi-saturated for m � 2, it must be connected. Thus it contains a
spanning tree for Qn and so s-sat(Qn,Qm) � 2n − 1. This shows that Theorems 1.2 and 1.3 are
best possible up to a constant factor.

Another trivial observation improves this for m � 3: if a graph is (Qn,Qm)-semi-saturated, it
has minimum degree m−1. Thus

s-sat(Qn,Qm) � m−1
2

2n.

We do better than both trivial bounds for all m.

Theorem 5.1. If m � 2,

s-sat(Qn,Qm) �
(

m+1
2

−o(1)
)

2n.

Proof. Let G be a (Qn,Q2)-semi-saturated graph with minimum degree m− 1; note that this
contains all (Qn,Qm)-semi-saturated graphs. We call a pair (v,e), where v ∈V (Qn), e ∈ E(Qn)\
E(G), good if there is a path of length 3 in G linking the endpoints of e, that passes through v,
meaning v is not a start- or end-vertex of the path.

Note that every non-edge of G is in at least two good pairs, whereas each vertex v is in at most(d(v)
2

)
good pairs.

Therefore

∑
v∈V (Qn)

(
d(v)

2

)
� 2(e(Qn)− e(G)).
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Subject to fixed ∑v d(v), the left-hand side is maximized when the degrees are as different as
possible. But no degree can be larger than n or smaller than m−1. Note that 2e(G) = ∑v d(v), so
we have

(2e(G)−2n)/(n−1)

vertices of degree n in this extreme case.
So certainly

2e(G)− (m−1)2n

n−1

(
n
2

)
� n2n −2e(G),

(n+2)e(G)−n(m−1)2n−1 � n2n,

e(G) �
(

m+1
2

−o(1)
)

2n.

6. Further questions

Having seen that

lim
n→∞

sat(Qn,Qm)
n2n−1

= 0,

it is natural to ask for a more precise bound. In Section 4 we determined sat(Qn,Qm) up to a
constant, for m = 2, but there is still a wide gap between the best upper and lower bounds for
general m. In particular, we do not know whether families of Qm-saturated graphs of bounded
average degree exist for all m.

Question 1. For which m does there exist a constant cm such that for all n, sat(Qn,Qm) � cm2n?

In Section 4 we were able to produce better bounds on s-sat(Qn,Q2) than sat(Qn,Q2). Further,
the construction we had for s-sat contained many copies of Q2. This small amount of evidence
may suggest that, in general, the two are different, even asymptotically.

Question 2. Is sat(Qn,Q2) = s-sat(Qn,Q2) for all n? Does equality hold for all sufficiently large
n? If not, is

liminf
sat(Qn,Q2)

2n
> limsup

s-sat(Qn,Q2)
2n

?

Recall that all our lower bounds are for s-sat – it seems hard to bound sat more strongly.
Another version of sat that has been studied in the literature (see Section 10 of [7], where

the host graph is Kn) could be studied for this problem. We say that a graph G ⊆ Qn is weakly
(Qn,Qm)-saturated if we can add the edges in E(Qn)\E(G) one at a time (in some order) such
that every new edge creates at least one new copy of F . We write w-sat(Qn,Qm) for the min-
imum number of edges a weakly (Qn,Qm)-saturated graph can have. Clearly, w-sat(Qn,Qm) �
s-sat(Qn,Qm) � sat(Qn,Qm). It is not hard to see, by induction on n, that there are many weakly

https://doi.org/10.1017/S0963548316000316 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000316


66 J. R. Johnson and T. Pinto

(Qn,Q2)-saturated trees and so w-sat(Qn,Q2) = 2n − 1. Indeed, given any G1,G2, possibly dif-
ferent weakly (Qn−1,Q2)-saturated trees, we place them in complementary Qn−1s, and connect
any one pair of corresponding vertices. This forms a weakly (Qn,Q2)-saturated tree. However,
w-sat(Qn,Qm) is in general not known.

Question 3. For m � 3, what is w-sat(Qn,Qm)?

In [1], Alon, Krech and Szabó discuss an interesting hypergraph-type generalization of the
Turán problem on the hypercube. We write Qt

n for the 2t-uniform hypergraph with vertex set
{0,1}n and edge set consisting of all t-dimensional subcubes of Qn. We say that a subhypergraph
H of Qt

n is Qt
m-free if it contains no subhypergraph isomorphic to Qt

m. As in the usual (t = 1) case
of this Turán problem, they ask how many edges H can have – in particular asking for the limit

lim
n→∞

max

{
e(H)(n
t

)
2n−t

}
.

This question is still open, but it is interesting to know that the corresponding saturation problem
can be attacked by the same method as the proof of Theorem 1.1′.

Let H be a subhypergraph of Qt
n. We say that G is (Qt

n,Q
t
m)-saturated if G is Qt

m-free but
adding another 2t-edge to G forms a subhypergraph isomorphic to Qt

m. In other words, G is
a maximal Qt

m-free subgraph of Qt
n. We write sat(Qt

n,Q
t
m) for the smallest number of edges a

(Qt
n,Q

t
m)-saturated H can have. We can show by the same method as the proof of Theorem 1.1′

that, for t � 1 and s � 0,

lim
n→∞

sat(Qt
n,Q

t
t+s)(n

t

)
2n−t

= 0.

As in the proof of Theorem 1.1′ we proceed by induction on s with the s = 0 case being trivial.
The iteration step analogous to Claim 1 is based on the same colouring of principal Qns. In each
principal Qn with colour 0 we place a low density Qt

t+s−1-saturated subgraph of Qt
n. We also add

all those 2t-edges which contain 2t−1 points in some principal Qn with colour 0. The remainder
of the proof is a straightforward generalization and the details are left to the reader.
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