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Let k � 3 be a fixed integer. We exactly determine the asymptotic distribution of

lnZk(G(n, m)), where Zk(G(n, m)) is the number of k-colourings of the random graph G(n, m).

A crucial observation to this end is that the fluctuations in the number of colourings can

be attributed to the fluctuations in the number of small cycles in G(n, m). Our result holds

for a wide range of average degrees, and for k exceeding a certain constant k0 it covers all

average degrees up to the so-called condensation phase transition.
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1. Introduction

1.1. Background and motivation

Going back to the ground-breaking paper of Erdős and Rényi [15] in 1960, the study

of the random graph colouring problem has attained a lot of attention and innumerable

articles have been published in this area of research over the years. In the most frequently

studied model, a random graph G(n, m) on the vertex set [n] = {1, . . . , n} with precisely m

edges is drawn uniformly at random from all such graphs.

A question that has turned out to be a very challenging one is how to choose n and

m to obtain a random graph that is colourable w.h.p. Or, put differently, whether a

random graph with given n and m can be coloured with a fixed number of colours, thus

determining its chromatic number.

Beginning in the 1990s, considerable progress has been made in the case of sparse

random graphs, where m = O(n) as n → ∞. Much effort has been devoted to studying

the typical value of the chromatic number of G(n, m) [3, 9, 21, 22] and its concentration

† The research leading to these results has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 278857–

PTCC.

https://doi.org/10.1017/S0963548318000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000251


On the Number of Solutions in Random Graph k-Colouring 131

[4, 20, 29]. Several experiments and simulations led to the hypothesis, that, when changing

the ratio of edges to variables, there is a transition from a regime where the random

graph is colourable w.h.p. to the one where it is not w.h.p. Furthermore, the observation

was that this transition does not happen smoothly, suggesting the existence of a sharp

satisfiability threshold. Indeed, in 1999, Achlioptas and Friedgut [2] proved the existence

of a sharp threshold sequence dk,col(n) for any k � 3, meaning that for any fixed ε > 0 the

random graph G(n, m) is k-colourable w.h.p. if 2m/n < dk,col(n) − ε, whereas G(n, m) fails

to be k-colourable w.h.p. if 2m/n > dk,col(n) + ε. This threshold sequence is non-uniform,

namely, it is a function of n, and although it is broadly believed to converge for n tending

to infinity, this has not yet been established. Also, in spite of continued efforts, the exact

value of this threshold remains unknown to date. The best current bounds [11, 13] on

dk,col(n) show that there is a sequence (γk)k�3, limk→∞ γk = 0, such that

(2k − 1) ln k − 2 ln 2 − γk � lim inf
n→∞

dk,col(n) � lim sup
n→∞

dk,col(n) � (2k − 1) ln k − 1 + γk.

Nonetheless, there exist predictions by statistical physicists regarding the precise location

of this threshold. They developed a method called the cavity method that allowed them

to gain insights into the combinatorial structure of the random graph colouring problem

and to understand the significance of typical k-colourings, that is, k-colourings chosen

uniformly at random from the set of all k-colourings, on both the combinatorial and

algorithmic aspects of the problem [19]. What is more, this method has also been used to

predict a further phase transition shortly before the colouring threshold. This transition

dk,cond has been named condensation and its existence and location have been rigorously

determined in 2014 by Bapst, Coja-Oghlan, Hetterich, Rassmann and Vilenchik [7]. We

will formally introduce dk,cond in the next subsection; for the moment we content ourselves

with stating that it plays a very important role for several reasons. It marks the point

where the behaviour of the number of solutions changes significantly, as does the geometry

of the solution space [1, 23]. The prediction states that while two k-colourings chosen

uniformly at random tend to be uncorrelated before the condensation threshold, they

typically exhibit long-range correlations afterwards [24]. Furthermore, in contrast to the

colourability transition, the condensation transition persists for finite inverse temperatures

as well [8]. In recent work, it has been proved that the condensation transition is also

related to the information theoretic threshold in the stochastic block model [5], where it

marks the point from which it is possible to decide whether or not a random graph has

been drawn from a planted distribution.

By obtaining an exact expression for the asymptotic distribution of the logarithm of

the number of solutions up to the condensation threshold dk,cond, in the present paper we

give a definite and complete answer to the question about the relationship between the

planted model and the Gibbs distribution. Furthermore, we show that the fluctuations

in the number of solutions can be completely attributed to the presence of short cycles,

thereby eliminating the possibility of other influencing factors.

For a graph G on n vertices, we let Zk(G) be the number of k-colourings (also called

solutions) of G, which are maps σ : [n] → [k] such that σ(i) �= σ(j) for all edges {i, j} of

G. We always consider sparse random graphs G(n, m) where m = O(n). We are especially
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interested in the case where m is of the same order of magnitude as n, more precisely,

where d = 2m/n does not grow with n. As we are going to need a very neat computation

of the first and second moment of the number of k-colourings of G(n, m), in addition to d,

which arises naturally in the computations of the first and second moment, we introduce

d′, which is an arbitrary but fixed value such that m = �d′n/2�. We note that d′ ∼ d,

although d = d(n) might vary slightly with n, whereas d′ is assumed to be fixed as n → ∞.

1.2. Results

We show that under certain conditions the number Zk(G(n, m)) of k-colourings of the

random graph is tightly concentrated and determines the distribution of

lnZk(G(n, m)) − ln E[Zk(G(n, m))]

asymptotically in a broad density regime.

Before we state the result, we introduce the following notation. For k � 3, we define the

condensation transition

dk,cond = sup{d′ > 0 : lim inf
n→∞

E[Zk(G(n, m))1/n] = k(1 − 1/k)d
′/2}, (1.1)

where m = �d′n/2� is a function of d′. Indeed, the supremum in the definition of dk,cond is

well defined, as the set

{d′ > 0 : lim inf
n→∞

E[Zk(G(n, m))1/n] = k(1 − 1/k)d
′/2}

is non-empty due to the fact that for d′ ∈ (0, 1] the graph G(n, m) decomposes into tree

components w.h.p., and thus in this regime

lim inf
n→∞

Zk(G(n, m))1/n = k(1 − 1/k)d
′/2,

and it is also bounded, as for densities d′ above some dk,col the graph will have no more

colourings. The definition of dk,cond is motivated by the well-known fact that

E[Zk(G(n, m))] = Θ(kn(1 − 1/k)m).

This statement will reappear in Proposition 2.1 and will also be proved in this context.

Jensen’s inequality shows that

lim sup
n→∞

E[Zk(G(n, m))1/n] � k(1 − 1/k)d
′/2 for all d′,

and this upper bound is tight up to the density dk,cond.

Under the assumption that k � k0 for a certain constant k0, it is possible to calculate

the number dk,cond precisely [7], and an asymptotic expansion in k yields

dk,cond = (2k − 1) ln k − 2 ln 2 + γk, where lim
k→∞

γk = 0.

To state the main theorem of the paper, we let

λl =
dl

2l
and δl =

(−1)l

(k − 1)l−1

for k, l ∈ N. With these definitions, we have the following result.
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Theorem 1.1. There is a constant k0 > 3 such that the following is true. Assume either that

k � 3 and d′ � 2(k − 1) ln(k − 1) or that k � k0 and d′ < dk,cond.

For l � 2, let (Xl)l be a family of independent Poisson variables with E[Xl] = λl , all

defined on the same probability space. Then

lnZk(G(n, m)) − ln E[Zk(G(n, m))]
D−→ W,

where the random variable W is given by

W =
∑
l�3

Xl ln(1 + δl) − λlδl

and satisfies E|W | < ∞.

Remark. By definition, W has an infinitely divisible distribution. It was shown in [17]

that the random variable W ′ = exp[W ] converges almost surely and in L2 with E[W ′] = 1

and E[W ′2] = exp
[∑

l λlδ
2
l

]
. Thus, by Jensen’s inequality it follows that E[W ] � 0 and

E[W 2] �
∑

l λlδ
2
l .

1.3. Discussion and further related work.

The crucial observation that the proof of Theorem 1.1 builds upon is that the fluctuations

of lnZk(G(n, m)) can be attributed to variations in the number of cycles of bounded

length in the random graph and that this is their only significant influencing factor. As

a consequence, conditioning on the cycle count for cycles up to some preselected length

reduces the variance of lnZk(G(n, m)) enormously.

This was first observed in [6], and it has been used to determine the order of magnitude

of the fluctuations of lnZk(G(n, m)) in the random graph colouring problem. Following

this result, the asymptotic distribution of the logarithm of the number of solutions has

been established for random regular k-SAT [14] and random hypergraph 2-colouring [26].

Our result Theorem 1.1 refines the analysis from [14]. We are the first to determine the

asymptotic distribution of the logarithm of the number of solutions in random graph

k-colouring in a broad density regime up to the condensation transition dk,cond (for large

values of k).

The proof combines the second moment arguments from Achlioptas and Naor [3]

and its enhancements from [7, 13] with the ‘small subgraph conditioning’. This method

was originally developed in [27, 28] and extended by Janson [17] to obtain limiting

distributions. It has frequently been used in random regular graph problems (see [30]

for an enlightening survey), for example in [18] and [12] to upper-bound the chromatic

number of the random d-regular graph, as the sharp threshold result [2] does not apply

for this problem. More recently, it has also been used to obtain results in the stochastic

block model [5] and to determine the satisfiability threshold for positive 1-in-k-SAT [25].

Unfortunately, Janson’s result does not apply directly in our case and instead we have

to perform a variance analysis along the lines of [28], analogous to [14, 26]. The reason for

this is that in contrast to [6], where only bounds on the fluctuation of lnZk were proved, we

aim at a statement about its asymptotic distribution and thus we need an asymptotically

tight expression for the second moment. Thus, in the present paper it does not suffice
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to consider colourings with balanced colour classes (with a deviation of o(n−1/2) from

their typical value), but we have to get a handle on all colourings providing a positive

contribution. To this end, we collect together colourings exhibiting similar colour class

sizes. This results in the need to consider not only one random variable but a growing

number of random variables, and to develop methods to deal with them simultaneously.

We expect that it is possible to apply a combination of the second moment method

and small subgraph conditioning to a variety of further random constraint problems, for

example random k-NAESAT, random k-XORSAT or random hypergraph k-colourability.

However, for asymmetric problems such as the well-known benchmark problem random

k-SAT, we expect the logarithm of the number of satisfying assignments to exhibit stronger

fluctuations, and we doubt that a result similar to ours can be established.

1.4. Preliminaries and notation

We always assume that n � n0 is sufficiently large for our various estimates to hold and

let [n] denote the set {1, . . . , n}.

We use the standard O-notation when referring to the limit n → ∞. Thus, f(n) = O(g(n))

means that there exist C > 0, n0 > 0 such that for all n > n0 we have |f(n)| � C · |g(n)|.
In addition, we use the standard symbols o(·),Ω(·),Θ(·). In particular, o(1) stands for

a term that tends to 0 as n → ∞. Furthermore, the notation f(n) ∼ g(n) means that

f(n) = g(n)(1 + o(1)) or equivalently limn→∞ f(n)/g(n) = 1. Besides taking the limit n → ∞,

at some point we need to consider the limit ν → ∞ for some number ν ∈ N. Thus, we

introduce f(n, ν) ∼ν g(n, ν), meaning that limν→∞ limn→∞ f(n, ν)/g(n, ν) = 1.

If p = (p1, . . . , pl) is a vector with entries pi � 0, then we let

H(p) = −
l∑

i=1

pi ln pi.

Here and throughout, we use the convention that 0 ln 0 = 0. Hence, if
∑l

i=1 pi = 1, then

H(p) is the entropy of the probability distribution p. Further, for a number x and an

integer h > 0 we let (x)h = x(x − 1) · · · (x − h + 1) denote the hth falling factorial of x.

For the sake of simplicity, we choose to prove Theorem 1.1 using the random graph

model G(n, m). This is a random (multi-)graph on the vertex set [n] obtained by choosing

m edges e1, . . . , em of the complete graph on n vertices uniformly and independently at

random (i.e. with replacement). In this model we may choose the same edge more than

once. However, the following statement (proved in [16, Chapter 1.3], for example) shows

that for sparse random graphs the probability of this event is bounded away from 1.

Fact 1.2. Assume that m = m(n) is a sequence such that m = O(n) and let An be the

event that G(n, m) has no multiple edges. Then there is a constant c > 0 such that limn→∞
P[An] > c.

2. Outline of the proof

To determine bounds on Zk(G(n, m)), it will be necessary to control the size of the colour

classes. To formalize this, we introduce the following notation. For a map σ : [n] → [k],
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we define

ρ(σ) = (ρ1(σ), . . . , ρk(σ)), where ρi(σ) = |σ−1(i)|/n for i = 1, . . . , k.

Thus, ρ(σ) is a probability distribution on [k], which we refer to as the colour density

of σ.

Let Ak(n) signify the set of all possible colour densities ρ(σ) for σ : [n] → [k]. Further,

let Ak be the set of all probability distributions ρ = (ρ1, . . . , ρk) on [k], and let ρ	 =

(1/k, . . . , 1/k) signify the barycentre of Ak .

In order to simplify the notation, for the rest of the paper we assume that ω, ν are odd

natural numbers; formally we define N = {2i − 1 : i ∈ N} and let ω, ν ∈ N. We say that

ρ = (ρ1, . . . , ρk) ∈ Ak(n) is (ω, n)-balanced if

ρi ∈
[

1

k
− ω√

n
,

1

k
+

ω√
n

)
for all i ∈ [k]

and let Ak,ω(n) denote the set of all (ω, n)-balanced ρ ∈ Ak(n). As we will see, in order to

prove statements about the number Zk of all solutions, it suffices to consider solutions σ

with ρ(σ) ∈ Ak,ω(n). We let Zk,ω(G) signify the number of (ω, n)-balanced k-colourings of

a graph G on [n], that is, k-colourings σ such that ρ(σ) ∈ Ak,ω(n).

Since verifying the required properties to apply small subgraph conditioning directly for

the random variable Zk,ω is very intricate, we break Zk,ω down into smaller contributions,

for which we determine the first and second moment in the following sections.

To this end, we decompose the set Ak,ω(n) into smaller sets. We define

Sk,ω,ν =

{
s ∈ Z

k : ‖s‖1 = 2i, i ∈ N, i � ων − 1

2

}
. (2.1)

Sk,ω,ν contains vectors that we use as centres of disjoint ‘balls’ to partition the set

Ak,ω(n). For s = (s1, . . . , sk) ∈ Sk,ω,ν , we let ρk,ω,ν,s ∈ R
k be the vector with components

ρ
k,ω,ν,s
i =

1

k
+

si

ν
√
n
. (2.2)

Further, we let As
k,ω,ν(n) be the set of all colour densities ρ ∈ Ak,ω(n) such that

ρi ∈
[
ρ
k,ω,ν,s
i − 1

ν
√
n
, ρ

k,ω,ν,s
i +

1

ν
√
n

)
.

For a graph G, we let Zs
k,ω,ν(G) denote the number of k-colourings σ such that ρ(σ) ∈

As
k,ω,ν(n). For each fixed ν, we have Zk,ω =

∑
s∈Sk,ω,ν

Zs
k,ω,ν and our strategy is to apply

small subgraph conditioning to the random variables Zs
k,ω,ν rather than directly to Zk .

But first, we will calculate the first moments of Zk and Zk,ω in Section 3 to obtain the

following.

Proposition 2.1. Fix an integer k � 3 and a number d′ ∈ (0,∞) as defined at the end of

Section 1.1. Let ω > 0. Then

E[Zk(G(n, m))] = Θ(kn(1 − 1/k)m) and lim
ω→∞

lim inf
n→∞

E[Zk,ω(G(n, m))]

E[Zk(G(n, m))]
= 1.
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As discussed in Section 1.3, the key observation the proof is based on is that the

fluctuations of Zk(G(n, m)) can be attributed to fluctuations in the number of cycles of a

bounded length. Hence, for an integer l � 2 we let Cl,n denote the number of cycles of

length exactly l in G(n, m). Let

λl =
dl

2l
and δl =

(−1)l

(k − 1)l−1
. (2.3)

We will see that λl asymptotically denotes the expected number of cycles of length l in a

random graph, whereas δl is a correction factor taking into account that we do not allow

for edges connecting two vertices of the same colour. It is easy to verify that for k � 3 we

have

∞∑
l=2

λlδ
2
l < ∞.

The following fact shows that C2,n, . . . are asymptotically independent Poisson variables

(this is a standard application of [10, Theorem 1.23] together with a monotonicity

argument).

Fact 2.2. If c2, . . . , cL are non-negative integers, then

lim
n→∞

P[∀2 � l � L : Cl,n = cl] =

L∏
l=2

P[Po(λl) = cl].

In [6] the impact of the cycle counts Cl,n on the first moment of Zs
k,ω,ν(G(n, m)) was

investigated. The result is the following.

Proposition 2.3. Assume that k � 3 and d′ ∈ (0,∞). Moreover, let ω, ν ∈ N and c2, . . . , cL
be non-negative integers. Then

E[Zs
k,ω,ν(G(n, m))|∀2 � l � L : Cl,n = cl]

E[Zs
k,ω,ν(G(n, m))]

∼
L∏
l=2

[1 + δl]
cl exp[−δlλl]. (2.4)

Thus, this proposition quantifies the influence of the number of short cycles on the

expectation of Zs
k,ω,ν(G(n, m)). In addition, to apply small subgraph conditioning, we have

to determine the second moment of Zs
k,ω,ν(G(n, m)) very precisely. This step constitutes

the main technical work of this paper. We consider two regimes of d′ and k separately. In

the simpler case, based on the second moment argument from [3], we obtain the following

result.

Proposition 2.4. Assume that k � 3 and d′ < 2(k − 1) ln(k − 1). Then

E[Zs
k,ω,ν(G(n, m))2]

E[Zs
k,ω,ν(G(n, m))]2

∼ exp

[∑
l�2

λlδ
2
l

]
=

(
1 − d

(k − 1)2

)−(k−1)2/2

exp

[
−d

2

]
.
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The second regime of d′ and k is that k � k0 for a certain constant k0 � 3 and d′ < dk,cond

(with dk,cond the number defined in (1.1)). In this case, we replace Zs
k,ω,ν with the slightly

tweaked random variable Z̃ s
k,ω,ν used in the second moment arguments from [7, 13].

Proposition 2.5. There is a constant k0 � 3 such that the following is true. Assume that k �
k0 and 2(k − 1) ln(k − 1) � d′ < dk,cond. Then for each ω, ν ∈ N and s ∈ Sk,ω,ν there exists

an integer-valued random variable Z̃ s
k,ω,ν which is such that 0 � Z̃ s

k,ω,ν � Zs
k,ω,ν and for which

it holds that

E[Z̃ s
k,ω,ν(G(n, m))] ∼ E[Zs

k,ω,ν(G(n, m))] and (2.5)

E[Z̃ s
k,ω,ν(G(n, m))2]

E[Z̃ s
k,ω,ν(G(n, m))]2

� (1 + o(1)) exp

[∑
l�2

λlδ
2
l

]
.

The proofs of Propositions 2.4 and 2.5 appear at the end of Section 4. In order to apply

small subgraph conditioning to the random variable Z̃ s
k,ω,ν , we need to investigate the

impact of Cl,n on the first moment of Z̃ s
k,ω,ν . Thus, we need a similar result to Proposition 2.3

for Z̃ s
k,ω,ν . Fortunately, instead of having to reiterate the proof of Proposition 2.3, we obtain

the following by combining Proposition 2.3 with (2.5).

Corollary 2.6. Let c2, . . . , cL be non-negative integers. With the assumptions and notation

of Proposition 2.5 we have

E[Z̃ s
k,ω,ν(G(n, m))|∀2 � l � L : Cl,n = cl]

E[Z̃ s
k,ω,ν(G(n, m))]

∼
L∏
l=2

[1 + δl]
cl exp[−δlλl].

The proof of this statement is nearly identical to the one in [6].

The aim is now to derive Theorem 1.1 from Propositions 2.1–2.4. The key observation

is that the variance of the random variables Zs
k,ω,ν is affected by the presence of cycles

of bounded length and that this is the only significant influence. As a consequence,

conditioning on the small cycle counts up to some preselected length reduces the variance

of Zs
k,ω,ν . What is maybe surprising is that conditioning on the number of sufficiently

small cycles reduces the variance to any desired fraction of E[Zs
k,ω,ν]

2.

As in [14, 26], the arguments we use are similar to the small subgraph conditioning

from [17, 28]. But we do not refer to any technical statements from [17, 28] directly,

because instead of working only with the random variable Zk we need to control all Zs
k,ω,ν

for fixed ω, ν ∈ N simultaneously. In fact, ultimately we have to take ν → ∞ and ω → ∞
as well. Our line of argument follows the path beaten in [14, 26], and the following three

lemmas are nearly identical to the ones derived there.

For L > 2, let FL = FL,n(d, k) be the σ-algebra generated by the random variables Cl,n

with 2 � l � L. The set of all graphs can be divided into groups according to the small

cycle counts. For each L � 2, the decomposition of the variance of Zs
k,ω,ν yields

Var[Zs
k,ω,ν(G(n, m))] = Var[E[Zs

k,ω,ν(G(n, m))|FL]] + E[Var[Zs
k,ω,ν(G(n, m))|FL]],
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meaning that the variance can be written as the variance of the group mean plus

the expected value of the variance within a group. The term Var[E[Zs
k,ω,ν(G(n, m))|FL]]

accounts for the amount of variance induced by the fluctuations of the number of cycles

of length at most L. The strategy when using small subgraph conditioning is to bound

the second summand, which is the expected conditional variance

E[Var[Zs
k,ω,ν(G(n, m))|FL]] = E[E[Zs

k,ω,ν(G(n, m))2|FL] − E[Zs
k,ω,ν(G(n, m))|FL]2].

In the following lemma we show that in fact in the limit of large L and n this quantity

is negligible. This implies that conditioned on the number of short cycles the variance

vanishes, and thus the limiting distribution of lnZs
k,ω,ν is just the limit of ln E[Zs

k,ω,ν |FL] as

n, L → ∞. This limit is determined by the joint distribution of the number of short cycles.

Lemma 2.7. Let k � 3 and d′ < 2(k − 1) ln(k − 1). For any ω, ν ∈ N and s ∈ Sk,ω,ν , we have

lim sup
L→∞

lim sup
n→∞

E[E[Zs
k,ω,ν(G(n, m))2|FL] − E[Zs

k,ω,ν(G(n, m))|FL]2]

E[Zs
k,ω,ν(G(n, m))]2

= 0.

Proof. Fix ω, ν ∈ N and set Zs = Zs
k,ω,ν(G(n, m)). Using Fact 2.2 and Proposition 2.3, we

can choose for any ε > 0 a constant B = B(ε) and L � L0(ε) sufficiently large that, for

each sufficiently large n � n0(ε, B, L), we have for any s ∈ Sk,ω,ν

E[E[Zs|FL]2] �
∑

c1 ,...,cL�B

E[Zs|∀2 � l � L : Cl,n = cl]
2
P[∀2 � l � L : Cl,n = cl]

� exp[−ε]E[Zs]
2

∑
c1 ,...,cL�B

L∏
l=2

[(1 + δl)
cl exp[−λlδl]]

2
P[Po(λl) = cl]

= exp[−ε]E[Zs]
2

∑
c1 ,...,cL�B

L∏
l=2

[(1 + δl)
2λl]

cl

cl! exp[2λlδl + λl]

= exp[−ε]E[Zs]
2

L∏
l=2

exp[−2λlδl − λl]
∑

c1 ,...,cL�B

[(1 + δl)
2λl]

cl

cl!

� E[Zs]
2 exp

[
−2ε +

L∑
l=2

δ2
l λl

]
, (2.6)

where we used that exp(j) =
∑∞

n=0 j
n/n! in the last step. The tower property for conditional

expectations and the standard formula for the decomposition of the variance yields

E[Z2
s ] = E[E[Z2

s |FL]] = E[E[Z2
s |FL] − E[Zs|FL]2] + E[E[Zs|FL]2],

and thus using (2.6) we have

E[E[Z2
s |FL] − E[Zs|FL]2]

E[Zs]2
� E[Z2

s ]

E[Zs]2
− exp

[
−2ε +

L∑
l=2

δ2
l λl

]
. (2.7)
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Finally, the estimate exp[−x] � 1 − x combined with (2.7) and Proposition 2.4 implies

that for sufficiently large ν, n, L and each s ∈ Sk,ω,ν we have

E[E[Z2
s |FL] − E[Zs|FL]2]

E[Zs]2
� 2ε exp

[ ∞∑
l=2

δ2
l λl

]
.

As this holds for any ε > 0 and by equation (2.3) the expression exp
[∑∞

l=2 δ
2
l λl

]
is finite,

the proof of the lemma is completed by first taking n → ∞ and then L → ∞.

Lemma 2.8. For any α > 0, we have

lim sup
L→∞

lim sup
n→∞

P[|Zk(G(n, m)) − E[Zk(G(n, m))|FL]| > αE[Zk(G(n, m))]] = 0.

Proof. To unclutter the notation, we set Zk = Zk(G(n, m)) and Zk,ω = Zk,ω(G(n, m)). First

we observe that Proposition 2.1 implies that for any α > 0 we can choose ω ∈ N sufficiently

large that

lim inf
n→∞

E[Zk,ω]

E[Zk]
> (1 − α2). (2.8)

We let ν ∈ N. To prove the statement, we need to get a handle on the cases where the vari-

ables Zs
k,ω,ν(G(n, m)) deviate strongly from their conditional expectation

E[Zs
k,ω,ν(G(n, m))|FL]. We let Zs = Zs

k,ω,ν(G(n, m)) and define

Xs = |Zs − E[Zs|FL]| · 1{|Zs−E[Zs|FL]|>αE[Zs]}

and X =
∑

s∈Sk,ω,ν
Xs. Then these definitions directly yield

P[X < αE[Zk,ω]] � P[|Zk,ω − E[Zk,ω|FL]| < 2αE[Zk,ω]]. (2.9)

By the definition of the Xs and Chebyshev’s inequality it is true for every s that

E[Xs|FL] �
∑
j�0

2j+1αE[Zs] P[|Zs − E[Zs|FL]| > 2jαE[Zs]] � 4Var[Zs|FL]

αE[Zs]
.

Hence, using that with Proposition 2.1 there is a number β = β(α, ω) such that

E[Zs]/E[Zk] � β/(|Sk,ω,ν |) for all s ∈ Sk,ω,ν and n sufficiently large, we have

E[X|FL] �
∑

s∈Sk,ω,ν

4Var[Zs|FL]

αE[Zs]
� 4βE[Zk]

α|Sk,ω,ν |
∑

s∈Sk,ω,ν

Var[Zs|FL]

E[Zs]2
.

Taking expectations, choosing ε = ε(α, β, ω) sufficiently small and applying Lemma 2.7,

we obtain

E[X] = E[E[X|FL]] � 4βE[Zk]

α|Sk,ω,ν |
∑

s∈Sk,ω,ν

E[Var[Zs|FL]]

E[Zs]2
� 4βεE[Zk]

α
� α2

E[Zk]. (2.10)

Using (2.9), Markov’s inequality, (2.10) and (2.8), it follows that

P[|Zk,ω − E[Zk,ω|FL]| < 2αE[Zk,ω]] � 1 − 2α. (2.11)
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Finally, the triangle inequality combined with Markov’s inequality and equations (2.8)

and (2.11) yields

P[|Zk − E[Zk|FL]| > αE[Zk]]

� P[|Zk − Zk,ω| + |Zk,ω − E[Zk,ω|FL]| + |E[Zk,ω|FL] − E[Zk|FL]| > αE[Zk]]

� 3α + α/3 + 3α < 7α,

which proves the statement.

Lemma 2.9. Let

UL =

L∑
l=2

Cl,n ln(1 + δl) − λlδl . (2.12)

Then lim supL→∞ lim supn→∞ E[|UL|] < ∞, and further, for any ε > 0 we have

lim sup
L→∞

lim sup
n→∞

P[| ln E[Zk(G(n, m))|FL] − ln E[Zk(G(n, m))] − UL| > ε] = 0 (2.13)

Proof. In a first step we show that E[|UL|] is uniformly bounded. As x − x2 � ln(1 + x) �
x for |x| � 1/8, we have for every l � L

E[|Cl,n ln(1 + δl) − λlδl |] � δlE[|Cl,n − λl |] + δ2
l E[Cl,n].

Therefore, Fact 2.2 implies that

E[|UL|] �
L∑
l=2

δl
√

λl + δ2
l λl . (2.14)

Proposition 2.3 ensures that
∑

l δ
2
l λl < ∞. Furthermore, as d′ � (2k − 1) ln k, we have∑

l

δl
√

λl �
∑
l

kl2−(k−1)l/2 < ∞

and thus (2.14) shows that E[|UL|] is uniformly bounded.

To prove (2.13), for given n and a constant B > 0 we let CB be the event that Cl,n < B

for all l � L. Referring to Fact 2.2, we can find for each L, ε > 0 a B > 0 such that

P[CB] > 1 − ε. (2.15)

To simplify the notation we set Zk = Zk(G(n, m)) and Zk,ω = Zk,ω(G(n, m)). By Proposi-

tion 2.1 we can choose for any α > 0 a ω > 0 sufficiently large that E[Zk,ω] > (1 − α)E[Zk]

for sufficiently large n. Then Propositions 2.1 and 2.3 combined with Fact 2.2 imply that,

for any c1, . . . , cL � B and sufficiently small α = α(ε, L, B), we have for sufficiently large n

E[Zk|∀2 � l � L : Cl,n = cl] � E[Zk,ω|∀2 � l � L : Cl,n = cl]

� exp[−ε]E[Zk]

L∏
l=2

(1 + δl)
cl exp[−δlλl]. (2.16)
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On the other hand, for sufficiently small α and sufficiently large n we have

E[Zk|∀2 � l � L : Cl,n = cl]

= E[Zk − Zk,ω|∀2 � l � L : Cl,n = cl] + E[Zk,ω|∀2 � l � L : Cl,n = cl]

� 2αE[Zk]∏L
l=2 P[Po(λl) = cl]

+ E[Zk,ω|∀2 � l � L : Cl,n = cl]

� exp[ε]E[Zk]

L∏
l=2

(1 + δl)
cl exp[−δlλl] (2.17)

Thus, the proof of (2.13) is completed by combining (2.15), (2.16) and (2.17) and taking

logarithms.

Proof of Theorem 1.1. From Lemmas 2.9 and 2.8 it follows that for any ε > 0 we have

lim sup
L→∞

lim sup
n→∞

P[| lnZk(G(n, m)) − ln E[Zk(G(n, m))] − UL| > ε] = 0, (2.18)

with UL defined as in (2.12). We now let

U ′
L =

L∑
l=3

Cl,n ln(1 + δl) − λlδl ,

and let S denote the event that G(n, m) consists of m distinct edges, or, equivalently, that

no cycles of length 2 exist in G(n, m). Given that S occurs, G(n, m) is identical to G(n, m)

and U ′
L is identical to UL for any L � 3. Furthermore, Fact 1.2 implies that P[S] = Ω(1).

Consequently, (2.18) yields

0 = lim sup
L→∞

lim
n→∞

P[| lnZk(G(n, m)) − ln E[Zk(G(n, m))] − UL| > ε|S]

= lim sup
L→∞

lim
n→∞

P[| lnZk(G(n, m)) − ln E[Zk(G(n, m))] − U ′
L| > ε]. (2.19)

In a next step, we define

WL =

L∑
l=3

Xl ln(1 + δl) − λlδl

and remember that

W =
∑
l�3

Xl ln(1 + δl) − λlδl .

As (Xl)l are independent Poisson random variables by definition, Fact 2.2 implies that for

each L the random variables U ′
L converge in distribution to WL as n → ∞. Furthermore,

because

E[W+
L ] � E[|WL|] �

L∑
l=3

δl
√

λl + δ2
l λl < ∞

by a reasoning analogous to (2.14) and the explanation thereafter, the martingale

convergence theorem implies that W is well-defined and that the WL converge to W
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almost surely as L → ∞. As Lemma 3.1 implies that

E[Zk(G(n, m))],E[Zk(G(n, m)] = Θ(kn(1 − 1/k)m),

we have

E[Zk(G(n, m))] = Θ(E[Zk(G(n, m)]),

and with (2.19) Theorem 1.1 follows.

3. The first moment

The aim in this section is to prove Proposition 2.1. The calculations that have to be done

follow the path beaten in [3, 13, 18, 26] and are in fact very similar to [6]. Furthermore,

at the end of the section we state a result that we need for the proof of Proposition 2.4.

Let Zk,ρ(G) be the number of k-colourings of the graph G with colour density ρ. We

define

f1 : ρ ∈ Ak �→ H(ρ) +
d

2
ln

(
1 −

k∑
i=1

ρ2
i

)
,

where H(ρ) denotes the entropy function introduced in Section 1.4. In order to determine

the expectation of Zk,ρ, we have to analyse the function f1(ρ). Let ρ	 be a k-dimensional

vector with all entries set to 1/k. The following lemma was obtained in [6].

Lemma 3.1. Let k � 3 and d′ ∈ (0,∞). Then there exist numbers

C1 = C1(k, d′), C2 = C2(k, d′) > 0

such that for any ρ ∈ Ak(n) we have

C1n
(1−k)/2 exp[nf1(ρ)] � E[Zk,ρ(G(n, m))] � C2 exp[nf1(ρ)]. (3.1)

Moreover, if ‖ρ − ρ	‖2 = o(1) and d = 2m/n, then

E[Zk,ρ(G(n, m))] ∼ (2πn)(1−k)/2 kk/2 exp[d/2 + nf1(ρ)]. (3.2)

We can now state the expectation of Zk .

Corollary 3.2. For any k � 3, d′ ∈ (0,∞) and d = 2m/n, we have

E[Zk(G(n, m))] ∼ exp[d/2 + nf1(ρ	)]

(
1 +

d

k − 1

)−(k−1)/2

. (3.3)

Furthermore, for ω > 0 we have

lim
ω→∞

lim inf
n→∞

E[Zk,ω(G(n, m))]

E[Zk(G(n, m))]
= 1. (3.4)
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Proof of Proposition 2.1. The proposition is immediate from Corollary 3.2, as evaluating

nf1(ρ	) yields

nf1(ρ	) = Θ(kn(1 − 1/k)m)

and d is chosen to be constant.

Finally, as our approach requires the analysis of the random variables Zs
k,ω,ν(G(n, m)),

we derive an expression for E[Zs
k,ω,ν(G(n, m))] that we will need to prove Proposition 2.4.

Lemma 3.3. Let k � 3, ω, ν ∈ N, d′ ∈ (0,∞) and d = 2m/n. For s ∈ Sk,ω,ν and ρk,ω,ν,s as

defined in (2.2), we have

E[Zs
k,ω,ν(G(n, m))] ∼ν |As

k,ω,ν(n)|(2πn)(1−k)/2 kk/2 exp[d/2 + nf1(ρk,ω,ν,s)].

Proof. Using a Taylor expansion of f1(ρ) around ρ = ρk,ω,ν,s, we get

f1(ρ) = f1(ρk,ω,ν,s) + Θ

(
ω√
n

)
‖ρ − ρk,ω,ν,s‖1 + Θ(‖ρ − ρk,ω,ν,s‖2

2). (3.5)

Since

‖ρ − ρk,ω,ν,s‖1 = O

(
1

ν
√
n

)
for ρ ∈ As

k,ω,ν(n)

and

‖ρ − ρk,ω,ν,s‖2
2 = O

(
1

ν2n

)
,

we conclude that

f1(ρ) = f1(ρk,ω,ν,s) + O

(
ω

νn

)
,

and as this is independent of ρ, the assertion follows by inserting (3.5) in (3.2) and

multiplying by |As
k,ω,ν(n)|.

4. The second moment

The aim of this section is to prove Propositions 2.4 and 2.5. These two propositions

yield the important result that the second moment of the adequately chosen number

of solutions can be bounded by a constant times the square of its first moment. The

proof of Proposition 2.4 constitutes the main technical contribution of this work and is

implemented in the following way. In Section 4.1 we introduce the overlap and some

further important notation and crucial estimates on the second moment of two colourings

with fixed overlap. In Section 4.2 we divide the set of overlaps into smaller subsets

more convenient to work with and prove that it suffices to consider overlaps near some

canonical overlap corresponding to the barycentre of the set of all overlaps. Subsequently,

in Section 4.3 we show that we can further reduce the number of overlaps contributing

to the second moment and finally in Section 4.4 we calculate the relevant constants to
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complete the proof on Proposition 2.4. After that, the proof of Proposition 2.5 is carried

out in the last subsection and is based on and an enhancement of results derived in [3].

4.1. Classifying the overlap

To standardize the notation, we define the overlap matrix ρ(σ, τ) = (ρij(σ, τ))i,j∈[k] for two

colour assignments σ, τ : [n] → [k] as the doubly stochastic k × k-matrix with entries

ρij(σ, τ) =
1

n
· |σ−1(i) ∩ τ−1(j)|,

that is, the fraction of vertices receiving colour i in colouring σ and colour j in colouring

τ. Analogously to our notation in Section 2, we let Bk(n) denote the set of all overlap

matrices and let Bk denote the set of all probability measures ρ = (ρij)i,j∈[k] on [k] × [k]. To

unclutter the notation and shorten the proofs, for a k × k-matrix ρ = (ρij), we introduce

the shorthand

ρi	 =

k∑
j=1

ρij , ρ · 	 = (ρi	)i∈[k], ρ	j =

k∑
i=1

ρij , ρ	 · = (ρ	i)i∈[k].

With the notation from Section 2, we observe that for any σ, τ : [n] → [k] we have

ρ · 	, ρ	 · ∈ Ak(n). For a given graph G on [n], we let Z (2)
k,ρ(G) be the number of pairs (σ, τ)

of k-colourings of G whose overlap is ρ and let further ρ̄ signify the k × k-matrix with all

entries equal to k−2, the barycentre of Bk . We will need the following elementary estimates.

Fact 4.1. For any k � 3, d′ ∈ (0,∞) and d = 2m/n, the following estimates are true.

(1) Let ρ ∈ Bk(n). Then

E[Z (2)
k,ρ(G(n, m))] ∼

√
2πn(1−k2)/2∏k
i,j=1

√
2πρij

exp[d/2 + nH(ρ) + m ln(1 − ‖ρ · 	‖2
2 − ‖ρ	 · ‖2

2 + ‖ρ‖2
2)].

(4.1)

(2) For any ρ ∈ Bk(n) with ‖ρ − ρ̄‖2
2 = o(1), we have

E[Z (2)
k,ρ(G(n, m))] ∼ kk

2

(2πn)(1−k2)/2 exp[d/2 + nH(ρ) + m ln(1 − ‖ρ · 	‖2
2 − ‖ρ	 · ‖2

2 + ‖ρ‖2
2)].

(4.2)

To avoid writing down the expressions repeatedly, we introduce the function f2 : Bk → R

defined as

f2(ρ) = H(ρ) +
d

2
ln(1 − ‖ρ · 	‖2

2 − ‖ρ	 · ‖2
2 + ‖ρ‖2

2). (4.3)

A direct consequence of Fact 4.1 is that for every ρ ∈ Bk(n) we have

E[Z (2)
k,ρ(G(n, m))] = exp[nf2(ρ) + O(ln n)]. (4.4)
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4.2. Dividing up the hypercube

We now split up the set of overlap matrices Bk(n) in the following way. We introduce the

set

Bk,ω(n) =

{
ρ ∈ Bk(n) : ρi	, ρ	i ∈

[
1

k
− w√

n
,
1

k
+

w√
n

)
for all i ∈ [k]

}
,

which corresponds to Ak,ω(n) insofar as for ρ ∈ Bk,ω(n) we have ρi	, ρ	i ∈ Ak,ω(n) for all

i ∈ [k]. In a next step, we refine these sets into even smaller subsets. We recall Sk,ω,ν from

(2.1) and ρk,ω,ν,s from (2.2). For s ∈ Sk,ω,ν we set

Bs
k,ω,ν(n) =

{
ρ ∈ Bk,ω(n) : ρi	, ρ	i ∈

[
ρ
k,ω,ν,s
i − 1

ν
√
n
, ρ

k,ω,ν,s
i +

1

ν
√
n

)
for all i ∈ [k]

}
,

an analogue of the quantity As
k,ω,ν(n). Thus, for any fixed ν, Bk,ω(n) is a disjoint union of

all Bs
k,ω,ν(n) for s ∈ Sk,ω,ν . By linearity of expectation,

E[Zs
k,ω,ν(G(n, m))2] =

∑
ρ∈Bs

k,ω,ν
(n)

E[Z (2)
k,ρ(G(n, m))]. (4.5)

To prove Proposition 2.4, this is the quantity we need to determine. To proceed with

the calculations, we introduce, for each ω, ν ∈ N, s ∈ Sk,ω,ν and η > 0,

Bs
k,ω,ν,η(n) = {ρ ∈ Bs

k,ω,ν(n) : ‖ρ − ρ̄‖2 � η}.

We are going to show that the right-hand side of (4.5) is dominated by the contributions

with ρ ‘close to’ ρ̄ in terms of the Euclidean norm. More precisely, for a graph G let

Z
s (2)
k,ω,ν,η(G) =

∑
ρ∈Bs

k,ω,ν,η
(n)

Z
(2)
k,ρ(G) for any η > 0.

Then the second moment argument performed in [3] fairly directly yields the following

statement showing that overlap matrices that are far apart from ρ̄ asymptotically do not

contribute to the second moment.

Proposition 4.2. Assume that k � 3 and d′ < 2(k − 1) ln(k − 1). Further, let ω, ν ∈ N. Then

for any fixed η > 0 and any s ∈ Sk,ω,ν , it holds that

E[Zs
k,ω,ν(G(n, m))2] ∼ E[Zs (2)

k,ω,ν,η(G(n, m))].

The rest of this subsection will be dedicated to proving this proposition. We first define

a function

f̄2 : Bk,ω(n) → R, ρ �→ H(ρ) +
d

2
ln

(
1 − 2

k
+ ‖ρ‖2

2

)
.

The following lemma shows how f2 defined in (4.3) relates to f̄2.

Lemma 4.3. For ρ = (ρij) ∈ Bk,ω(n), we have

exp[nf2(ρ)] = (1 + o(1)) exp[nf̄2(ρ) + O(ω2)].
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Proof. We define the function

ζ(ρ) = f2(ρ) − f̄2(ρ)

and derive an upper bound on ζ(ρ). By definition, for each ρ ∈ Bk,ω(n) there exist

α = (αi)i∈[k] and β = (βj)j∈[k] such that ρi	 = 1/k + αi and ρ	j = 1/k + βj for all i, j ∈ [k]

with |αi|, |βj | � ω/
√
n. Thus,

f2(ρ) = H(ρ) +
d

2
ln(1 − ‖ρ̄ · 	 + α‖2

2 − ‖ρ̄	 · + β‖2
2 + ‖ρ‖2

2).

As we are only interested in the difference between f2 and f̄2, we can reparametrize ζ as

ζ(α, β) =
d

2
ln

(
1 − ‖ρ̄ · 	 + α‖2

2 − ‖ρ̄	 · + β‖2
2 + ‖ρ‖2

2

1 − 2/k + ‖ρ‖2
2

)
.

Differentiating and simplifying the expression yields

∂ζ

∂αi
(α, β),

∂ζ

∂βj
(α, β) = O

(
ω√
n

)
for all i, j ∈ [k].

According to the fundamental theorem of calculus, it follows that

max
ρ∈Bk,ω(n)

|ζ(ρ)| =

∫ ω/
√
n

−ω/
√
n

O

(
ω√
n

)
dα1 = O

(
ω2

n

)
,

completing the proof.

Equation (4.4) combined with Lemma 4.3 reduces our task to studying the function

f̄2(ρ). For the range of d covered by Proposition 4.2, this analysis is the main technical

achievement of [3], where the following statement is proved.

Lemma 4.4. Assume that k � 3, ω ∈ N as well as d′ � 2(k − 1) ln(k − 1) and d = 2m/n.

For any n > 0 and any overlap matrix ρ ∈ Bk,ω(n), we have

f̄2(ρ) � f̄2(ρ̄) − 2(k − 1) ln(k − 1) − d

4(k − 1)2
(k2‖ρ‖2

2 − 1) + o(1). (4.6)

Proof. For ρ such that
∑k

i=1 ρij =
∑k

i=1 ρji = 1/k, the bound (4.6) is proved in [3,

Section 3]. This implies that (4.6) also holds for ρ ∈ Bk,ω(n), because f̄2 is uniformly

continuous on the compact set Bk,ω(n).

Proof of Proposition 4.2. Assume that k and d satisfy the assumptions of Proposition 4.2

and let ν ∈ N and η > 0 be any fixed number. Then, for any ρ̂ ∈ Bs
k,ω,ν(n), we have

‖ρ̂ − ρ̄‖2 = O

(
ω√
n

)
.

Consequently, we obtain with (4.4) that∑
ρ∈Bs

k,ω,ν (n)

‖ρ−ρ̄‖2�η

E[Z (2)
k,ρ(G(n, m))] � E[Z (2)

k,ρ̂(G(n, m))] � exp[nf2(ρ̄) + O(ln n)]. (4.7)
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On the other hand, the function B → R, ρ → k2‖ρ‖2 is smooth, strictly convex and

attains its global minimum of 1 at ρ = ρ̄. Consequently, there exist (ck)k > 0 such that if

‖ρ − ρ̄‖2 > η, then (k2‖ρ‖2 − 1) � ck . Hence, Fact 4.1, Lemma 4.3 and Lemma 4.4 yield∑
ρ∈Bs

k,ω,ν (n)

‖ρ−ρ̄‖2>η

E[Z (2)
k,ρ(G(n, m))] � exp[nf2(ρ̄) − nckdk + o(n)], (4.8)

where dk =
2(k − 1) ln(k − 1) − d

4(k − 1)2
> 0.

Combining (4.8) and (4.7), we conclude that

E[Zs
k,ω,ν(G(n, m))2] ∼ E[Zs (2)

k,ω,ν,η(G(n, m))],

thereby completing the proof of Proposition 4.2.

4.3. Reducing the number of overlaps

Having reduced our task to studying overlaps ρ such that ‖ρ − ρ̄‖2 � η for a small but

fixed η > 0, in this section we are going to argue that, in fact, it suffices to consider ρ

such that ‖ρ − ρ̄‖2 � n−3/8 (where the constant 3/8 is somewhat arbitrary; any number

smaller than 1/2 would do). More precisely, we have the following result.

Proposition 4.5. Assume that k � 3 and that d′ < dk,cond. Let ν, ω ∈ N and s ∈ Sk,ω,ν . There

exists a number η0 = η0(d′, k) such that for any 0 < η < η0 we have

E[Zs (2)
k,ω,ν,η(G(n, m))] ∼ E[Zs (2)

k,ω,ν,n−3/8 (G(n, m))].

The key to proving this proposition is the following lemma. It specifies the expected

number of pairs of solutions in the cases where the overlap matrices ρ ∈ Bs
k,ω,ν(n) satisfy

‖ρ − ρ̄‖2 � n−3/8 or ‖ρ − ρ̄‖2 ∈ (n−3/8, η).

Lemma 4.6. Let k � 3, d′ < (k − 1)2 and d = 2m/n. Set

Cn(d, k) = exp[d/2]kk
2

(2πn)(1−k2)/2 and D(d, k) = k2

(
1 − d

(k − 1)2

)
. (4.9)

• If ρ ∈ Bs
k,ω,ν,η(n) satisfies ‖ρ − ρ̄‖2 � n−3/8, then

E[Z (2)
k,ρ(G(n, m))] ∼ Cn(d, k) exp

[
2nf1(ρ	) − n

D(d, k)

2
‖ρ − ρ̄‖2

2

]
. (4.10)

• There exist numbers η = η(d, k) > 0 and A = A(d, k) > 0 such that if ρ ∈ Bs
k,ω,ν,η(n)

satisfies ‖ρ − ρ̄‖2 ∈ (n−3/8, η), then

E[Z (2)
k,ρ(G(n, m))] � exp[2nf1(ρ	) − An1/4]. (4.11)

Proof. As Fact 4.1 yields

E[Z (2)
k,ρ(G(n, m))] ∼ Cn(d, k) exp[nf2(ρ)],
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we have to analyse f2. Expanding this function around ρ̄ yields

f2(ρ) = f2(ρ̄) − D(d, k)

2
‖ρ − ρ̄‖2

2 + O(‖ρ − ρ̄‖3
2). (4.12)

Consequently, for ‖ρ − ρ̄‖2 � n−3/8,

exp[nf2(ρ)] = exp

[
nf2(ρ̄) − n

D(d, k)

2
‖ρ − ρ̄‖2

2 + O(n−1/8)

]
.

As f2 satisfies f2(ρ̄) = 2f1(ρ	), the statement in (4.10) follows.

To prove (4.11), we observe that similarly to (4.12) and because f2 is smooth in a

neighbourhood of ρ̄, there exist η > 0 and A > 0 such that for ‖ρ − ρ̄‖2 � η,

f2(ρ) � f2(ρ̄) − A‖ρ − ρ̄‖2
2.

Hence, if ‖ρ − ρ̄‖2 ∈ (n−3/8, η), then

E[Z (2)
k,ρ(G(n, m))] = O(n(1−k2)/2) exp[nf2(ρ)] � exp[2nf1(ρ	) − An1/4],

as claimed.

Proof of Proposition 4.5. We fix s ∈ Sk,ω,ν . Further, we fix η > 0 and A > 0 as given by

Lemma 4.6. For each ρ̂ ∈ Bs
k,ω,ν,η(n), we have

‖ρ̂ − ρ̄‖2 = O

(
ω√
n

)
,

and obtain from the first part of Lemma 4.6 that

E[Zs (2)

k,ω,ν,n−3/8 (G(n, m))] � E[Z (2)
k,ρ0

(G(n, m))] = (1 + o(1)) Cn(d, k) exp[2nf1(ρ	) + O(ω2)].

(4.13)

On the other hand, because |Bs
k,ω,ν,η(n)| is bounded by a polynomial in n, the second part

of Lemma 4.6 yields∑
ρ∈Bs

k,ω,ν,η(n)

‖ρ−ρ̄‖2>n−3/8

E[Z (2)
k,ρ(G(n, m))] � exp[2nf1(ρ	) − An1/6 + O(ln n)]. (4.14)

Combining (4.13) and (4.14), we obtain

E[Zs (2)
k,ω,ν,η(G(n, m))] ∼

∑
ρ∈Bs

k,ω,ν,n−3/8
(n)

E[Z (2)
k,ρ(G(n, m))] ∼ E[Zs (2)

k,ω,ν,n−3/8 (G(n, m))],

as claimed.

4.4. Calculating the constant

In this subsection we compute the contribution of the overlap matrices ρ ∈ Bs
k,ω,ν,n−3/8 (n),

in order to give a very precise expression for the second moment. At the end of this

subsection, the proof of Proposition 2.4 is finally completed.
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Proposition 4.7. Assume that k � 3, ω, ν ∈ N, d′ < (k − 1)2 and d = 2m/n. Let s ∈ Sk,ω,ν .

Then

E[Zs (2)

k,ω,ν,n−3/8 (G(n, m))]

∼ν (|Ak,ω(n)|(2πn)(1−k)/2 kk/2 exp[nf1(ρk,ω,ν,s)])2 exp[d/2]

(
1 − d

(k − 1)2

)−(k−1)2/2

.

The rest of this subsection will be dedicated to proving this proposition. We first show

that in each region of the hypercube we can approximate f2 by a function where the

marginals are set to those of the centre of this region as defined in (2.2). More formally,

let fs2 : Bk → R be defined as

fs2 : ρ �→ H(ρ) +
d

2
ln(1 − 2‖ρk,ω,ν,s‖2

2 + ‖ρ‖2
2).

Then the following is true.

Lemma 4.8. Let k � 3, ω, ν ∈ N and Cn(d, k) as in (4.9). Then for ρ ∈ Bs
k,ω,ν,n−3/8 (n) it holds

that

E[Z (2)
k,ρ(G(n, m))] = (1 + o(1)) Cn(d, k) exp

[
nfs2(ρ) + O

(
ω

ν

)]
.

Proof. Equation (4.2) of Fact 4.1 yields that

E[Z (2)
k,ρ(G(n, m))] ∼ Cn(d, k) exp[nf2(ρ)]. (4.15)

For s ∈ Sk,ω,ν , we define the function

ζs(ρ) = f2(ρ) − fs2(ρ).

To derive an upper bound on ζs(ρ) for all values ρ ∈ Bs
k,ω,ν,n−3/8 (n), we first observe that

there exist α = (αi)i∈[k] and β = (βj)j∈[k] such that the function f2 can be expressed by

setting ρi	 = ρ
k,ω,ν,s
i + αi and ρ	j = ρ

k,ω,ν,s
j + βj for all i, j ∈ [k] with |αi|, |βj | � 1/(ν

√
n).

Thus,

f2 : ρ �→ H(ρ) +
d

2
ln(1 − ‖ρk,ω,ν,s + α‖2

2 − ‖ρk,ω,ν,s + β‖2
2 + ‖ρ‖2

2).

As we are only interested in the difference between f2 and fs2, we can reparametrize ζs as

ζs(α, β) =
d

2
ln

(
1 − ‖ρk,ω,ν,s + α‖2

2 − ‖ρk,ω,ν,s + β‖2
2 + ‖ρ‖2

2

1 − 2‖ρk,ω,ν,s‖2
2 + ‖ρ‖2

2

)
.

Differentiating and simplifying the expression yields

∂ζs

∂αi
(α, β),

∂ζs

∂βj
(α, β) = O

(
ω√
n

)
for all i, j ∈ [k].
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According to the fundamental theorem of calculus, it follows for every s ∈ Sk,ω,ν that

max
ρ∈Bs

k,ω,ν,n−3/8
(n)

|ζs(ρ)| =

∫ (ν
√
n)−1

−(ν
√
n)−1

O

(
ω√
n

)
dα1 = O

(
ω

nν

)
.

Combining this with (4.15) yields the assertion.

In due course we are going to need the set of matrices with coefficients in n−1
Z whose

lines and columns sum to zero:

En =

{
(εi,j)1�i�k

1�j�k

, ∀i, j ∈ [k], εi,j ∈ 1

n
Z, ∀j ∈ [k],

k∑
i=1

εij =

k∑
i=1

εji = 0

}
. (4.16)

The following result regards Gaussian summations over matrices in En.

Lemma 4.9. Let k � 2, d′ < (k − 1)2 and D > 0 be fixed. Then

∑
ε∈En

exp

[
−n

D

2
‖ε‖2

2 + o(n1/2)‖ε‖2

]
∼ (

√
2πn)(k−1)2

D−(k−1)2/2 k−(k−1).

Lemma 4.9 and its proof are very similar to an argument used in [18, Section 3]. In

fact, Lemma 4.9 follows from the next result.

Lemma 4.10 ([18, Lemma 6 (b) and 7 (c)]). There is a (k − 1)2 × (k − 1)2-matrix

H = (H(i,j),(k,l))i,j,k,l∈[k−1]

such that for any ε = (εij)i,j∈[k] ∈ En we have∑
i,j,i′ ,j′∈[k−1]

H(i,j),(i′ ,j′)εijεi′j′ = ‖ε‖2
2.

This matrix H is positive definite and detH = k2(k−1).

Now we are ready to prove Proposition 4.7.

Proof of Proposition 4.7. Lemma 4.8 states that for every ρ ∈ Bs
k,ω,ν,n−3/8 (n) we have

E[Z (2)
k,ρ(G(n, m))] = (1 + o(1)) Cn(d, k) exp

[
nfs2(ρ) + O

(
ω

ν

)]
. (4.17)

Thus, all we have to do is analyse the function fs2 for s ∈ Sk,ω,ν . To this end, we expand

fs2(ρ) around ρ = ρs where ρs = (ρsij)i,j with ρij = ρ
k,ω,ν,s
i · ρk,ω,ν,s

j . Then with D(d, k) as

defined in (4.9) we have

fs2(ρ) = fs2(ρs) + Θ

(
ω

n

)
‖ρ − ρs‖2 − D(d, k)

2
‖ρ − ρs‖2

2 + o(n−1). (4.18)
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Combining (4.18) with (4.17), we find that

E[Z (2)
k,ρ(G(n, m))] (4.19)

= (1 + o(1)) Cn(d, k) exp

[
nfs2(ρs) + Θ(ω)‖ρ − ρs‖2 − n

D(d, k)

2
‖ρ − ρs‖2

2 + O

(
ω

ν

)]
.

For two vectors of ‘marginals’ ρ0, ρ1 ∈ Bs
k,ω,ν(n), we introduce the set of overlap matrices

Bs
k,ω,ν,n−3/8 (n, ρ

0, ρ1) = {ρ ∈ Bs
k,ω,ν,n−3/8 (n) : ρ · 	 = ρ0, ρ	 · = ρ1}.

and observe that with this definition we have

E[Zs (2)

k,ω,ν,n−3/8 (G(n, m))] =
∑

ρ0 ,ρ1∈Bs
k,ω,ν

(n)

∑
ρ∈Bs

k,ω,ν,n−3/8
(n,ρ0 ,ρ1)

E[Z (2)
k,ρ(G(n, m))]. (4.20)

In particular, the set Bs
k,ω,ν,n−3/8 (n, ρ

0, ρ1) contains the ‘product’ overlap ρ0 ⊗ ρ1 defined by

(ρ0 ⊗ ρ1)ij = ρ0
i ρ

1
j for i, j ∈ [k]. To proceed, we fix two colour densities ρ0, ρ1 ∈ Bs

k,ω,ν(n)

and simplify the notation by writing

B̂ = Bs
k,ω,ν,n−3/8 (n, ρ

0, ρ1), ρ̂ = ρ0 ⊗ ρ1.

Thus, the inner sum from (4.20) simplifies to

S1 =
∑
ρ∈ ̂B

E[Z (2)
k,ρ(G(n, m))].

and we are going to evaluate this quantity. We observe that with En as defined in (4.16),

for each ρ ∈ B̂ we can find ε ∈ En such that

ρ = ρ̂ + ε.

Hence, this gives ‖ρ − ρs‖2 = ‖ρ̂ + ε − ρs‖2, and the triangle inequality yields

‖ε‖2 − ‖ρ̂ − ρs‖2 � ‖ρ̂ + ε − ρs‖2 � ‖ε‖2 + ‖ρ̂ − ρs‖2.

By definition of ρ̂ and ρs, we have ‖ρ̂ − ρs‖2 � 1/(ν
√
n) and consequently

‖ρ − ρs‖2 = ‖ε‖2 + O

(
1

ν
√
n

)
. (4.21)

Observing that fs2(ρs) = (f1(ρk,ω,ν,s))2 and inserting (4.21) into (4.19) while taking first

n → ∞ and afterwards ν → ∞, we obtain

S1 ∼ν Cn(d, k) exp[2nfs1(ρk,ω,ν,s)]
∑
ρ∈ ̂B

exp

[
−n

D(d, k)

2
‖ε‖2

2 + o(n1/2)‖ε‖2

]
. (4.22)

To apply Lemma 4.9, we have to relate ρ ∈ B̂ to ε ∈ En. From the definitions we obtain

{ρ̂ + ε : ε ∈ En, ‖ε‖2 � n−3/8/2} ⊂ {ρ ∈ B̂} ⊂ {ρ̂ + ε : ε ∈ En}.
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We show that the contribution of ε ∈ En with ‖ε‖2 > n−3/8/2 is negligible:

S2 = Cn(d, k) exp[2nfs1(ρk,ω,ν,s)]
∑
ε∈Sn

‖ε‖2>n−3/8/2

exp

[
−n

D(d, k)

2
‖ε‖2

2(1 + o(1))

]

= Cn(d, k) exp[2nfs1(ρk,ω,ν,s)]
∑
l∈Z/n

l>n−3/8/2

∑
ε∈Sn

‖ε‖2=l

exp

[
−nl2

D(d, k)

2
(1 + o(1))

]

= Cn(d, k) exp[2nfs1(ρk,ω,ν,s)]O(nk
2

) exp

[
−D(d, k)

2
n1/4

]
.

Consequently, (4.22) yields Σ2 = o(Σ1). Thus, we obtain from Lemma 4.9 that

S1 ∼ν Cn(d, k) exp[2nfs1(ρk,ω,ν,s)]
∑
ρ∈ ̂B

exp

[
−n

D(d, k)

2
‖ε‖2

2 + o(n1/2)‖ε‖2

]
.

∼ν Cn(d, k) exp[2nfs1(ρk,ω,ν,s)](
√

2πn)(k−1)2

k−k(k−1)

(
1 − d

(k − 1)2

)−(k−1)2/2

. (4.23)

In particular, the last expression is independent of the choice of the vectors ρ0, ρ1 that

defined B̂. Therefore, substituting (4.23) in the decomposition (4.20) completes the proof

of Proposition 4.7.

Proof of Proposition 2.4. The first part of the proposition is immediately obtained by

combining Lemma 3.3 with Propositions 4.2, 4.5 and 4.7. The equation follows by applying

the definitions ol λl and δl .

4.5. Up to the condensation threshold

In this last subsection we prove Proposition 2.5. In the regime 2(k − 1) ln(k − 1) � d′ <

dk,cond for k � k0 for some big constant k0, we consider random variables Z̃ s
k,ω,ν instead of

Zs
k,ω,ν . To prove the proposition we show the following result by adapting our setting in a

way that we can apply the second moments argument from [13] and [7].

Proposition 4.11. Let ω, ν ∈ N. There is a constant k0 > 3 such that for k � k0 and 2(k −
1) ln(k − 1) � d′ < dk,cond, the following is true. For each s ∈ Sk,ω,ν , there exists an integer-

valued random variable 0 � Z̃ s
k,ω,ν � Zs

k,ω,ν that satisfies

E[Z̃ s
k,ω,ν(G(n, m))] ∼ E[Zs

k,ω,ν(G(n, m))],

and such that for any fixed η > 0 we have

E[Z̃ s
k,ω,ν(G(n, m))2] � (1 + o(1)) E[Zs (2)

k,ω,ν,η(G(n, m))].

In this section we work with the Erdős–Rényi random graph model G(n, p), which is

a random graph on [n] vertices where every possible edge is present with probability

p = d/n independently. We further assume from now on that k divides n.
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The use of results from [7, 13] is complicated by the fact that we are dealing with

(ω, n)-balanced k-colourings that allow a larger discrepancy between the colour classes

than [7, 13], where balanced colourings are defined such that in each colour class only

a deviation of at most
√
n from the typical value n/k is allowed. To circumvent this

problem, we introduce the following.

Choose a map σ : [n] → [k] uniformly at random and generate a graph G(n, p′, σ)

on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) �= σ(w) with probability

p′ = dk/(n(k − 1)) independently.

Given σ and G(n, p′, σ), we define

αi = |σ−1(i) − n/k| for i ∈ [k]

and let α = maxi∈[k] αi. Thus, by definition α � ω
√
n. We set n′ = n + k�α�. Further, we let

βi = |σ−1(i) − (n + k�α�)/k| for i ∈ [k].

We then construct a coloured graph G′
n′ ,p′ ,σ′ from G(n, p′, σ) in the following way.

• Add k�α� vertices to G(n, p) and denote them by n + 1, n + 2, . . . , n + k�α�.

• Define a colouring σ′ : [n′] → [k] by σ′(i) = σ(i) for i ∈ [n], σ(i) = 1 for i ∈ n + 1, . . . ,

n + β1 and σ(i) = j for j ∈ {2, . . . , k} and i ∈ n + βj−1 + 1, . . . , n + βj .

• Add each possible edge (i, j) with σ′(i) �= σ′(j) involving a vertex i ∈ {n + 1, . . . , n +

k�α�} with probability p′ = dk/(n(k − 1)).

We call a colouring τ : [n] → [k] of a graph G on [n] perfectly balanced if |τ−1(i)| = |τ−1(j)|
for all i, j ∈ [k] and we denote the set of all such perfectly balanced colourings by B̃k(n).

Then the following holds by construction.

Fact 4.12. G′
n′ ,p′ ,σ′ has the same distribution as G(n′, p′, τ) conditioned on the event that

τ : [n′] → k is perfectly balanced.

Let G′′
n,p′ ,σ′ |[n] denote the graph obtained from G′

n′ ,p′ ,σ′ by deleting the vertices n +

1, . . . , n + k�α� and the incident edges.

Fact 4.13. G′′
n,p′ ,σ′ |n has the same distribution as G(n, p′, τ) conditioned on the event that τ is

(ω, n)-balanced.

To proceed, we adopt the following notation from [13]. Let ρ ∈ Bk be called s-stable if

it has precisely s entries bigger than 0.51/k. Further, let B̄k be the set of all ρ ∈ Bk such

that

k∑
j=1

ρij =

k∑
j=1

ρji = 1/k for all i ∈ [k].

Then any ρ ∈ B̄k is s-stable for some s ∈ {0, 1, . . . , k}. In addition, let κ = ln20 k/k and

let us call ρ ∈ Bk separable if kρij �∈ (0.51, 1 − κ) for all i, j ∈ [k]. A k-colouring σ of a

graph G on [n] is called separable if, for any other k-colouring τ of G, the overlap matrix

ρ(σ, τ) is separable. We have the following result.
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Lemma 4.14. Let s ∈ Sk,ω,ν . There exists k0 > 0 such that for all k > k0 and all d′ such

that 2(k − 1) ln(k − 1) � d′ � (2k − 1) ln k, the following is true. Let Z̃ s
k,ω,ν(G(n, m)) denote

the number of (ω, n)-balanced k-colourings of G(n, m) that fail to be separable. Then

E[Z̃ s
k,ω,ν(G(n, m))] = o(E[Zs

k,ω,ν(G(n, m))]).

To prove this lemma, we combine Fact 4.12 with [13, Lemma 3.3]. This yields the

following.†

Lemma 4.15 ([13]). There is k0 > 0 such that for all k � k0 and all d′ with 2(k − 1) ln(k −
1) � d′ � (2k − 1) ln k, each τ ∈ B̃k(n

′) is separable in G′
n′ ,p′ ,τ w.h.p.

Proof of Lemma 4.14. Choose a map σ : [n] → [k] uniformly at random and generate a

graph G(n, p′, σ) on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) �= σ(w) with

probability p′ independently. Construct G′
n′ ,p′ ,σ′ from G(n, p′, σ) in the way defined above.

Then σ′ ∈ B̃k(n). By Lemma 4.15, σ′ is separable in G′
n′ ,p′ ,σ′ w.h.p. Thus, σ is separable in

G′′
n,p′ ,σ′ |n if we define separability using κ′ = (ln21 k)/k. By choosing k0 sufficiently large and

applying Fact 4.13, the assertion follows.

For the next ingredient of the proof of Proposition 4.11, we need the following definition.

For a graph G on [n] and a k-colouring σ of G, we let C(G, σ) be the set of all τ ∈ Bk that

are k-colourings of G such that ρ(σ, τ) is k-stable.

Lemma 4.16. Let s ∈ Sk,ω,ν . There is k0 > 0 such that for all k > k0 and all d′ such that

(2k − 1) ln k − 2 � d′ � dk,cond, the following is true. There exists an ε > 0 such that if

Z̃ s
k,ω,ν(G(n, m)) denotes the number of (ω, n)-balanced k-colourings σ of G(n, m) satisfying

|C(G(n, m), σ)| > E[Zs
k,ω,ν(G(n, m))]/ exp[εn],

then

E[Z̃ s
k,ω,ν(G(n, m))] = o(E[Zs

k,ω,ν(G(n, m))]).

To prove this lemma, we combine 4.12 with [7, Corollary 1.1] and obtain the following.

Lemma 4.17 ([7]). Let s ∈ Sk,ω,ν . There exists k0 > 0 such that for all k > k0 and all d′

such that (2k − 1) ln k − 2 � d′ � dk,cond, the following is true. Let τ ∈ B̃k(n
′) be a perfectly

balanced colour assignment. Then there exists ε > 0 such that if Z̃ s
k,ω,ν(G

′
n′ ,p′ ,τ) denotes the

number of (ω, n)-balanced k-colourings τ of G′
n′ ,p′ ,τ satisfying

|C(G′
n′ ,p′ ,τ, τ)| > E[Zs

k,ω,ν(G
′
n′ ,p′ ,τ)]/ exp[εn],

† As a matter of fact, Lemma 3.2 in [13] also holds for densities 2(k − 1) ln(k − 1) � d′ � 2(k − 1) ln k − 2, as

all steps in the proof are also valid in this regime.
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then

E[Z̃ s
k,ω,ν(G

′
n′ ,p′ ,τ)] = o(E[Zs

k,ω,ν(G
′
n′ ,p′ ,τ)]).

Proof of Lemma 4.16. Choose a map σ : [n] → [k] uniformly at random and generate

a graph G(n, p′, σ) on [n] by connecting any two vertices v, w ∈ [n] such that σ(v) �= σ(w)

with probability p′ independently. Construct G′
n′ ,p′ ,σ′ from G(n, p′, σ) in the way defined

above. To construct G′′
n,p′ ,σ′

|[n]
from G′

n′ ,p′ ,σ′ , we have to delete O(
√
n) many vertices. By [7,

Section 6], for each of these vertices v we can bound the logarithm of the number of

colourings that emerge when deleting v by O(ln n). Thus,

ln |C(G′′
n,p′ ,σ′

|[n]
, σ′

|[n])| = ln |C(G′
n′ ,p′ ,σ′ , σ′)| + O(

√
n ln n) = ln |C(G′

n′ ,p′ ,σ′ , σ′)| + o(n). (4.24)

Then Lemma 4.16 follows by combining Lemma 4.17 with (4.24) and Fact 4.13.

To complete the proof, we have to analyse the function f2 defined in (4.3), as we know

from (4.4) that

E[Z (2)
k,ρ(G(n, m))] = exp[nf2(ρ) + O(ln n)].

The following lemma shows that we can confine ourselves to the investigation of the

function f̄2 defined in (4.2).

Lemma 4.18. Let limn→∞(ρn)n = ρ0. Then limn→∞ ln E[Z (2)
k,ρn

(G(n, m))] � f̄2(ρ0).

Proof. Lemma 4.3 yields that

exp[nf2(ρ)] = (1 + o(1)) exp[nf̄2(ρ) + O(ω2)].

Together with the uniform continuity of f̄2 this proves the assertion.

We use results from [13] where an analysis of f̄2 was performed. The following lemma

summarizes this analysis from [13, Section 4]. The same result was used in [6].

Lemma 4.19. For any c > 0, there exists k0 > 0 such that for all k > k0 and all d such that

(2k − 1) ln k − c � d′ � (2k − 1) ln k, the following statements are true.

(1) If 1 � s < k, then for all separable s-stable ρ ∈ B̄k we have f̄2(ρ) < f̄2(ρ̄).

(2) If ρ ∈ B̄k is 0-stable and ρ �= ρ̄, then f̄2(ρ) < f̄2(ρ̄).

(3) If d′ = (2k − 1) ln k − 2, then for all separable, k-stable ρ ∈ B̄k we have f̄2(ρ) < f̄2(ρ̄).

Proof of Proposition 4.11. Assume that k � k0 for a sufficiently large number k0 and

that d′ � 2(k − 1) ln(k − 1). We consider two different cases.

Case 1. d′ � (2k − 1) ln k− 2. Let Z̃ s
k,ω,ν be the number of (ω, n)-balanced separable k-

colourings of G(n, m). Then Lemma 4.15 implies that

E[Z̃ s
k,ω,ν(G(n, m))] ∼ E[Zs

k,ω,ν(G(n, m))].
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Further, in the case that d′ = (2k − 1) ln k − 2, the combination of the statements of

Lemma 4.19 implies that f̄2(ρ) < f̄2(ρ̄) for any separable ρ ∈ B̄k \ {ρ̄}. As f̄2(ρ) is the sum

of the concave function ρ �→ H(ρ) and the convex function ρ �→ (d/2) ln(1 − 2/k‖ρ‖2
2), this

implies that, in fact, for any d′ � (2k − 1) ln k − 2 we have f̄2(ρ) < f̄2(ρ̄) for any separable

ρ ∈ B̄k \ {ρ̄}. Hence, the uniform continuity of f̄2 on Bk and (4.4) yield

E[Zs
k,ω,ν(G(n, m))2] � (1 + o(1))

∑
ρ∈Bs

k,ω,ν (n)

ρ is 0-stable

E[Z (2)
k,ρ(G(n, m))]. (4.25)

Additionally, as B̄k is a compact set, with the second statement of Lemma 4.19 it follows

that for any η > 0 there exists ε > 0 such that

max
ρ∈Bs

k,ω,ν (n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

exp[nf̄2(ρ)] � exp[n(f̄2(ρ̄) − ε)]. (4.26)

As on the other hand it holds that

E[Zs (2)
k,ω,ν,η(G(n, m))] � exp[nf̄2(ρ̄)]/poly(n), (4.27)

combining (4.26) and (4.27) with (4.4) and the observation that |Bs
k,ω,ν(n)| � nk

2
, we see

that for any η > 0,∑
ρ∈Bs

k,ω,ν (n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

E[Z (2)
k,ρ(G(n, m))] �

∑
ρ∈Bs

k,ω,ν (n)

ρ is 0-stable
‖ρ−ρ̄‖2>η

exp[nf̄2(ρ) + O(ln n)] = o(E[Zs (2)
k,ω,ν,η(G(n, m))]).

(4.28)

Case 2. (2k − 1) ln k − 2 < d′ < dk,cond. For an appropriate ε > 0 let Z̃ s
k,ω,ν be the number

of (ω, n)-balanced separable k-colourings σ of G(n, m) such that

|C(G(n, m), σ)| � E[Zs
k,ω,ν(G(n, m))]/ exp[εn].

Then Lemmas 4.15 and 4.16 imply that

E[Z̃ s
k,ω,ν(G(n, m))] ∼ E[Zs

k,ω,ν(G(n, m))].

Furthermore, the first part of Lemma 4.19 and equation (4.4) entail that (4.25) holds for

this random variable Z̃ s
k,ω,ν . Moreover, as in the previous case (4.26), (4.27), (4.4) and the

second part of Lemma 4.19 show that (4.28) holds true for any fixed η > 0.

In either case the assertion follows by combining (4.25) and (4.28).

Proof of Proposition 2.5. The assertion is obtained by combining Proposition 2.1 with

Propositions 4.11, 4.5 and 4.7.
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