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We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers,

where at most one cop can move in any round. We investigate the analogue of the cop

number for this game, which we call the lazy cop number. Lazy Cops and Robbers was

recently introduced by Offner and Ojakian, who provided asymptotic upper and lower

bounds on the lazy cop number of the hypercube. By coupling the probabilistic method

with a potential function argument, we improve on the existing lower bounds for the lazy

cop number of hypercubes.

2010 Mathematics subject classification: Primary 05C57

Secondary 05C80

1. Introduction

The game of Cops and Robbers (defined, along with all the standard notation, at the end

of this section) is usually studied in the context of the cop number, the minimum number

of cops needed to ensure a winning strategy. The cop number is often challenging to

analyse; establishing upper bounds for this parameter is the focus of Meyniel’s conjecture

that the cop number of a connected n-vertex graph is O(
√
n). For additional background

on Cops and Robbers and Meyniel’s conjecture, see the book [9] and the surveys [3, 5, 4].

A number of variants of Cops and Robbers have been studied. For example, we may

allow a cop to capture the robber from a distance k, where k is a non-negative integer [6, 7],

play on edges [10], allow one or both players to move with different speeds [2, 11] or

to teleport, allow the robber to capture the cops [8], or make the robber invisible or

drunk [12, 13]. See Chapter 8 of [9] for a non-comprehensive survey of variants of Cops

and Robbers.
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We are interested in slowing the cops down to create a situation akin to chess, where

at most one chess piece can move in a round. Hence, our focus in the present article is a

recent variant introduced by Offner and Ojakian [15], where at most one cop can move in

any given round. We refer to this variant, whose formal definition appears in Section 1.1,

as Lazy Cops and Robbers; the analogue of the cop number is called the lazy cop number,

and is written cL(G) for a graph G. In [15] it was proved for the hypercube Qn that

2�
√
n/20� � cL(Qn) = O(2n log n/n3/2).

We mention in passing that [15] introduced a number of variants of Cops and Robbers,

in which some fixed number of cops (perhaps more than one) can move in a given round.

We focus here on the extreme case in which only one cop moves in each round, but it

seems likely that our techniques generalize to other variants.

In this short paper, we consider Lazy Cops and Robbers on hypercubes. In Theorem 2.1,

by using the probabilistic method coupled with a potential function argument, we improve

on the lower bound for the lazy cop number of hypercubes given in [15].

1.1. Definitions and notation

We consider only finite, undirected graphs in this paper. For background on graph theory,

the reader is directed to [17].

The game of Cops and Robbers was independently introduced in [14, 16] and the cop

number was introduced in [1]. The game is played on a reflexive graph; that is, each

vertex has at least one loop. Multiple edges are allowed, but make no difference to the

play of the game, so we always assume there is exactly one edge joining adjacent vertices.

There are two players, consisting of a set of cops and a single robber. The game is played

over a sequence of discrete time-steps or turns, with the cops going first on turn 0 and

then playing on alternate time-steps. A round of the game is a cop move together with

the subsequent robber move. The cops and robber occupy vertices; for simplicity, we

often identify the player with the vertex they occupy. We refer to the set of cops as C

and the robber as R. When a player is ready to move in a round they must move to

a neighbouring vertex. Because of the loops, players can pass, or remain on their own

vertices. Observe that any subset of C may move in a given round. The cops win if after

some finite number of rounds, one of them can occupy the same vertex as the robber (in

a reflexive graph, this is equivalent to the cop landing on the robber). This is called a

capture. The robber wins if he can evade capture indefinitely. A winning strategy for the

cops is a set of rules that if followed, result in a win for the cops. A winning strategy for

the robber is defined analogously. As stated earlier, the game of Lazy Cops and Robbers

is defined almost exactly as Cops and Robbers, with the exception that at most one cop

moves in any round.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore, the

minimum number of cops required to win in a graph G is a well-defined positive integer,

named the lazy cop number of the graph G. We write cL(G) for the lazy cop number of a

graph G.
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2. Hypercubes

In [15], Offner and Ojakian provided asymptotic lower and upper bounds on cL(Qn).

More precisely, they showed that cL(Qn) = Ω(2
√
n/20) and cL(Qn) = O(2n log n/n3/2). In this

section, we asymptotically improve the lower bound. Our main result is the following.

Theorem 2.1. For all ε > 0, we have that

cL(Qn) = Ω

(
2n

n5/2+ε

)
.

Thus, the upper and lower bounds on cL(Qn) differ by only a polynomial factor.

Proof. We present a winning strategy for the robber provided that the number of cops

is not too large. Let ε ∈ (0, 1) be fixed, and suppose there are k = k(ε, n) cops (where

k will be chosen later). We introduce a potential function that depends on each cop’s

distance to the robber. Let Ni represent the number of cops at distance i from the robber.

With ρ = ρ(n) = o(n), ρ → ∞ as n → ∞, a function to be determined later (but such that

n/2 − ρ is a positive integer), we let

P =

n∑
i=1

Niwi

where, for 1 � i � n/2 − ρ,

wi = A ·
(
n − 2

i

)−1 i∏
j=1

(1 + εj), A =
n − 2

1 + ε1
,

and

εi =
2 + ε

n − 2i − 2
= o(1).

It will be desired that the sequence wi is decreasing. Since for 1 � i � i0 = n/2 − ρ we

have

wi−1 − wi

wi

=
n − 1 − i

i
(1 + εi)

−1 − 1

� n − 1 − i0

i0
(1 + εi0 )

−1 − 1

=

(
1 +

2ρ

n/2
+ o(ρ/n)

)(
1 +

2 + ε

2ρ
+ o(1/ρ)

)−1

− 1

=

(
1 +

4ρ

n
+ o(ρ/n)

)(
1 − 2 + ε

2ρ
+ o(1/ρ)

)
− 1

=
4ρ

n
− 2 + ε

2ρ
+ o(ρ/n) + o(1/ρ),

the desired property holds for 1 � i � n/2 − ρ provided that, say, ρ � √
n. (In fact, ρ will

have to be slightly larger than that.) For n/2 − ρ � i � n, we let wi decrease linearly from
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wn/2−ρ to wn = 0. Formally, for such i, we have

wi = (n − i) ·
wn/2−ρ

n/2 + ρ
.

We say that a cop at distance i from the robber has weight wi; this represents that

cop’s individual contribution toward the potential. In particular, we have w1 = 1 and

w2 = (1 + o(1))2/n. First, let us note that if the cops can capture the robber on their turn,

then immediately before the cops’ turn we must have P � 1, since some cop must be at

distance 1 from the robber. Our goal is to show that the robber can always enforce that

right before the cops’ move

P � 1 − 3

n
, (2.1)

from which it would follow that the robber can evade the cops indefinitely. Initially, we

may assume that all cops start at the same vertex; the robber places himself at the vertex

at distance n from the cops. Therefore, P = 0, so (2.1) holds. Suppose that before the cops

make their move, the potential function satisfies (2.1); we consider a few cases.

Case 1. Suppose that on the cops’ turn, a cop moves to some vertex adjacent to the robber,

creating a ‘deadly’ neighbour for the robber. The robber’s strategy is to move away from

this ‘deadly’ vertex, but to do so in a way that maintains the invariant (2.1). To show that

this is possible, we compute the expected change in the potential function if the robber

were to choose his next position at random from among all neighbours other than the

deadly one.

Suppose that before the robber’s move,

P1 =

n/2−ρ−1∑
i=2

Niwi

and

P2 =

n∑
n/2−ρ

Niwi.

Then by (2.1), we have that P1 + P2 + w2 � 1 − 3/n, where the extra w2 accounts for the

weight of the cop who moved to the robber’s neighbourhood.

Consider a cop, C , at distance i from the robber, where 2 � i � n/2 − ρ − 1. Before

the robber’s move, C has weight wi. Let wC represent the expected weight of C after the

robber’s move. If C ’s vertex and the deadly vertex differ on the deadly coordinate (that

is, the coordinate in which the robber and his deadly neighbour differ), then

wC =
i − 1

n − 1
wi−1 +

n − i

n − 1
wi+1,

whereas if they agree on this coordinate, then

wC =
i

n − 1
wi−1 +

n − 1 − i

n − 1
wi+1.
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Since wi−1 > wi+1, we may bound wC from above as follows:

wC � i

n − 1
wi−1 +

n − 1 − i

n − 1
wi+1 � i

n − 2
wi−1 +

n − 2 − i

n − 2
wi+1

=
i

n − 2
· A ·

(
n − 2

i − 1

)−1 i−1∏
j=1

(1 + εj) +
n − 2 − i

n − 2
· A ·

(
n − 2

i + 1

)−1 i+1∏
j=1

(1 + εj)

=

(
i

n − 2
(1 + εi)

−1 (i − 1)!(n − 2 − i + 1)!

(n − 2)!

+
n − 2 − i

n − 2
(1 + εi+1)

(i + 1)!(n − 2 − i − 1)!

(n − 2)!

)
· A ·

i∏
j=1

(1 + εj).

Since

(1 + εi)
−1 = 1 − εi + ε2

i − ε3
i + · · · � 1 − εi + ε2

i

and

1 + εi+1 = 1 + εi

(
1 +

2

n − 2i − 4

)
� 1 + εi + ε2

i ,

we get

wC � wi

(
n − i − 1

n − 2
(1 − εi + ε2

i ) +
i + 1

n − 2
(1 + εi + ε2

i )

)

= wi

(
1 +

2

n − 2
− εi

(
n − i − 1

n − 2
− i + 1

n − 2

)
+ ε2

i

(
n − i − 1

n − 2
+

i + 1

n − 2

))

= wi

(
1 +

2

n − 2
− 2 + ε

n − 2i − 2
· n − 2i − 2

n − 2
+ ε2

i (1 + o(1))

)

� wi

(
1 − ε/2

n

)
.

This last inequality holds as long as, say,

ε2
i � ε/4

n
.

Since i � n/2 − ρ − 1, we have

ε2
i �

(
2 + ε

2ρ

)2

,

and so we will take ρ = ρ(ε, n) such that

ρ2 � 4

ε
·
(

2 + ε

2

)2

· n =
(2 + ε)2

ε
· n. (2.2)

Hence, after the robber’s move, the expected sum of the weights of such cops has

decreased by a multiplicative factor of at least(
1 − ε/2

n

)
,
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making it at most

P1 ·
(

1 − ε/2

n

)
. (2.3)

In addition, the cop that moved to the neighbourhood of the robber would again be at

distance 2, making her weight

w2 = (1 + o(1))
2

n
. (2.4)

Before dealing with cops at distance at least n/2 − ρ, let us estimate the weight of a

single cop at distance n/2 − ρ:

wn/2−ρ = (1 + o(1))n ·
(

n − 2

n/2 − ρ

)−1 n/2−ρ∏
i=1

(
1 +

2 + ε

n − 2i − 2

)
. (2.5)

We bound the product term in (2.5) by

n/2−ρ∏
i=1

(
1 +

2 + ε

n − 2i − 2

)
� exp

(n/2−ρ∑
i=1

2 + ε

n − 2i − 2

)

= exp

(
2 + ε

2

n/2∑
i=ρ

1

i
+ O(1)

)

= exp

(
2 + ε

2

(
ln(n/2) − ln ρ + O(1)

))

= O

((
n

ρ

)1+ε/2)
.

To bound the binomial term, we note that(
n − 2

n/2 − ρ

)
= Θ

((
n

n/2 − ρ

))
,

and approximate:(
n

n/2 − ρ

)
=

n!

(n/2 − ρ)!(n/2 + ρ)!

=

√
2πn(n/e)n√

2π(n/2 − ρ)
( n/2−ρ

e

)n/2−ρ√
2π(n/2 + ρ)

( n/2+ρ

e

)n/2+ρ
(1 + o(1))

= Θ

(
2n√
n

)
·
(

1 − 2ρ

n

)−n/2+ρ(
1 +

2ρ

n

)−n/2−ρ

= Θ

(
2n√
n

)
· exp

((
−2ρ

n
− (2ρ/n)2

2
+ o

(
(ρ/n)2

))(
−n

2
+ ρ

))

× exp

((
2ρ

n
− (2ρ/n)2

2
+ o

(
(ρ/n)2

))(
−n

2
− ρ

))

= Θ

(
2n√
n

)
· exp

(
−(1 + o(1))

2ρ2

n

)
.
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Now take ρ(n) to be minimal such that ρ � cε
√
n and n/2 − ρ is an integer, where,

referring to (2.2), we set cε = (2 + ε)/
√
ε. Then we have that

wn/2−ρ = O

(
n ·

√
n

2n
· n1/2+ε/4

)
= O

(
n2+ε/4

2n

)
.

Now let C be a cop at distance i from the robber, where n/2 − ρ � i � n. Before the

robber’s move, C has weight wi. Since the wi are decreasing, we have that the change in

weight of C is bounded above by wi−1 − wi. For i � n/2 − ρ + 1, this quantity is equal to

wn/2−ρ

n/2 + ρ
.

The largest increase comes when i = n/2 − ρ. To bound this increase, we see that

wn/2−ρ−1

wn/2−ρ

=

(
n−2

n/2−ρ

)
(

n−2
n/2−ρ−1

) · 1

1 + εn/2−ρ

=
n/2 + ρ − 1

n/2 − ρ
· 1

1 + (2 + ε)/(2ρ − 2)

�
(

1 +
2ρ − 2

n

)
·
(

1 +
2ρ

n
+ O

(
ρ

n

)2)
·
(

1 − 2 + ε

2ρ − 2
+

(
2 + ε

2ρ − 2

)2)

� 1 + O

(
ρ

n
+

1

ρ

)
.

By our definition of ρ, this is 1 + O(1/
√
n). Thus we have that

wn/2−ρ−1 − wn/2−ρ = O

(
wn/2−ρ√

n

)
= O

(
n3/2+ε/4

2n

)
.

So if we let the total number of cops be k = O(2n/n5/2+ε), then we have that the total

increase in weight of cops at distance at least n/2 − ρ is at most

O

(
2n

n5/2+ε
· n

3/2+ε/4

2n

)
<

ε/4

n
.

So the total weight of such cops after the robber’s move is at most

P2 +
ε/4

n
. (2.6)

Thus, after the robber’s random move, combining estimates (2.3), (2.4) and (2.6), we can

bound the total expected weight from above by

P1 ·
(

1 − ε/2

n

)
+ w2 + P2 +

ε/4

n

�
(

1 − 3

n
− w2 − P2

)
·
(

1 − ε/2

n

)
+ w2 + P2 +

ε/4

n

� 1 − 3

n
− ε/4

n
+ O

(
1

n2
+

P2

n

)

� 1 − 3

n
.

To get the last line, we used the fact that

P2 = O(2n/n5/2+ε · wn/2−ρ) = O(n−1/2−3ε/4) = o(1).
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Some deterministic move produces a potential at least as low as the expectation, so the

robber may maintain the invariant, as desired.

Case 2. Suppose now that on the cops’ turn, some cop C∗ moves to a vertex at distance

2 from the robber. The reader should note that at this point there might be other cops

at distance 2 from the robber; we only suppose that on the cops’ turn, one particular

cop has moved from distance 3 to distance 2. As in Case 1, we will see what happens if

the robber moves away from C∗. In this case, there are two ‘deadly’ coordinates for the

robber. The robber will flip a coordinate randomly amongst the other n − 2 choices.

As before, suppose that before the robber moves, P1 represents the total weight of all

cops at distance i with 2 � i � n/2 − ρ − 1 other than the cop C∗ who moved to distance

2. Let P2 represent the total weight of all cops at distance at least n/2 − ρ. Since C∗ was

at distance 3 before its move, we have that P1 + P2 + w3 � 1 − 3/n. As in Case 1, for a

cop C 
= C∗ at distance 2 � i � n/2 − ρ − 1, we have that the expected weight after the

robber’s move satisfies

wC � i

n − 2
wi−1 +

n − 2 − i

n − 2
wi+1.

So again we can bound the total expected weight of such cops from above by

P1 ·
(

1 − ε/2

n

)
.

The estimate for the change in P2 remains the same, so we can bound the expected total

weight after the robber’s move from above by

P1 ·
(

1 − ε/2

n

)
+ w3 + P2 +

ε/4

n

�
(

1 − 3

n
− w3 − P2

)
·
(

1 − ε/2

n

)
+ w3 + P2 +

ε/4

n

� 1 − 3

n
− ε/4

n
+ O

(
1

n2
+

w3

n
+

P2

n

)

� 1 − 3

n
.

This time, in addition to our bound on P2, we have used that w3 = o(1/n).

Case 3. Suppose now that some cop moves to a vertex at distance i � 3 from the robber.

Keep in mind that, again, we allow for the possibility that other cops are at distance 2 from

the robber. The resulting increase in the potential function is at most w3 = O(1/n2), so the

new potential function has value at most 1 − 3/n + o(1/n). Now, by the calculations from

Case 1, the robber can move so that the total weight of all cops at distances 2 through

n/2 − ρ − 1 decreases by a multiplicative factor of

(
1 − ε/2

n

)
.
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Once again, define P2 to be the weight of all cops at distance at least n/2 − ρ before the

robber moves. Then, after the robber’s move, the potential is at most(
1 − 3

n
− P2 + o

(
1

n

))
·
(

1 − ε/2

n

)
+ P2 +

ε/4

n
� 1 − 3

n
.
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