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In this paper we prove that two local conditions involving the degrees and co-degrees

in a graph can be used to determine whether a given vertex partition is Frieze–Kannan

regular. With a more refined version of these two local conditions we provide a deterministic

algorithm that obtains a Frieze–Kannan regular partition of any graph G in time O(|V (G)|2).
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1. Introduction

The celebrated Szemerédi regularity lemma [13] is a powerful tool for addressing problems

in extremal graph theory and combinatorics. It has many applications in various research
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areas including combinatorial number theory, discrete geometry and theoretical computer

science. A bipartite form of the lemma first appeared in the proof of the well known

conjecture of Erdős and Turán [6] stating that sequences of integers of positive upper

density must always contain arbitrarily long arithmetic progressions. In essence, the

regularity lemma states that, for every ε > 0, every sufficiently large, dense graph G admits

a partition of its vertex set V (G) =
⋃k

i=1 Vi, with k = k(ε), so that most of the bipartite

graphs induced on Vi, Vj behave like random graphs (where the measure of randomness

is controlled by the parameter ε).

More recently, there has been some study of algorithmic applications of the regularity

lemma. In order to successfully use the regularity lemma to design good algorithms, one

needs to efficiently construct a partition satisfying the conditions of the regularity lemma.

This was done by Alon, Duke, Lefmann, Rödl and Yuster [1]. The authors provided an

algorithm that constructs an ε-regular partition of a graph with n vertices in time O(nω),

the same time needed to compute the product of two matrices (the constant ω is known

to be less than 2.376: see [3]). Later this algorithm was improved by Kohayakawa, Rödl

and Thoma [10], who gave a deterministic algorithm for finding an ε-regular partition in

time O(n2).

While Szemerédi’s regularity lemma gives fine control over the distribution of the edges

across classes, it may also require k, the number of classes, to be huge. Namely, as shown

by Gowers [9], k can be a tower of exponents of height 1/ε16. This fact is of particular

concern when one desires to use the regularity lemma algorithmically. For this reason,

the algorithmic version of a somewhat weaker regularity lemma – which is an extension

of the lemma from [12] – was considered in [5]. The advantage of the lemma in [5]

in comparison with Szemerédi’s regularity lemma [13] is that it requires at most 2O(1/ε5)

classes. Its disadvantage is that the definition of the regular partition is more complicated.

Subsequently, Frieze and Kannan [7, 8] considered an elegant notion of regularity (also

weaker than Szemerédi’s) which requires only 2O(1/ε2) classes.

Answering a question of Williams [14], we provided in [4] a deterministic algorithm

for finding Frieze–Kannan regular partitions in sub-cubic time. In fact, the algorithm

in [4] runs in O(nω log log n)-time. The method used in that paper involved a spectral

characterization of vertex partitions satisfying the properties of the Frieze–Kannan

regularity lemma. In this paper we give a simpler characterization in terms of degrees

and co-degrees of vertices in the graph with respect to the partition. Moreover, such a

local characterization gives rise to an O(nω)-time deterministic algorithm for computing a

Frieze–Kannan regular partition of a graph. We later refine our conditions using similar

techniques as in Kohayakawa, Rödl and Thoma [10], so that testing them requires only

O(n2) deterministic time. This yields an asymptotically optimal algorithm for finding a

Frieze–Kannan regular partition of a graph.

Theorem 1.1. There is a deterministic algorithm which finds, for any ε > 0 and graph with n

vertices, an ε-regular Frieze–Kannan partition with at most 21/ poly(ε) classes in c(ε)n2-time.

The main component of algorithmic regularity lemmas is a decision algorithm which

determines whether a given partition is regular. If the partition is not, it produces witnesses
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to the fact that the partition is not regular. It is quite standard to use such a decision

algorithm in order to construct a regular partition. Therefore most of this paper is devoted

to the description and analysis of the decision algorithm.

This paper is organized as follows. In Section 2 we formally introduce the definition of

Frieze–Kannan regularity and relevant notation. In Section 3 we present two conditions

– a degree and a co-degree condition – which we prove to be equivalent to FK-regularity

and which can be tested in matrix multiplication time O(nω). To obtain an O(n2) algorithm

we refine these conditions in Section 4 by introducing a linear-sized expander graph. In

effect, we show that one only needs to check the co-degree condition for pairs of vertices

which form an edge in the auxiliary expander graph. (This idea was used in [10] for

an O(n2) algorithmic version of Szemerédi’s regularity lemma.) Our deterministic O(n2)

algorithm is described in Section 8.

Sections 5–7 contain the proof of the main technical result, Theorem 4.3, which

establishes the equivalence of the refined degree/co-degree conditions to FK-regularity.

2. Preliminaries

Let H be a graph of order n with vertex set V . We will denote by NH (v) the neighbourhood

of a vertex v in the graph H , and by dH (v) = |NH (v)| its degree. For a pair of vertices

u �= v, we denote by NH (u, v) the set of vertices adjacent to both u and v, namely

NH (u, v) = NH (u) ∩ NH (v). The size of NH (u, v) is called the co-degree of u and v and it is

denoted by dH (u, v). For a set U ⊂ V we denote by eH (U) the number of edges in H which

are contained in U. Similarly, for sets U,W ⊂ V , we denote by eH (U,W ) the number of

edges with one endpoint in U and the other in W , where the edges in U ∩ W are counted

twice. The subscript H is omitted when the graph is clear from the context. For S ⊂ V

we denote by H[S] the subgraph of H induced by S .

We will make use of equation numbers on top of relation signs (e.g.
(2.1)

� ) to indicate

that we use the referenced equation in order to derive the relation.

The density between sets U,W ⊂ V is defined as

d(U,W ) =
e(U,W )

|U| |W | .

We will frequently use a partition P = {V1, V2, . . . , Vk} of the vertex set V . The order

of such a partition is the number of parts Vi (frequently denoted by k). A partition is

equitable if all parts have sizes �n/k� or �n/k	. As a shorthand for the densities across

parts, we set dij = d(Vi, Vj) whenever i �= j. Also, for convenience, we set dii = 0 for all i

(in effect, we delete all edges induced by the sets Vi). It will be convenient to assume that n

is a multiple of k and regard m = n/k as the cardinality of the classes in the equitable

partition P . Let Ui and Wj , 1 � i, j � k, denote the subsets

Ui = U ∩ Vi, Wj = W ∩ Vj.

We are now ready to introduce the key regularity concept in this paper.
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Definition 2.1 (Frieze–Kannan regularity). Given ε > 0, an equitable partition

P = {V1, . . . , Vk}

is said to be ε-FK-regular if

for all U,W ⊂ V ,

∣∣∣∣e(U,W ) −
∑
i,j

dij |Ui| |Wj |
∣∣∣∣ � εn2. (2.1)

If U and W are subsets violating (2.1), we say U and W are witnesses to the fact that

the partition P is not ε-FK-regular.

3. Local conditions

In this section we present two families of conditions that will be necessary and sufficient

for an equitable partition P = {V1, . . . , Vk} of the vertex set V of a graph H to be ε-

FK-regular. These conditions are based on the simple observation that, when a partition

satisfies FK-regularity, most vertices have the ‘expected’ degree, and moreover most

vertices have the ‘expected’ co-degree with any other fixed vertex. More precisely, we will

show that the two following conditions are equivalent to FK-regularity (Definition 2.1).

As before, m = n/k is the cardinality of the classes in P . Here and throughout the paper

we use x = y ± z to denote that y − z � x � y + z.

(i) Degree condition. For all but at most ε1n vertices v ∈ V , we have

dH (v) =

k∑
�=1

dj�m ± ε1n, (3.1)

where j is the index satisfying v ∈ Vj .

(ii) Co-degree condition. For every u ∈ V , all but at most ε2n vertices v ∈ V are

such that

dH (u, v) =

k∑
�=1

dj� |NH (u) ∩ V�| ± ε2n, (3.2)

where j is the index satisfying v ∈ Vj .

The following theorem establishes the equivalence.

Theorem 3.1. The FK-regularity condition in Definition 2.1 is equivalent to conditions (i)

and (ii).

More formally, for every ε1, ε2 > 0 there exists ε > 0 such that Definition 2.1 implies (i)

and (ii), and for every ε > 0 there exist ε1, ε2 > 0 such that (i) and (ii) imply Definition 2.1.
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3.1. FK-regularity implies conditions (i) and (ii)

In this section we will show that FK-regularity (Definition 2.1) implies conditions (i) and

(ii). We assume P = {V1, . . . , Vk} is an equitable partition of the vertex set V of a given

graph H . We may also assume the cardinality of V is a sufficiently large number n which

is a multiple of k. We set m to be the size of each part Vi, namely

m =
n

k
.

Recall that dij denotes the density d(Vi, Vj) when i �= j and that dii = 0. It will also be

convenient to abuse notation in the following way: for a vertex u ∈ Vi, let duj denote the

density dij . Namely, we set

duj = dju = dij ,

where i is the index satisfying u ∈ Vi. Also, recall that for a subset U ⊂ V we set

Ui = U ∩ Vi.

Claim 3.2. If the partition {V1, . . . , Vk} fails condition (i), then there is a set U satisfying∣∣∣∣e(U,V ) −
∑
j,�

dj� |U ∩ Vj | |V ∩ V�︸ ︷︷ ︸
=V�

|
∣∣∣∣ > ε21n

2

2
.

Proof. Let

U+ =

{
v ∈ V : |NH (v)| >

k∑
�=1

dv� m + ε1n

}
,

U− =

{
v ∈ V : |NH (v)| <

k∑
�=1

dv� m − ε1n

}
.

By assumption |U−| + |U+| > ε1n. Set U to be the larger of the sets U− and U+. It

follows that |U| > ε1n/2. We now look at the edges between the set U and the whole set

of vertices V . By definition∣∣∣∣e(U,V ) −
∑
j,�

dj� |U ∩ Vj | |V ∩ V�|
∣∣∣∣ =

∣∣∣∣∑
u∈U

|NH (u)| −
k∑

j=1

k∑
�=1

dj�m |Uj |
∣∣∣∣

=

∣∣∣∣ k∑
j=1

∑
u∈Uj

(
|NH (u)| −

k∑
�=1

dj�m

)∣∣∣∣
> ε1n |U|.

Since |U| > ε1n/2, the claim follows.

Claim 3.3. If the partition {V1, . . . , Vk} fails condition (ii) for some u ∈ V , then there exists

W ⊂ V such that ∣∣∣∣e(W,NH (u)) −
∑
j,�

dj� |Wj | |NH (u) ∩ V�|
∣∣∣∣ > ε22n

2

2
.
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Proof. Let

W+ =

{
v ∈ V : dH (u, v) >

k∑
�=1

dv� |NH (u) ∩ V�| + ε2n

}
.

Similarly, define W−. Notice that |W−| + |W+| > ε2n by assumption. Take W to be the

larger of the sets W− and W+. It follows that |W | > ε2n/2. As in the previous claim, we

consider ∣∣∣∣e(W,NH (u)) −
∑
j,�

dj� |W ∩ Vj | |NH (u) ∩ V�|
∣∣∣∣

=

∣∣∣∣∑
w∈W

dH (u, w) −
k∑

j=1

k∑
�=1

dj� |Wj | |NH (u) ∩ V�|
∣∣∣∣

=

∣∣∣∣ k∑
j=1

∑
w∈Wj

dH (u, w) −
k∑

j=1

∑
w∈Wj

k∑
�=1

dj� |NH (u) ∩ V�|
∣∣∣∣

=

∣∣∣∣ k∑
j=1

∑
w∈Wj

(
dH (u, w) −

k∑
�=1

dj� |NH (u) ∩ V�|
)∣∣∣∣

> |W | ε2n.

Since |W | � ε2n/2, the claim follows.

The first part of Theorem 3.1, namely that conditions (i) and (ii) are necessary for FK-

regularity, follows by combining Claims 3.2 and 3.3 and setting ε = min{ε21/2, ε22/2}. In

the next subsection we will show that the conditions are also sufficient for FK-regularity.

3.2. Conditions (i) and (ii) imply FK-regularity

We now show that conditions (i) and (ii) imply FK-regularity (Definition 2.1). Throughout

this subsection we assume that P = {V1, . . . , Vk} satisfies conditions (i) and (ii).

We say a pair of vertices {u, v} is corrupted if either (u, v) or (v, u) violate (3.2). Note

that, as a consequence of condition (ii), there are at most ε2n
2 corrupted pairs in total.

We say that a pair of indices {i, j} is defective if more than ε
1/2
2 m2 pairs {u, v}, for u ∈ Vi

and v ∈ Vj , are corrupted. Hence, at most ε
1/2
2 k2 pairs {i, j} can be defective.

Claim 3.4. For a non-defective pair {i, j} the following holds: all but at most ε
1/4
2 m ver-

tices u ∈ Vi satisfy

k∑
�=1

dj� |NH (u) ∩ V�| =

k∑
�=1

di�dj�m ± 2ε
1/4
2 n. (3.3)

The proof of Claim 3.4 will be postponed to Section 3.3. Note that if the bipartite graphs

H[Vi ∪ Vj] were all random (with densities dij) then the expected co-degree of u ∈ Vi

and v ∈ Vj would be precisely
∑k

�=1 di�dj�m. Combining Claim 3.4 with condition (ii)
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yields that co-degrees in H are typically close to what is expected in a random graph with

the same densities.

We now follow the approach taken in [5] and use linear algebra to help us obtain (2.1).

Let us define an n × n matrix Δ = (Δuv)u,v∈V as follows:

Δuv =

{
(1 − dij) if u ∈ Vi, v ∈ Vj, {u, v} ∈ H,

− dij if u ∈ Vi, v ∈ Vj, {u, v} �∈ H.
(3.4)

Note that this matrix is symmetric and admits at most 1 + 2
(
k
2

)
entry values (recall that

dii = 0 and that we assume H[Vi] is empty, thus Δuv = 0 for u, v ∈ Vi). For a vertex u ∈ V ,

we refer to the row (or column) associated with u by Δu. We shall use properties of this

matrix to show that the partition V = V1 ∪ · · · ∪ Vk is ε-FK-regular, that is, it satisfies

(2.1) for any subsets U,W ⊂ V .

The following inequality connects the definition of FK-regularity (Definition 2.1) to the

matrix Δ. After proving the claim we will estimate the inner products 〈Δu,Δv〉, u, v ∈ V ,

and thus bound the right-hand side of (3.5).

Claim 3.5. For arbitrary subsets U,W ⊂ V we have∣∣∣∣e(U,W ) −
∑
i,j

dij |U ∩ Vi| |W ∩ Vj |
∣∣∣∣2 � |W |

∑
u,v∈U

〈Δu,Δv〉. (3.5)

Proof. First we argue that

e(U,W ) −
∑
i,j

dij |U ∩ Vi| |W ∩ Vj | =
∑
u∈U

∑
w∈W

Δuw. (3.6)

Indeed, the sum on the right-hand side can be partitioned into sums as∑
i,j

∑
u∈Ui

∑
w∈Wj

Δuw =
∑
i,j

{(1 − dij)e(Ui,Wj) − dij
(
|Ui| |Wj | − e(Ui,Wj)

)
},

which simplifies to∑
i,j

(
e(Ui,Wj) − dij |Ui| |Wj |

)
= e(U,W ) −

∑
i,j

dij |U ∩ Vi| |W ∩ Vj |.

Thus (3.6) is proved.

We will now bound |
∑

u∈U
∑

w∈W Δuw| from above using the Cauchy–Schwarz

inequality: (∑
u∈U

∑
w∈W

Δuw

)2

� |W |
∑
w∈W

(∑
u∈U

Δuw

)2

� |W |
∑
w∈V

(∑
u∈U

Δuw

)2

.

Observe the identity∑
w∈V

(∑
u∈U

Δuw

)2

=
∑
w∈V

∑
u,v∈U

ΔuwΔvw =
∑
u,v∈U

∑
w∈V

ΔuwΔvw =
∑
u,v∈U

〈Δu,Δv〉,

which completes the proof of this claim.
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In view of (3.5) we need to estimate the inner products 〈Δu,Δv〉, u, v ∈ V . To this end we

will first define a set D of pairs {u, v} for which we will use the trivial bound 〈Δu,Δv〉 � n.

This set D will be shown to be quite small. For all the pairs not in D we will show that

the inner product is very small. This will provide an upper bound on the right-hand side

of (3.5) and allow us to conclude the proof of the theorem.

Denote by D the set of all pairs {u, v} that fail one of the conditions below:

(a) u ∈ Vi, v ∈ Vj , with {i, j} a non-defective pair,

(b) both u and v satisfy equations (3.1) and (3.3),

(c) The pair {u, v} is not corrupted, that is, both (u, v) and (v, u) satisfy equation (3.2).

We will now bound the number of pairs in D . Recall that there are at most ε
1/2
2 k2 defective

pairs, hence at most ε
1/2
2 n2 pairs of vertices fail (a). There are at most ε1n

2 pairs {u, v} in

which one of the vertices fails (3.1). From Claim 3.4 it follows that, for each non-defective

pair {i, j}, the number of pairs {u, v} (with u ∈ Vi, v ∈ Vj) where u or v (or both) fail (3.3)

is at most 2ε
1/4
2 m2. By condition (ii), at most ε2n

2 pairs {u, v} are corrupted and thus

fail (c). Therefore, for small enough ε2 > 0,

|D | �
(
ε
1/2
2 + ε1 + 2ε

1/4
2 + ε2

)
n2 �

(
ε1 + 3ε

1/4
2

)
n2. (3.7)

Claim 3.6. For all pairs {u, v} �∈ D we have the inner product

|〈Δu,Δv〉| � 3ε
1/4
2 n

Proof. Let {u, v} be a pair of vertices not in D , say u ∈ Vi and v ∈ Vj . By the definition

of Δ, we have

〈Δu,Δv〉 =

k∑
�=1

(
(1 − di�)(1 − dj�)|NH (u, v) ∩ V�| − (1 − di�)dj�|(NH (u) ∩ V�) \ NH (u, v)|

− di�(1 − dj�)|(NH (v) ∩ V�) \ NH (u, v)| + di�dj�|V� \ (NH (u) ∪ NH (v))|
)
.

By regrouping the terms of the sum according to the contribution of

|NH (u, v) ∩ V�|, |NH (u) ∩ V�|, and |NH (v) ∩ V�|,

we obtain

〈Δu,Δv〉 =

k∑
�=1

|NH (u, v) ∩ V�| −
k∑

�=1

dj�|NH (u) ∩ V�| −
k∑

�=1

di�|NH (v) ∩ V�| +

k∑
�=1

di�dj�m

=

(
dH (u, v) −

k∑
�=1

dj�|NH (u) ∩ V�|
)

−
( k∑

�=1

di�|NH (v) ∩ V�| −
k∑

�=1

di�dj�m

)
. (3.8)

Since {u, v} �∈ D , the pair {u, v} satisfies (3.2), and v satisfies equation (3.3). Hence we have

|〈Δu,Δv〉| �
(
ε2 + 2ε

1/4
2

)
n. (3.9)

The claim follows.
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We now have the tools to achieve the goal of this subsection and prove that under

conditions (i) and (ii), P is FK-regular.

Lemma 3.7. For arbitrary subsets U,W ⊂ V we have∣∣∣∣e(U,W ) −
∑
i,j

dij |U ∩ Vi| |W ∩ Vj |
∣∣∣∣ �

(
ε1 + 6ε

1/4
2

)1/2
n2. (3.10)

In other words, P = {V1, . . . , Vk} is
(
ε1 + 6ε

1/4
2

)1/2
-FK-regular.

Proof. Recall that we have already established the upper bound 〈Δu,Δv〉 � 3ε
1/4
2 n when

{u, v} �∈ D (see Claim 3.6), and for the case {u, v} ∈ D we have the trivial upper bound

〈Δu,Δv〉 � n,

which holds because every entry in Δ has absolute value at most 1.

Consequently, by Claim 3.5, the left-hand side of (3.10) is upper-bounded by

|W |
(
3ε

1/4
2 n |U|2 + n |D |

) (3.7)

� (ε1 + 6ε
1/4
2 )n4,

where the inequality follows by using the bound on |D | obtained in (3.7), and the trivial

bound of n on the sizes of U and W . Thus the lemma is now proved.

Observe that for every ε > 0 one can choose ε1, ε2 > 0 sufficiently small that(
ε1 + 6ε

1/4
2

)1/2 � ε

and thus, by Lemma 3.7, condition (2.1) holds. The proof of Theorem 3.1 is now complete.

3.3. Proof of auxiliary Claim 3.4

Fix a non-defective pair {i, j}. For such a pair, by definition, all but at most ε
1/2
2 m2

pairs {u, v} are not corrupted (i.e., both (u, v) and (v, u) satisfy (3.2)). It follows that, for

all but at most ε
1/4
2 m vertices u ∈ Vi, the set

Wj(u) = {v ∈ Vj : {u, v} is corrupted}

satisfies |Wj(u)| � ε
1/4
2 m. Now fix an arbitrary u ∈ Vi with |Wj(u)| � ε

1/4
2 m. Set

Wj = Wj(u) and Wj = Vj \ Wj.

Since NH (u, v) = NH (v, u), it follows from (3.2) that for every v ∈ Wj

k∑
�=1

di�|NH (v) ∩ V�| =

k∑
�=1

dj�|NH (u) ∩ V�| ± 2ε2n. (3.11)

Observe that

k∑
�=1

di�dj�m
2 =

k∑
�=1

di� e(Vj, V�) =

k∑
�=1

di�
∑
v∈Vj

|NH (v) ∩ V�| =
∑
v∈Vj

k∑
�=1

di�|NH (v) ∩ V�|.
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Since Vj = Wj ∪ Wj , we may write

k∑
�=1

di�dj�m
2 =

∑
v∈Wj

k∑
�=1

di�|NH (v) ∩ V�| +
∑
v∈Wj

k∑
�=1

di�|NH (v) ∩ V�|, (3.12)

Using (3.11), we can bound the right-hand side of (3.12) from above by

|Wj |
( k∑

�=1

dj�|NH (u) ∩ V�| + 2ε2n

)
+ |Wj | n,

which, in turn, is at most

m

( k∑
�=1

dj�|NH (u) ∩ V�| + 2ε2n

)
+ ε

1/4
2 mn. (3.13)

Consequently, for ε2 sufficiently small, we obtain

k∑
�=1

dj�|NH (u) ∩ V�| �
k∑

�=1

di�dj�m − 2ε
1/4
2 n.

We can obtain a lower bound on the right-hand side of (3.12) using (3.11); thus we get

|Wj |
( k∑

�=1

dj�|NH (u) ∩ V�| − 2ε2n

)
.

Since |Wj | � (1 − ε
1/4
2 )m, it follows that

k∑
�=1

dj�|NH (u) ∩ V�| � 1

1 − ε
1/4
2

k∑
�=1

di�dj�m + 2ε2n �
k∑

�=1

di�dj�m + 2ε
1/4
2 n,

as long as ε2 is sufficiently small (ε2 � 1/25 is enough). The proof of (3.3) is complete.

4. Refined local conditions

In Section 8 we shall describe a deterministic O(n2)-time algorithm for finding a Frieze–

Kannan partition of the vertex set of a given graph on n vertices. While conditions (i)

and (ii) from the previous section are very simple to state, testing condition (ii) for a

given partition requires deterministic O(nω)-time. In order to devise an algorithm with

the desired running time (i.e., O(n2)), it is necessary to use a set of more refined local

conditions.

As in [10], the main technique is to consider an expander graph Γ on the vertex set

of H and test only the co-degrees along the edges of the expander (i.e., test an analogue

of condition (ii) only for pairs of vertices u, v that are edges of Γ). For technical reasons

we have to modify condition (i) as well.

In this section, we first state the expander construction from [10] in a convenient form

for our analysis. We then list conditions (I) and (II) which will resemble conditions (i)

and (ii). Since (II) is weaker than (ii), more work will be necessary to show the equivalence

of (I) and (II) with the Frieze–Kannan regularity condition (2.1). This equivalence will be
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shown in Sections 5, 6 and 7. It will be convenient to let |Γ| denote the number of edges

of the graph Γ.

Lemma 2.5 of [10] can be presented in the following convenient form.

Lemma 4.1. There exists an algorithm E satisfying the following properties.

For every γ > 0 there exist n0 = n0(γ) and d = d(γ) such that for all n � n0, � = d/n,

the algorithm E constructs in O(n(log n)2)-time a graph Γ on n vertices such that for all

U,W ⊂ V (Γ) = V ,

eΓ(U,W ) = � |U| |W | ± γ |Γ|;

if |U|, |W | � γn then

eΓ(U,W ) = (1 ± γ)� |U| |W |.

Remark. Note that 2 |Γ| = eΓ(V , V ) = � n2 ± γ |Γ| and thus |Γ| = �n2/(2 ± γ). Moreover,

our choice of � = O(1/n) yields a constant degree expander, which means that condi-

tion (II) needs to be checked for a linear number of pairs.

In this paper, we take an extremely small γ > 0 with the effect of increasing the size of

Γ, and hence requiring more time to check condition (II) below (in other words, the O(·)
bound on the complexity of the algorithm hides the dependence on γ). In fact, we take γ

smaller than any of the regularity constants (see (4.2) below). To simplify the exposition,

we replace γ by o(1).

Recall that our goal is to decide whether a partition P of the vertex set of a graph H

is ε-FK-regular. For the remainder of the paper, we shall assume P = {V1, . . . , Vk} is an

equitable partition of the vertex set V of a graph H on n vertices with |Vi| = m for

all i ∈ [k].

We assume that V (Γ) = V (H) = V . Also, for all 1 � i < j � k, let

Γij = Γ[Vi, Vj] = Γ[Vi ∪ Vj] \
(
Γ[Vi] ∪ Γ[Vj]

)
denote the bipartite subgraphs of Γ induced by pairs of classes Vi, Vj from the partition P .

From now on, Γ is a fixed graph constructed using Lemma 4.1 with the following property.

Property 4.2. The graph Γ has the edge-uniformity property

|Γ| = (1 + o(1))�
n2

2
,

|Γij | = (1 + o(1))�m2,

and, for all U,W ⊂ V , it holds that

eΓ(U,W ) = � |U| |W | + o(|Γ|). (4.1)

https://doi.org/10.1017/S0963548314000200 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000200


418 D. Dellamonica Jr., S. Kalyanasundaram, D. M. Martin, V. Rödl and A. Shapira

The following is a chart of constants that will be used throughout the rest of the paper:

ε � δ2 =
ε2

2
� c =

δ4
2

29
� ε′ =

c2

27
� ε1 = Θ(

√
δ1) � δ1 = δ40

2 � 1

k2
� γ. (4.2)

It will be convenient to set ε1 so that 1/ε1 ∈ Z and 6δ1 � ε21 � 12δ1. Also define, for every

i ∈ [k] and h ∈ {0, 1, . . . , 1/ε1}, the sets

Sih = {� ∈ [k] : ε1h � di� < ε1(h + 1)}. (4.3)

We are now ready to describe the refined local conditions. In condition (I), we let VS

denote the set
⋃

j∈S Vj .

(I) Degree condition. For every set S ⊂ [k], all but at most δ1n vertices v ∈ V

satisfy ∣∣∣∣|NH (v) ∩ VS | −
∑
j∈S

djv m

∣∣∣∣ < δ1n. (4.4)

(II) Co-degree condition. All but at most δ2|Γ| edges {u, u′} ∈ Γ satisfy∣∣∣∣dH (u, u′) −
k∑

�=1

du�du′� m

∣∣∣∣ < δ2n. (4.5)

Theorem 4.3. Conditions (I) and (II) hold for P = {V1, . . . , Vk} if and only if P is an FK-

regular partition for H . More precisely,

(a) for every ε > 0 there exist δ1, δ2 > 0 such that if conditions (I) and (II) hold then P is

ε-FK-regular,

(b) for all δ1 > 0, if condition (I) fails, then P is not (δ2
1/2)-FK-regular,

(c) for all δ1, δ2 > 0 there exists ε′ > 0 such that, if condition (I) holds but condition (II)

fails, then P is not ε′-FK-regular.

To prove Theorem 4.3(c), we assume δ1, δ2 and ε′ are as in (4.2). For arbitrary values

of δ1, δ2 > 0, we could take ε′ = min{δ1/5
1 , δ8

2}/225, and the same proof in Section 7 would

work.

In the next three sections we prove the three parts of Theorem 4.3.

5. Proof of Theorem 4.3(a)

Suppose that conditions (I) and (II) hold for some small values of δ1, δ2. We will show

that for arbitrary subsets U,W ⊂ V :∣∣∣∣eH (U,W ) −
∑
i,j

dij |U ∩ Vi| |W ∩ Vj |
∣∣∣∣ � (2δ2 + 3ε1 + o(1))1/2n2. (5.1)
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Since ε1 = Θ(
√
δ1), for any ε > 0, we can choose δ1 and δ2 sufficiently small that the

right-hand side of (5.1) is at most εn2. Hence, Theorem 4.3(a) follows from (5.1).

Recall that Claim 3.5 establishes an upper bound on the left-hand side of (5.1) in terms

of the inner products of the matrix Δ (which was defined in (3.4)). Therefore our goal is

to find a suitable upper bound to
∑

u,u′∈U〈Δu,Δu′ 〉 for arbitrary U ⊂ V . We will obtain

such a bound by means of the following claims.

Claim 5.1. For any given set U ⊂ V , the following holds:∑
(u,u′)∈U2

〈Δu,Δu′ 〉 = 2�−1
∑

{u,u′}∈Γ[U]

〈Δu,Δu′ 〉 + o(n3). (5.2)

Claim 5.2. If conditions (I) and (II) hold, then any subset U ⊂ V satisfies∑
{u,u′}∈Γ[U]

|〈Δu,Δu′ 〉| � (2δ2 + 3ε1)n |Γ|.

Before proving Claims 5.1 and 5.2, we apply them together with Claim 3.5 to obtain

the following upper bound on the left-hand side of (5.1):

|W |
(
2�−1(δ2 + 3ε1)n |Γ| + o(n3)

) (4.1)

� (2δ2 + 3ε1 + o(1))n4,

thus establishing (5.1) and proving Theorem 4.3(a).

5.1. Proof of auxiliary claims for Theorem 4.3(a)

Proof of Claim 5.1. Expanding the left-hand side of (5.2), we obtain∑
v∈V

∑
(u,u′)∈U2

Δuv Δu′v. (5.3)

Now fix an arbitrary v ∈ V . From the definition of the matrix Δ, each of the entries Δuv ,

u ∈ U, attains one of 2k possible values:

1 − d1v, −d1v, 1 − d2v, −d2v, . . . , 1 − dkv, −dkv.

Let these values be called α(1,v), . . . , α(2k,v).

Let P (v) = {U(1,v), U(2,v), . . . , U(2k,v)} be a partition of U according to the possible values

of Δuv , that is, Δuv = α(i,v) if u ∈ U(i,v). Splitting the sum in (5.3) according to the possible

values of the summand, we obtain

∑
v∈V

2k∑
i=1

2k∑
j=1

α(i,v)α(j,v)|U(i,v)| |U(j,v)|. (5.4)

The fact that Γ has the edge-uniformity property (see (4.1)) allows us to express the value

of eΓ

(
U(i,v), U(j,v)

)
only in terms of the sizes of U(i,v) and U(j,v). Indeed, for fixed (v, i, j),

eΓ

(
U(i,v), U(j,v)

) (4.1)
= � |U(i,v)||U(j,v)| + o(|Γ|).
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Using the above equation, we rewrite (5.4) as

�−1
∑
v∈V

2k∑
i=1

2k∑
j=1

α(i,v)α(j,v)
(
eΓ(U(i,v), U(j,v)) + o(|Γ|)

)
.

Distributing the sums yields

�−1
∑
v∈V

2k∑
i=1

2k∑
j=1

α(i,v)α(j,v) eΓ(U(i,v), U(j,v)) + o(�−1|Γ| nk2). (5.5)

For a fixed triple (v, i, j), the summand α(i,v)α(j,v) eΓ(U(i,v), U(j,v)) above can be written as∑
u∈U(i,v) ,u′∈U(j,v)

{u,u′}∈Γ

α(i,v)α(j,v) =
∑

u∈U(i,v) ,u′∈U(j,v)

{u,u′}∈Γ

Δuv Δu′v.

Since P (v) is a partition of U, rearranging the triple sum in (5.5) yields

�−1
∑
v∈V

∑
(u,u′)∈U2

{u,u′}∈Γ

Δuv Δu′v = 2�−1
∑

{u,u′}∈Γ[U]

〈Δu,Δu′ 〉, (5.6)

which is the desired expression on the right-hand side of (5.2), while the error term

from (5.5) is o(n3) since |Γ| = (1 + o(1))�n2/2 and because the term k2 is absorbed by the

o(·).

Before proving Claim 5.2 we establish the inequality given by Claim 5.3 below.

Claim 5.3. If condition (I) is satisfied then the following holds:

∑
(u,u′)

{u,u′}∈Γ

∣∣∣∣ k∑
�=1

(
du�du′�m − du� |NH (u′) ∩ V�|

)∣∣∣∣ � 3ε1n |Γ|. (5.7)

Proof. Set A(�, u, u′) = du�du′�m − du� |NH (u′) ∩ V�|. Recalling the definition of the sets Sih
(see (4.3)), we now rewrite the sum (5.7) as

k∑
i=1

∑
u∈Vi

∑
u′∈Γ(u)

∣∣∣∣
1/ε1∑
h=0

∑
�∈Sih

A(�, u, u′)

∣∣∣∣. (5.8)

Notice that by the definition of Sih and because u ∈ Vi, we have du� = ε1h ± ε1 for all

� ∈ Sih. Hence, for fixed u ∈ Vi, u
′ ∈ Γ(u),∑

�∈Sih

A(�, u, u′) = (ε1h ± ε1)
∑
�∈Sih

(du′�m − |NH (u′) ∩ V�|)

= ε1h
∑
�∈Sih

(du′�m − |NH (u′) ∩ V�|) ± ε1m |Sih|. (5.9)
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Combining (5.8) with (5.9) and applying the triangle inequality yields the following upper

bound to the sum (5.7):

{ k∑
i=1

∑
u∈Vi

∑
u′∈Γ(u)

1/ε1∑
h=0

ε1h

∣∣∣∣∑
�∈Sih

(du′�m − |NH (u′) ∩ V�|)
∣∣∣∣
}

+ 2ε1n |Γ|, (5.10)

where the error term 2ε1n |Γ| is obtained from

k∑
i=1

∑
u∈Vi

∑
u′∈Γ(u)

1/ε1∑
h=0

ε1m |Sih| =

k∑
i=1

∑
u∈Vi

∑
u′∈Γ(u)

ε1n = (2 |Γ|)ε1n.

Notice that the summand in (5.10) depends on u′, i, and h but not on u. Moreover, for

each u′, i, and h we are adding eΓ({u′}, Vi) equal terms. Therefore, we may express the

sum in (5.10) as

k∑
i=1

1/ε1∑
h=0

ε1h
∑
u′∈V

eΓ({u′}, Vi)

∣∣∣∣∑
�∈Sih

(du′�m − |NH (u′) ∩ V�|)
∣∣∣∣. (5.11)

For fixed i, h, condition (I) implies that there is a set Bih with at most δ1n vertices such

that, whenever u′ ∈ V \ Bih,∑
�∈Sih

|NH (u′) ∩ V�| =
∑
�∈Sih

du′�m ± δ1n.

Consequently, for i, h fixed, we have

∑
u′∈V

eΓ({u′}, Vi)

∣∣∣∣∑
�∈Sih

(du′�m − |NH (u′) ∩ V�|)
∣∣∣∣ � eΓ(V \ Bih, Vi)δ1n + eΓ(Bih, Vi)n

which, in view of (4.1), is bounded by

�(n − |Bih|)m · δ1n + � |Bih|m · n + o(|Γ| n) � 4δ1m |Γ| + o(|Γ| n) � 5δ1m |Γ|.

Hence it follows that (5.11) is at most

5δ1m |Γ|
k∑

i=1

1/ε1∑
h=0

ε1h � 5δ1m |Γ| · k

ε1
=

5δ1

ε1
n |Γ|.

Accounting for the error term in (5.10) and observing that by (4.2),

5δ1

ε1
+ 2ε1 � 3ε1,

the claim follows.

We are now ready to prove Claim 5.2.
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Proof of Claim 5.2. First recall from (3.8) that the inner product of Δu and Δu′ can be

expressed as

〈Δu,Δu′ 〉 = dH (u, u′) +

k∑
�=1

du�du′�m −
k∑

�=1

du� |NH (u′) ∩ V�| −
k∑

�=1

du′� |NH (u) ∩ V�|

=

(
dH (u, u′) −

k∑
�=1

du�du′�m

)
+

k∑
�=1

(
du�du′�m − du� |NH (u′) ∩ V�|

)

+

k∑
�=1

(
du�du′�m − du′� |NH (u) ∩ V�|

)
. (5.12)

Notice that the last two sums on the right-hand side of the equation above have the roles

of u and u′ reversed, hence

∑
{u,u′}∈Γ[U]

|〈Δu,Δu′ 〉| �
∑

{u,u′}∈Γ[U]

∣∣∣∣dH (u, u′) −
k∑

�=1

du�du′�m

∣∣∣∣
+

∑
(u,u′)

{u,u′}∈Γ

∣∣∣∣ k∑
�=1

(
du�du′�m − du�|NH (u′) ∩ V�|

)∣∣∣∣.
We shall bound the first sum on the right using condition (II) and the second using

Claim 5.3. Each summand in the first sum is at most n and, by condition (II), all

but at most δ2 |Γ| such summands are larger than δ2n. Therefore the first sum is at

most δ2 |Γ| · n + |Γ| · (δ2n). Hence, it follows that∑
{u,u′}∈Γ[U]

|〈Δu,Δu′ 〉| � 2δ2n |Γ| + 3ε1n |Γ|. (5.13)

The claim follows.

6. Proof of Theorem 4.3(b)

Theorem 4.3(b) follows immediately from Claim 6.1 below.

Claim 6.1. If condition (I) fails, then there exist sets U and W witnessing that the graph H

is not (δ2
1/2)-FK-regular. In particular, we show that∣∣∣∣eH (U,W ) −

∑
i,j

dij |Ui| |Wj |
∣∣∣∣ > δ2

1n
2

2
. (6.1)

Proof. If (I) fails to hold, then there exists S ⊂ [k] such that more than δ1n vertices

violate (4.4). Let W = VS , and define

U+ =

{
v ∈ V : |NH (v) ∩ VS | >

∑
j∈S

dvjm + δ1n

}
.
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v0

NH(v0)

Γ[NH(v0, v)]
V1

Vj

Vk

W1

Wj

Wk

v

Figure 1. Our goal is to show that there exists a ‘well-behaved’ vertex v0 and sets Wj ⊂ Vj such that, for

every v ∈ Wj (1 � j � k), the graph Γ has many edges in NH (v0, v). Since Γ has the edge-uniformity property,

this means that dH (v0, v) is large, and this allows us to prove that the sets U = NH (v0) and W =
⋃k

j=1 Wj are

witnesses to the fact that H is not ε′-regular.

Similarly, define U− and let U denote the larger of the two sets. Notice that, by

construction, |U| � (|U+| + |U−|)/2 > δ1n/2. Because W = VS , the set Wj = W ∩ Vj

satisfies |Wj | = |Vj | = m if j ∈ S and |Wj | = 0 otherwise. Hence,∣∣∣∣eH (U,W ) −
∑
i,j

dij |Ui| |Wj |
∣∣∣∣ =

∣∣∣∣ k∑
i=1

∑
u∈Ui

|NH (u) ∩ VS | −
k∑

i=1

∑
u∈Ui

∑
j∈S

dijm

∣∣∣∣
=

∣∣∣∣ k∑
i=1

∑
u∈Ui

(
|NH (u) ∩ VS | −

∑
j∈S

dijm

)∣∣∣∣
> |U|δ1n.

Since |U| > δ1n/2, inequality (6.1) follows, and the claim is proved.

7. Proof of Theorem 4.3(c)

In this proof we will state several auxiliary claims whose proofs are postponed to

Section 7.1. The strategy of the proof is outlined by Figure 1. The constant c below was

defined in (4.2).

Claim 7.1. Suppose that the assumptions of Theorem 4.3(c) hold, that is, condition (I) is

satisfied but condition (II) is not. Then

∑
{u,u′}∈Γ

dH (u, u′)2 �
∑
i<j

( k∑
�=1

di�dj�m

)2

|Γij | + c |Γ| n2. (7.1)

Because of Claim 7.1 we may assume (7.1) holds. By double-counting over triples

(uu′, v, v′) with uu′ ∈ Γ and v, v′ ∈ NH (u, u′) (see Figure 2), the left-hand side of (7.1) is
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u

u′

v

v′

NH(v, v′) NH(u, u′)

Figure 2. The sum on the left of (7.1) counts triples (e = uu′, v, v′), where e ∈ Γ, and v, v′ ∈ NH (u, u′).

given by

∑
{u,u′}∈Γ

dH (u, u′)2 =
∑
v∈V

∑
v′∈V

|Γ[NH (v, v′)]| =

k∑
i=1

∑
v∈Vi

∑
v′∈V

|Γ[NH (v, v′)]|.

Moreover, the right-hand side of (7.1) may be expressed as

1

2

k∑
i=1

∑
j �=i

( k∑
�=1

di�dj�m

)2

|Γij | + cn2|Γ|.

Therefore,

k∑
i=1

∑
v∈Vi

∑
v′∈V

|Γ[NH (v, v′)]| � 1

2

k∑
i=1

∑
j �=i

( k∑
�=1

di�dj�m

)2

|Γij | + cn2|Γ|. (7.2)

Definition 7.2. Let Bad be a weighted bipartite graph with classes V and [k] ×
{0, 1, . . . , 1/ε1} where for each v ∈ V and jh ∈ [k] × {0, 1, . . . , 1/ε1} such that∣∣∣∣|NH (v) ∩ VSjh | −

∑
�∈Sjh

dv�m

∣∣∣∣ � δ1n, (7.3)

we include the edge (v, jh) with weight |Sjh|. We let Bad(v), v ∈ V , denote the set of all

neighbours of v in the graph Bad. Moreover, we let ‖Bad(v)‖ be the sum of the weights

of the edges incident to v.

Set

B := {v ∈ V : ‖Bad(v)‖ >
√

δ1k
2}. (7.4)

Note that because condition (I) holds, each Sjh, 1 � j � k, 0 � h � 1/ε1, admits at most

δ1n vertices v ∈ V that satisfy (7.3). Hence, the degree of any jh is at most δ1n. It follows

that the total weight of the edges of Bad is at most

δ1n
∑
j

∑
h

|Sjh| = δ1n
∑
j

k = δ1nk
2.

This immediately implies that

|B| <
√

δ1n.
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Therefore, ∑
v∈B

∑
v′∈V

|Γ[NH (v, v′)]| �
∑
v∈B

∑
v′∈V

|Γ| �
√

δ1 n
2 |Γ|

(4.2)
<

c

2
n2 |Γ|.

Subtracting the previous inequality from (7.2), we obtain

k∑
i=1

∑
v∈Vi\B

∑
v′∈V

|Γ[NH (v, v′)]| � 1

2

k∑
i=1

∑
j �=i

( k∑
�=1

di�dj�m

)2

|Γij | +
c

2
n2 |Γ|.

Since both sides of the inequality above are sums over i ∈ [k], it follows that there must

exist i0 ∈ [k] such that

∑
v∈Vi0

\B

∑
v′∈V

|Γ[NH (v, v′)]| � 1

2

∑
j �=i0

( k∑
�=1

di0�dj�m

)2

|Γi0j | +
c

2
nm |Γ|. (7.5)

After averaging over v ∈ Vi0 \ B, we conclude there must be some v0 ∈ Vi0 \ B such that

∑
v′∈V

|Γ[NH (v0, v
′)]| � 1

2
m

∑
j �=i0

( k∑
�=1

di0�dj�

)2

|Γi0j | +
c

2
n |Γ|. (7.6)

Set Wi0 = ∅ and, for every j �= i0, set

Wj :=

{
w ∈ Vj : |Γ[NH (v0, w)]| � 1

2

( k∑
�=1

di0�dj�

)2

|Γi0j | +
c

4
|Γ|

}
(7.7)

and let W =
⋃k

j=1 Wj . Notice that the definition of the Wj coincides with our convention

that Wj = W ∩ Vj .

We will show that the sets

U = NH (v0) and W =

k⋃
j=1

Wj (7.8)

form a witness pair to the fact that H is not ε′-regular (recall Figure 1). The following

claims (which are proved in Section 7.1) will be used to estimate a large lower bound for

eH (U,W ).

Claim 7.3. The set W has more than c
4
n elements.

Due to the edge-uniformity of the graph Γ (see (4.1)) and the definition of Wj , we can

show that the co-degrees dH (v0, w), w ∈ Wj , are large.

Claim 7.4. For every j and every w ∈ Wj , we have

dH (v0, w) �
k∑

�=1

di0�dj� m +
cn

16
.

The following claim immediately implies Theorem 4.3(c).
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Claim 7.5. The sets U and W defined in (7.8) satisfy

eH (U,W ) >

k∑
j=1

k∑
�=1

dj� |W ∩ Vj | |U ∩ V�| + ε′n2

for ε′ = c2/27.

Proof. Observe that since U = NH (v0), Claims 7.3 and 7.4 imply that

eH (U,W ) =
∑
j

∑
w∈Wj

dH (v0, w)

�
∑
j

|Wj |
k∑

�=1

dj�(di0�m) +
cn

16
|W |

�
∑
j

|Wj |
1/ε1∑
h=0

{
(ε1h − ε1)

∑
�∈Sjh

di0�m

}
+

c2n2

64
. (7.9)

We now consider the terms
∑

�∈Sjh di0�m in the inequality above. For every jh /∈ Bad(v0)

(recall Definition 7.2), we have∑
�∈Sjh

di0�m > |NH (v0) ∩ VSjh | − δ1n =
∑
�∈Sjh

|NH (v0) ∩ V�| − δ1n. (7.10)

On the other hand, for jh ∈ Bad(v0) we trivially have∑
�∈Sjh

di0�m � 0 >

(∑
�∈Sjh

|NH (v0) ∩ V�| − δ1n

)
− |Sjh| · m. (7.11)

Since v0 /∈ B, it follows that ‖Bad(v0)‖ �
√
δ1k

2, that is,∑
jh∈Bad(v0)

|Sjh| �
√

δ1k
2.

Consequently, replacing the term
∑

�∈Sjh di0�m on the right-hand side of (7.9) with the

lower bounds (7.10) and (7.11) yields

eH (U,W ) �
∑
j

|Wj |
1/ε1∑
h=0

(ε1h − ε1)

(∑
�∈Sjh

|NH (v0) ∩ V�| − δ1n

)
+

c2n2

64

−
∑

jh∈Bad(v0)

|Wj | |Sjh|m

︸ ︷︷ ︸
�m2 ‖Bad(v0)‖�√

δ1n2

. (7.12)

We may bound the negative contribution of the error terms δ1n above by

δ1n
∑
j

|Wj |
1/ε1∑
h=0

(ε1h − ε1) � δ1n
∑
j

m
1

ε1
� δ1

ε1
n2,
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while the negative contribution of all the jh ∈ Bad(v0) is at most
√
δ1n

2. It follows that

eH (U,W ) �
∑
j

|Wj |
1/ε1∑
h=0

∑
�∈Sjh

(ε1h − ε1)︸ ︷︷ ︸
� dj�−2ε1

|NH (v0) ∩ V�| +

(
c2

64
− δ1

ε1
−

√
δ1

)
n2

�
∑
j

|Wj |
1/ε1∑
h=0

∑
�∈Sjh

dj� |NH (v0)︸ ︷︷ ︸
=U

∩V�| +

(
c2

64
− 2ε1 − δ1

ε1
−

√
δ1

)
n2

=

k∑
j=1

k∑
�=1

dj� |W ∩ Vj | |U ∩ V�| +

(
c2

64
− 2ε1 − δ1

ε1
−

√
δ1

)
n2. (7.13)

From the definition of our constants (see chart (4.2)), Claim 7.5 follows.

Theorem 4.3(c) follows directly from Claim 7.5.

7.1. Proof of auxiliary claims for Theorem 4.3(c)

Definition 7.6. Let us call a pair {i, j} ∈
(
[k]
2

)
poor if

∑
{u,u′}∈Γij

dH (u, u′) � �m3
k∑

�=1

di�dj� − 4 |Γij |
√
δ1n. (7.14)

A pair will be called rich otherwise.

Claim 7.7. Assuming condition (I), the following holds. For all i ∈ [k] there are at most√
δ1k values j ∈ [k] such that {i, j} is a poor pair.

Proof. Fix an arbitrary i ∈ [k] and let S = Si be the set of all j for which {i, j} is a poor

pair. Our goal is to show that |S | �
√
δ1k.

Observe that

[∗] :=
∑
j∈S

∑
{u,u′}∈Γij

dH (u, u′) =
∑
v∈V

eΓ(NH (v) ∩ VS ,NH (v) ∩ Vi)

=
∑
v∈V

{� |NH (v) ∩ VS | |NH (v) ∩ Vi| + o(|Γ|)}, (7.15)

where the first equality follows by double-counting and the second by the edge-uniformity

of Γ (see (4.1)).

For v ∈ V , define

D(v) = |NH (v) ∩ VS | −
∑
j∈S

dvjm.

https://doi.org/10.1017/S0963548314000200 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000200


428 D. Dellamonica Jr., S. Kalyanasundaram, D. M. Martin, V. Rödl and A. Shapira

With this definition, we have

[∗] + o(|Γ| n) =

k∑
�=1

∑
v∈V�

� |NH (v) ∩ VS | |NH (v) ∩ Vi|

=

k∑
�=1

∑
v∈V�

�

(
D(v) +

∑
j∈S

dj�m

)
|NH (v) ∩ Vi|

= σ1 + σ2, (7.16)

where

σ1 :=

k∑
�=1

∑
v∈V�

�

(∑
j∈S

dj�m

)
|NH (v) ∩ Vi| = �

k∑
�=1

(∑
j∈S

dj�m

) ∑
v∈V�

|NH (v) ∩ Vi|

︸ ︷︷ ︸
eH (Vi,V�)=di�m2

= �

k∑
�=1

∑
j∈S

di�dj�m
3 =

∑
j∈S

�m3
k∑

�=1

di�dj�,

and

σ2 :=

k∑
�=1

∑
v∈V�

�D(v) |NH (v) ∩ Vi|.

Applying condition (I) to the set S yields that there is a set B ⊂ V with at most δ1n

vertices such that for all v ∈ V \ B we have |D(v)| � δ1n. Due to the definition of B and

the fact that |D(v)| � |S |m for all v, we can observe that

|σ2| =

∣∣∣∣ k∑
�=1

∑
v∈V�

�D(v) |NH (v) ∩ Vi|
∣∣∣∣

�
k∑

�=1

∑
v∈V�∩B

� |D(v)||NH (v) ∩ Vi| + �δ1n

k∑
�=1

∑
v∈V�\B

|NH (v) ∩ Vi|

�
∑
v∈B

�(|S |m)m + �δ1n

k∑
�=1

∑
v∈V�\B

m

� �
(
δ1m |S | + δ1n

)
mn. (7.17)

On the other hand, by the definition of S (the set of all j for which {i, j} is poor), we

must have

σ1 + σ2 + o(|Γ| n) (7.16)
= [∗]

(7.15)
=

∑
j∈S

∑
{u,u′}∈Γij

dH (u, u′)

(7.14)

�
∑
j∈S

{
�m3

k∑
�=1

di�dj� − 4 |Γij |
√
δ1n

}

= σ1 −
∑
j∈S

4 |Γij |
√
δ1n. (7.18)
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Hence,

|σ2| � o(|Γ| n) +
∑
j∈S

4 |Γij |
√
δ1n

(4.1)
= o(|Γ| n) + 4�m2

√
δ1n |S |. (7.19)

It follows from the inequalities (7.17) and (7.19) that

|S | � o(|Γ|/�) + δ1mn

(4
√
δ1 − δ1)m2

(4.1)
=

o(k2) + δ1k

4
√
δ1 − δ1

<
√
δ1k,

where we recall that k2 is easily absorbed by o(·). Therefore the claim is proved.

The following defect form of the Cauchy–Schwarz inequality will be applied several

times in the proof that follows.

Lemma 7.8. Let x1, x2, . . . , xt be real numbers and let

μ =
1

t

t∑
i=1

xi

be their average. Suppose there are s numbers xj satisfying xj � μ − η, for some η > 0 and

s < t. Then

t∑
i=1

x2
i � tμ2 + sη2 +

s2η2

t − s
� tμ2 + sη2.

Similarly, if xj � μ + η for s numbers xj , the same inequality holds.

Proof. Without loss of generality, assume that xj � μ − η for all j = 1, . . . , s. Let

S =

s∑
i=1

xi, L =

t∑
i=s+1

xi = tμ − S.

It follows by the Cauchy–Schwarz inequality that

t∑
i=1

x2
i =

s∑
i=1

x2
i +

t∑
i=s+1

x2
i � S2

s
+

L2

t − s
= S2 t

s(t − s)
− S

2tμ

t − s
+

t2μ2

t − s
.

The right-hand side of the above inequality is a quadratic minimized at S∗ = sμ. However,

we know that S � s(μ − η) < sμ and therefore

S2

s
+

L2

t − s
� (sμ − sη)2

s
+

(μ(t − s) + sη)2

t − s
= tμ2 + sη2 +

s2η2

t − s
,

which establishes the inequality of the lemma. The case when there are s numbers xj
satisfying xj � μ + η is symmetric.

For the next proof, recall the definition of poor pairs given in Definition 7.6.

Proof of Claim 7.1. Let us partition the pairs {i, j} ⊂ [k] into classes as follows:
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A a class of rich pairs {i, j} with at least δ2|Γij |/4 edges {u, u′} ∈ Γij violating (4.5) in (II),

B a class of remaining rich pairs, and

C a class of poor pairs.

We shall analyse the summation on the left-hand side of (7.1) by splitting it according to

the above partition of the pairs {i, j}. In particular, we will show the following.

• For pairs {i, j} ∈ A,

∑
{u,u′}∈Γij

dH (u, u′)2 � |Γij |
( k∑

�=1

di�dj�m

)2

+ |Γij | · δ3
2n

2/64. (7.20)

• For pairs {i, j} ∈ B,

∑
{u,u′}∈Γij

dH (u, u′)2 � |Γij |
( k∑

�=1

di�dj�m

)2

− |Γij | · 10
√

δ1n
2. (7.21)

• For pairs {i, j} ∈ C, we trivially have

∑
{u,u′}∈Γij

dH (u, u′)2 � 0 � |Γij |
( k∑

�=1

di�dj�m

)2

− |Γij | · n2. (7.22)

Before proving (7.20) and (7.21), we will show how the above inequalities imply this claim.

Note that the pairs in A are contributing positively toward (7.1), while the pairs in B and

C are contributing negatively. Hence, in order to establish (7.1), we need to bound the

number of pairs in each of the classes A, B, and C. By Claim 7.7, |C| �
√
δ1k

2/2. Trivially,

|B| � k2/2. We will show that the number of pairs in A is bounded from below by δ2k
2/8.

In fact, if there were fewer than δ2k
2/8 pairs in A, the total number of pairs {u, u′} ∈ Γ

violating (4.5) would be at most∑
{i,j}∈B

(
δ2|Γij |

4

)
+

∑
{i,j}∈A∪C

|Γij | � δ2|Γ|
4

+ (1 + o(1))(|A| + |C|)�m2

� δ2|Γ|
4

+ (1 + o(1))

(
δ2k

2

8
+

√
δ1k

2

2

)
�m2

< δ2|Γ|.

This is a contradiction since we are assuming (II) does not hold. Hence |A| � δ2k
2/8.

Let ΓA =
⋃

{i,j}∈A Γij . Similarly, define ΓB and ΓC . We are now ready to obtain (7.1).

Combining (7.20), (7.21) and (7.22), we obtain∑
{u,u′}∈Γ

dH (u, u′)2 �
∑

{u,u′}∈ΓA∪ΓB∪ΓC

dH (u, u′)2

�
∑
i<j

( k∑
�=1

di�dj�m

)2

|Γij | + βn2, (7.23)

where

β := |ΓA| · δ
3
2

64
− |ΓB| · 10

√
δ1 − |ΓC |.
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Using the edge-uniformity of Γ (see (4.1)) and the above estimates on the sizes of A, B
and C, we have

β =

(
|A| · δ

3
2

64
− |B| · 10

√
δ1 − |C|

)
�m2(1 + o(1))

�
(
δ3

2

64
· δ2k

2

8
− k2

2
· 10

√
δ1 −

√
δ1k

2

8

)
�m2(1 + o(1))

�
(

δ4
2

512
− 41

8

√
δ1

)
(2 + o(1))|Γ|.

Since δ2 � δ
1/8
1 , we may rewrite (7.23) as

∑
{u,u′}∈Γ

dH (u, u′)2 �
∑
i<j

( k∑
�=1

di�dj�m

)2

|Γi,j | +
δ4

2

512
|Γ|︸ ︷︷ ︸

<β

n2. (7.24)

Taking c = δ4
2/512, the claim follows. It remains to show that (7.20) and (7.21) hold.

For a pair {i, j}, it will be convenient to define

μij :=
1

|Γij |
∑

{u,u′}∈Γij

dH (u, u′).

Fact 7.9. For any rich pair {i, j},

μij � 1

|Γij |

(
�m3

k∑
�=1

di�dj� − 4|Γij |
√

δ1n

)

� (1 + o(1))

k∑
�=1

di�dj�m − 4
√

δ1n

�
k∑

�=1

di�dj�m − 5
√

δ1n. (7.25)

Indeed, (7.25) follows since (7.14) does not hold for a rich pair {i, j}.
Now let us prove (7.20) for an arbitrary {i, j} ∈ A (which is by definition rich). Notice

that if

μij �
k∑

�=1

di�dj�m +
δ2n

2
, (7.26)

a direct application of the Cauchy–Schwarz inequality yields (7.20) (in fact, an even

stronger bound holds). Hence, let us suppose that (7.26) does not hold. In this case, in

view of Fact 7.9, ∣∣∣∣μij −
k∑

�=1

di�dj�m

∣∣∣∣ � max{5
√

δ1n, δ2n/2} = δ2n/2.
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For any {u, u′} ∈ Γij that violates (4.5) we have, by the triangle inequality,

δ2n �
∣∣∣∣dH (u, u′) −

k∑
�=1

di�dj�m

∣∣∣∣ � |dH (u, u′) − μij | +

∣∣∣∣μij −
k∑

�=1

di�dj�m

∣∣∣∣,
and it follows that

|dH (u, u′) − μij | � δ2n/2.

Consequently, by the definition of A, there must be either at least δ2 |Γij |/8 edges {u, u′} ∈
Γij with dH (u, u′) � μij − δ2n/2 or at least δ2 |Γij |/8 edges {u, u′} ∈ Γij with dH (u, u′) �
μij + δ2n/2. In either case, we may apply Lemma 7.8 to the numbers dH (u, u′), for

{u, u′} ∈ Γij , with t = |Γij |, s = δ2 |Γij |/8, μ = μij and η = δ2n/2. Therefore, the following

inequality holds:

∑
{u,u′}∈Γij

dH (u, u′)2 � |Γij | μ2
ij +

δ2|Γij |
8

(
δ2n

2

)2

(7.25)

� |Γij |
{( k∑

�=1

di�dj�m − 5
√

δ1n

)2

+
δ2

8

(
δ2n

2

)2}

� |Γij |
{( k∑

�=1

di�dj�m

)2

− 10
√

δ1n
2 +

δ3
2n

2

32

}
.

Since δ2 � δ
1/6
1 , we conclude that (7.20) holds.

We will now prove that (7.21) holds for an arbitrary {i, j} ∈ B. By the Cauchy–Schwarz

inequality and Fact 7.9, this pair must satisfy

∑
{u,u′}∈Γij

dH (u, u′)2 � |Γij | μ2
ij

(7.25)

� |Γij |
{( k∑

�=1

di�dj�m

)2

− 10
√

δ1n
2

}
.

We conclude that all pairs {i, j} ∈ B satisfy (7.21).

Proof of Claim 7.3. By the definition of W in (7.8),

∑
v′∈V\W

|Γ[NH (v0, v
′)]| =

k∑
j=1

∑
v′∈Vj\Wj

|Γ[NH (v0, v
′)]|

<
1

2
m

k∑
j=1

( k∑
�=1

di0�dj�

)2

|Γi0j | +
c

4
n |Γ|. (7.27)

In view of (7.6), that implies ∑
v′∈W

|Γ[NH (v0, v
′)]| > c

4
n |Γ|. (7.28)

Since each term of the sum on the left-hand side is at most |Γ|, it follows that |W | > c
4
n.
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Proof of Claim 7.4. Since Wi0 = ∅ there is nothing to prove for j = i0, so let us assume

that j �= i0 and w ∈ Wj are arbitrary. Because of the edge-uniformity of Γ (see (4.1)),

|Γ[NH (v0, w)]| = �
dH (v0, w)2

2
+ o(|Γ|).

By the definition of Wj in (7.7), it follows that

dH (v0, w)2 � 2

�

(
|Γ[NH (v0, w)]| − o(|Γ|)

)
�

( k∑
�=1

di0�dj�

)2 |Γi0j |
�

+
|Γ|
�

(
c

2
− o(1)

)

�
( k∑

�=1

di0�dj�

)2
�m2(1 − o(1))

�
+

(1 − o(1))�n2

2

�

(
c

2
− o(1)

)

�
( k∑

�=1

di0�dj�

)2

m2 +
cn2

8
. (7.29)

For x0, h > 0, taking the derivative of the concave function f(x) =
√
x at x0 + h provides

the inequality √
x0 + h � √

x0 +
h

2
√
x0 + h

.

Taking the square root of the right-hand side of (7.29) and using the inequality above

with

x0 =

( k∑
�=1

di0�dj�m

)2

and h = cn2/8,

we obtain

dH (v0, w) �
k∑

�=1

di0�dj� m +
cn2

16
√
x0 + h

.

Since
√
x0 + h � dH (v0, w) < n, the claim follows.

8. Finding the partition in time O(n2)

In this section we present an algorithmic version of Theorem 4.3. More precisely, we have

the following theorem (see (4.2) for the chart of constants).

Theorem 8.1. There is an O(n2) algorithm that takes as input:

• the expander graph Γ satisfying the conclusions of Lemma 4.1,

• a graph H and a partition P = {V1, . . . , Vk} of V = V (H),

and either

(a) asserts that conditions (I) and (II) hold for P (and thus P is ε-FK-regular),
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(b) asserts that condition (I) fails for P and constructs a witness pair (U,W ) for the fact

that P is not (δ2
1/2)-FK-regular,

(c) asserts that condition (I) holds but condition (II) fails and constructs a witness pair (U,W )

for the fact that P is not ε′-FK-regular.

Proof. The input graph H is represented by its adjacency matrix. With this representation

it is simple to obtain the value of dH (u, u′) in O(n)-time for any pair u, u′ ∈ V .

We will assume that the densities dij have been precomputed (this can be done in

O(n2)-time). It will be convenient to assume that the representation of the input P allows

for a constant-time function that computes, for any vertex v ∈ V , the index i ∈ [k] such

that v ∈ Vi.

(a) To test whether condition (I) is satisfied we enumerate all subsets S ⊂ [k] (there are

only 2k = O(1) such sets) and compute for every v ∈ V the value of |NH (v) ∩ VS |. Clearly,

this can be done in O(n)-time by listing each neighbour of v and checking whether this

neighbour belongs to some Vi, i ∈ S . Since there are n vertices to check, the total cost of

checking condition (I) is O(n2).

The inequality (4.5) in condition (II) can be checked in O(n)-time for each {u, u′} ∈ Γ.

Hence, the total time is O(n |Γ|) = O(n2). It will be convenient to store the computed

values of dH (u, u′), {u, u′} ∈ Γ, in a random-access array to later find a witness pair (U,W )

if the condition is not satisfied.

Consequently, if both conditions are satisfied, the algorithm can assert that the

conditions are valid in O(n2)-time.

(b) While testing that condition (I) holds for a particular set S ⊂ [k] we maintain a list US

of vertices which fail (4.4); if the list US becomes larger than δ1n, we can easily obtain a

witness pair (U,W = VS ) with |U| � |US |/2 by defining sets U+, U−, and U ∈ {U+, U−}
(with US = U+ ∪ U−) exactly like in the proof of Claim 6.1.

(c) If condition (I) holds but condition (II) fails, the algorithm:

(1) computes the graph Bad and the set B of (7.4),

(2) finds i0 ∈ [k] such that (7.5) holds,

(3) finds v0 ∈ Vi0 satisfying (7.6),

(4) obtains the sets Wj defined by (7.7).

Since the sets U = NH (v0) and W =
⋃

j Wj we obtain from this algorithm are the same

as the ones defined in (7.8), by Claim 7.5 it follows that (U,W ) is a witness to the fact

that P is not ε′-FK-regular.

Step (1) is quite simple since Bad is an n × k/ε1 weighted bipartite graph and therefore

has at most O(n) edges. First the sets Sjh are obtained in O(1)-time (see (4.3)). Then each

possible edge can be determined in O(n)-time (this amounts to checking whether (7.3)

holds in O(n)-time). The set B can be obtained in time O(n) once the graph Bad is

computed.
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For step (2) we have to compute, for i = 1, . . . , m,∑
v∈Vi\B

∑
v′∈V

|Γ[NH (v, v′)]|.

The näıve way of computing this sum is Ω(n3) since there are Ω(n2) pairs (v, v′) and the

summand can be computed in linear time. Using double-counting (see Figure 2) we can

instead compute the sum ∑
{u,u′}∈Γ

|NH (u, u′) ∩ (Vi \ B)| dH (u, u′)

in O(n2). The right-hand side of (7.5) is clearly computable in O(n2)-time and therefore

we can perform the second step in time O(n2).

To find the vertex v0 of step (3) we first define an auxiliary vector (xv)v∈Vi0
where each xv

is initially set to zero and in the end will have value

xv =
∑

{u,u′}∈Γ

1[v ∈ NH (u, u′)] · dH (u, u′) =
∑
v′∈V

|Γ[NH (v, v′)]|,

which is precisely the left-hand side of (7.6) (with v0 in place of v).

To compute the final values of the xv we iterate over every edge {u, u′} ∈ Γ and update

each xv , with v ∈ NH (u, u′) ∩ Vi0 , by adding the quantity dH (u, u′) – which was already

precomputed and is stored in an array. The time it takes to perform this computation is

O(|Γ| n) = O(n2).

To find the desired vertex v0 the algorithm just scans the vector x until some xv0 , v0 /∈ B,

satisfying the inequality (7.6) is found.

For the final step (4) we perform a computation similar to step (3). Indeed, define an

auxiliary vector (yw)w∈Vj
where each yw is initially set to zero and in the end will have

value

yw =
∑

{u,u′}∈Γ

1[{u, u′} ⊂ NH (v0, w)] = |Γ[NH (v0, w)]|.

To compute the final values of the yw we iterate over every edge {u, u′} ∈ Γ such that u, u′ ∈
NH (v0) and increment by one each yw with w ∈ NH (u, u′) ∩ Vj . Clearly, it takes O(|Γ| n) =

O(n2)-time to compute the vector (yw)w∈Vj
.

To obtain the set Wj we only need to select the vertices w ∈ Vj satisfying the inequality

given by the set definition (7.7). Note that the left-hand side of that inequality equals yw .

Moreover, the right-hand side is a constant (only depending on j) that can be computed

in linear time. Consequently, after (yw)w∈Vj
is obtained, the membership w ∈ Wj can be

determined in constant time for each w ∈ Vj , and thus the total time it takes to construct

the set Wj is O(n2).

The algorithm in Theorem 8.1 is the main component of a deterministic algorithm to

compute a Frieze–Kannan regular partition. The rest of the algorithm is fairly standard

and its idea was already implicitly contained in the proof of Szemerédi’s regularity lemma.

For full details on this standard algorithm, see [1] in the context of Szemerédi’s regularity,
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and [4] in the context of FK-regularity. Here we will only briefly outline this standard

approach.

Given a partition P , the algorithm in Theorem 8.1 either proves that P is ε-FK-

regular or provides a witness pair (U,W ). From such a witness pair, we can obtain an

initial refinement of P = {P1, . . . , Pk} by replacing each Pi by the four sets Pi \ (U ∪ W ),

Pi ∩ (U \ W ), Pi ∩ (W \ U), and Pi ∩ (U ∩ W ), for i = 1, . . . , k. This initial refinement is

then altered so that the obtained partition is equitable (for this, we further split the large

sets and merge the sets which are too small).

Iterating the algorithm in Theorem 8.1 yields a sequence of equitable partitions

P0,P1, . . . ,Pr , where Pr is ε-FK-regular. Considering the standard index given by

ind(P) =
1

k2

∑
1�i,j�k

d2
ij � 1,

one can show in a standard way (see, e.g., [2, 8, 11] and [4, Theorem 5]) that

ind(P�+1) � ind(P�) + poly(ε) for � = 0, . . . , r − 1,

and thus r � 1/ poly(ε). Consequently, the number of parts is exponential in 1/ poly(ε).

Finally, we observe that in Definition 2.1 the estimate for e(U,W ) only considers edges

across different classes of P . In order to ensure that there is a negligible number of edges

with both ends in the same vertex class of the partition, we start with an arbitrary equitable

partition P0 = {P1, . . . , Pk0
} with k0 � 1/ε (for this choice, there are at most n2/k0 � εn

edges with both ends in some Pi).
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