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We study a discrete time self-interacting random process on graphs, which we call greedy

random walk. The walker is located initially at some vertex. As time evolves, each vertex

maintains the set of adjacent edges touching it that have not yet been crossed by the

walker. At each step, the walker, being at some vertex, picks an adjacent edge among the

edges that have not traversed thus far according to some (deterministic or randomized)

rule. If all the adjacent edges have already been traversed, then an adjacent edge is chosen

uniformly at random. After picking an edge the walker jumps along it to the neighbouring

vertex. We show that the expected edge cover time of the greedy random walk is linear

in the number of edges for certain natural families of graphs. Examples of such graphs

include the complete graph, even degree expanders of logarithmic girth, and the hypercube

graph. We also show that GRW is transient in Z
d for all d � 3.

2010 Mathematics subject classification: Primary 05C85

Secondary 60K35

1. Introduction

A greedy random walk (GRW) on a graph is a discrete time random process, with transition

law defined as follows. The walker is located initially at some vertex of the graph. As time

evolves each vertex in the graph maintains the set of all adjacent edges that the walker

has not yet crossed. At each step the walker picks an unvisited edge among the edges

adjacent to its current location arbitrarily according to some rule. If all the adjacent edges

have already been visited, an adjacent edge is picked uniformly at random. The walker

then jumps to a neighbouring vertex along the chosen edge. We think of the process as

trying to cover the graph as rapidly as possible by using a greedy rule that prefers to walk

along an unvisited edge whenever possible. This suggests the name greedy random walk.

Formally, for an undirected graph G = (V , E), a GRW with a (possibly randomized)

rule R on G is a sequence X0, X1, X2, . . . of random variables defined on V with the

following transition probabilities. For each t � 0, define

Ht = {(Xs−1, Xs) ∈ E : 0 < s � t} (1.1)
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to be the set of all the edges traversed by the walk up to time t. For every vertex v ∈ V

and time t � 0, define

Jt(v) = {e ∈ E : v ∈ e and e /∈ Ht} (1.2)

to be the set of all the edges touching v that have not been traversed by the walk up to

time t. Letting Nv denote the set of neighbours of v in G, the transition probabilities are

given by

P[Xt+1 = w|(Xi)i�t] =

⎧⎪⎪⎨
⎪⎪⎩

R(w|(Xi)i�t) Jt(Xt) �= ∅ and {Xt, w} ∈ Jt(Xt),
1

|NXt |
Jt(Xt) = ∅ and w ∈ NXt

,

0 otherwise,

where R(w|(Xi)i�t) denotes the probability of choosing w ∈ NXt
conditioned on the

information regarding the process so far. A natural rule R is to choose uniformly at

random an edge among the adjacent unvisited edges Jt(v) of the current vertex v = Xt.

We shall denote this rule by RRAND.

One can think of GRW as a random walk where the walker wishes to cover the graph

as fast as possible and is allowed to make some local computation at each vertex she

visits (e.g., mark the last edge that the walker used to reach the current vertex, and also

mark the edge that the walker is going to use in the next step), but is not allowed to

transfer information between vertices. A motivation for the study of GRW arises from

distributed computation in which an agent sits on every vertex of a graph. Each agent

has a list of neighbours and is allowed to communicate only with them. The goal is to let

all the agents use some resource as fast as possible, while using only the local information

for each vertex, and no extra information regarding the graph and the vertices that have

already been visited. An agent has a list of neighbours who have communicated with her

thus far during the process, and each time the agent receives the resource, she is allowed

to perform only local computations before moving it to one of her neighbours. We will

see that the GRW protocol performs better than a simple random walk (SRW) on some

families of graphs.

The main difficulty in analysing this random process comes from the fact that GRW is

self-interacting, i.e., it is not a Markov chain (meaning that the probability distribution of

the next step depends not only on the current position of the walker, but also on the entire

walk thus far). Although in many cases a certain property of self-interacting random walks

can be observed in simulations or seems to be suggested by ‘heuristical proof’, typically

it is much harder to give robust proofs for random walks that do not have the Markov

property. Related models include RW with choice [5], non-backtracking RW [4], RW with

neighbourhood exploration [8], excited RW [7], reinforced RW [17], rotor router RW [14],

and more. Recently this model has been considered independently by Berenbrink, Cooper

and Friedetzky [9]. They showed that if G is an even degree expander graph such that

every vertex is contained in a vertex-induced cycle of logarithmic length, then the expected

vertex cover time by GRW is linear for any rule R.

Our results. In Section 2 we study the edge cover time of GRW on finite graphs.

Obviously, the edge cover time of any graph G = (V , E) is at least |E|, as the walker must
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cross every edge at least once. We prove bounds on the edge cover time of GRW by

analysing the ‘overhead’ of the walk, i.e., the difference between the expected edge cover

time of the walk, and the number of edges in a graph. For example, we establish that

the expected time it takes for GRW to go via all edges of Kn, the complete graph on

n vertices, is
(
n
2

)
+ (1 + o(1))n log(n). Therefore, the aforementioned ‘overhead’ in the case

of Kn is (1 + o(1))n log(n). In particular, all edges of Kn are covered by GRW in time

(1 + o(1)) ·
(
n
2

)
, which is asymptotically faster than Θ(n2 log n), the expected edge cover

time of SRW.

We show that for certain families of graphs the expected edge cover time of GRW

is asymptotically faster than that of SRW. In particular, we establish that expec-

ted edge cover time of GRW is linear in the number of edges for the complete

graph, for the hypercube graph, and for constant even degree expanders with log-

arithmic girth. The latter result is claimed in the paper of Berenbrink, Cooper and

Friedetzky [9].

Another interesting result is given in Lemma 2.9 that bounds the edge cover time of

an even degree graph by GRW in terms of its vertex cover time by SRW. Specifically, we

show that for any graph G = (V , E) whose vertices have even degrees and whose expected

vertex cover time by SRW is C , the expected edge cover time of G using GRW is at most

|E| + C . Therefore, for even degree graphs of logarithmic degree whose vertex cover time

is O(n log(n)), we obtain a bound on the edge cover time which is linear in the number of

edges.

These results should be compared with the general lower bound on the expected

cover time of graphs by SRW. Recall that Feige [13] has shown that for any graph with n

vertices the expected vertex cover time by a simple random walk is at least (1 − o(1))n log n.

Analogously, for all graphs the expected edge cover is at least Ω(|E| log(|E|)) (see [20],

[1]). In this direction, a result of Benjamini, Gurel-Gurevich and Morris [6] says that for

bounded degree graphs linear cover time is exponentially unlikely.

We are also interested in the behaviour of GRW on infinite graphs. It is well known

that SRW on Zd is transient if d � 3, and recurrent otherwise. We prove that GRW

is transient on Zd for d � 3. The case of d = 2 remains open, and it is shown to be

equivalent to the notorious two-dimensional mirror model problem [18, 12]. Our proof

holds for all graphs with even degrees on which SRW is transient. This leaves unsolved

the question of transience of GRW in lattices with odd degrees. These and other related

results are discussed in Section 3, which can be read independently of the rest of the

paper.

We need to make two general remarks.

Choice of the rule R. In the first version of this paper we considered GRW that uses

only the rule RRAND. After our work was uploaded to arxiv.org, Berenbrink, Cooper

and Friedetzky [9] independently published their work in which they consider GRW

with any (deterministic or randomized) rule, even adversarial ones that try to slow

the process down. After reading their results, we noticed that in fact our proofs for

bounding from above the edge cover time are independent of R and hold for any rule

as well.
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Choice of the starting vertex. In all of our results on cover time the bounds are independent

of the starting vertex. Also, in most cases the considered graphs are vertex-transitive, and

therefore specification of the starting vertex is unnecessary.

Notation. We use the standard notations of asymptotic growth rates. For two functions

f, g : N → R+, we write f = O(g) when there is a positive constant C ∈ R such that

f(n) < Cg(n) for all sufficiently large values of n. The notation f = Ω(g) means that there

is a positive constant c > 0 such that f(n) > cg(n) for all sufficiently large values of n, and

f = Θ(g) means both f = O(g) and f = Ω(g). We write f = o(g) if

lim
n→∞

f(n)

g(n)
= 0.

2. Edge cover time of finite graphs

In GRW the choice of the next move depends on the history of the walk with respect

to the adjacent edges of the current vertex. Hence, it seems more natural to ask about

the edge cover time rather than the vertex cover time. We show that for some common

families of graphs the greedy walk covers the edges asymptotically faster than the simple

random walk.

Let G = (V , E) be a connected undirected graph on n vertices. Let CE(G) denote the

edge cover time of GRW, i.e., the number of steps it takes for GRW to traverse all edges

of G. Note that since the graph G is finite, the edge cover time CE(G) is almost surely

finite.

The basic idea behind the analysis is as follows. Divide the random discrete time interval

[0, CE(G)] into two (random) parts.

(1) The greedy part: all times for which the walker is at a vertex that has an adjacent

edge yet to be covered, i.e., all times t ∈ [0, CE(G)] such that {Xt,Xt+1} /∈ Ht.

(2) The simple part: all times for which the walker is positioned at a vertex all of whose

adjacent edges have already been covered previously, i.e., all times t ∈ [0, CE(G)]

such that {Xt,Xt+1} ∈ Ht. For these times the choice of the next move has the same

distribution as that of a simple random walk.

Roughly speaking, the GRW typically looks as follows. It starts at t0 = 0 in a greedy

time part. This time part lasts until the walk reaches, at time s1, a vertex v1 all of whose

adjacent edges have already been covered. In this situation we say that the walk has ‘got

stuck’. This means that the last step before it got stuck covered the last edge touching v1.

Since, at time s1, all edges touching v1 have already been covered, the walker picks an

edge at random among these edges. In other words the walk is now in a simple time part,

which started at time s1. This time part lasts until the walk reaches, at time t1, a vertex u1

that has an adjacent edge which has not yet been covered. By definition, the next step will

belong to a greedy part, and will continue until the walk reaches, at time s2, some vertex

v2 all of whose adjacent edges have already been covered, thus starting the second simple

part. The walk continues in this way until all edges are covered, and then it becomes a

simple random walk.
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Formally, define the times t0, s1, t1, s2, t2, . . . , sn recursively, where the intervals [ti−1, si)

denote the ith greedy part, and the intervals [si, ti) denote the ith simple part of the walk:

t0 = 0,

si+1 =

{
inf{ti < t � CE(G) : Jt(Xt) = ∅} if there is such a t,

CE(G) otherwise,

ti+1 =

{
inf{si+1 < t � CE(G) : Jt(Xt) �= ∅} if there is such a t,

CE(G) otherwise.

We say the walk has got stuck at time t if t = si for some i ∈ N. It should be clear from

the description that the vertices Xsi must all be distinct, since Xsi is the ith time that the

walk got stuck, and it is impossible to get stuck at the same vertex twice. Therefore, it is

enough to define the times ti and si only for i � n (where n denotes the number of vertices

in G). This gives a random partition (0 = t0 < s1 < t1 < s2 < t2 < · · · < tk−1 < sk = tk =

· · · = sn = CE(G)) of the time segment [0, CE(G)], where the random variable k � n is the

first i for which si = CE(G), i.e., all edges of G are covered.

Note that the total time the walker spends in the greedy parts is equal to the number

of edges |E|, implying the following expression for the edge cover time:

CE(G) = |E| +

n∑
i=1

(ti − si).

By linearity of expectation we have the following simple expression for the expected edge

cover time, which will be the key formula in our proofs.

Proposition 2.1 (key formula). Let G = (V , E) be a graph with n vertices, and let t0, s1, t1,

s2, t2, . . . be random times as above. Then, the expected edge cover time of GRW on G is

E[CE(G)] = |E| +

n∑
i=1

E[ti − si]. (2.1)

Thus, in order to bound E[CE(G)], it is enough to bound the expected total size of all

simple parts, i.e., E[
∑k

i=1(ti − si)]. In order to apply Proposition 2.1 the following notation

will be convenient. For i = 1, . . . , n let

Bi = {v ∈ V : Jsi(v) = ∅}

be the set of vertices all of whose adjacent edges are covered by time si. (Here B stands

for ‘bad’. If the walker is in some vertex in B, then the next step will be along an edge

that has already been crossed, thus increasing the edge cover time.) By the definition of

si and ti, we note that Bi = {v ∈ V : Jt(v) = ∅} for every t ∈ [si, ti]. Note also that Bi ⊆ Bj

for all i < j, and the vertex vj = Xsj at which the walker got stuck at time sj does not

belong to Bi for i < j, since at any time t < sj the vertex vj still had an adjacent edge

which had not yet been covered. Thus the containment Bi � Bj is strict for all i < j � k,
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i.e., the sets Bi form a strictly increasing chain until it stabilizes at Bk = V :

B1 � B2 � · · · � Bk = Bk+1 = · · · = Bn = V . (2.2)

In particular,

|Bi| < n if and only if i < k. (2.3)

Conditioned on Bi and Xsi , the length of the time segment [si, ti] is distributed as the

escape time of a simple random walk from Bi, when started at Xsi . That is, conditioned

on Bi and Xsi , the random variable (ti − si) has the same distribution as T (Xsi , Bi), where

T (v, B) = min{t : Yt /∈ B|Y0 = v},

and Y0, Y1, . . . is a simple random walk on G that started at Y0 = v. By applying known

bounds of the expected escape time of SRW, we shall use Proposition 2.1 to upper-bound

the expected edge cover time of GRW.

2.1. The complete graph

We prove in this section that for the complete graph with n vertices the expected edge

cover time is (1 + o(1))
(
n
2

)
. Specifically, we prove the following result.

Theorem 2.2. For any rule R the expected edge cover time of GRW on Kn is bounded by

E[CE(Kn)] � |E| + (1 + o(1))n log n.

This is an improvement over the Θ(n2 log n) time of the SRW, which follows from the

coupon collector argument.

Proof. Consider the complete n-vertex graph G = Kn. The proof relies on the following

simple observation. For any set of vertices B ⊆ V , the escape time of SRW from B depends

only on the size of B, and has geometric distribution. Specifically, for each i = 1, . . . , n,

the quantity ti − si conditioned on Bi is distributed geometrically:

ti − si ∼
{

G
( n−|Bi|

n−1

)
if |Bi| < n,

0 otherwise.
(2.4)

Let Ti denote the expected escape time from the subset Bi. Then,

Ti = E(ti − si|Bi) =

{
n−1
n−|Bi| if |Bi| < n,

0 otherwise.
(2.5)

By averaging over the Bi, the quantity
∑n

i=1 E[ti − si] is equal to

n∑
i=1

E[ti − si] =

n∑
i=1

E[E(ti − si|Bi)] =

n∑
i=1

E[Ti] = E
[ k−1∑

i=1

n − 1

n − |Bi|

]
,

where the last equality follows from linearity of expectation, together with (2.5). In order

to bound the sum in the expectation, let bi = |Bi|, and note that we have an increasing
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sequence of natural numbers b1 < b2 < · · · < bk so that b1 � 1 and bk = n for some k � n.

For any such sequence it holds that

k−1∑
i=i

n − 1

n − bi
�

n−1∑
i=i

n − 1

n − i
. (2.6)

To see this, note that all summands are positive, and each one on the left-hand side of

the inequality also appears on the right-hand side. Therefore, we can upper-bound the

quantity
∑n

i=1 E[ti − si] by

n∑
i=1

E[ti − si] �
n−1∑
i=1

n − 1

n − i
= (1 + o(1))n log n.

Applying Proposition 2.1 gives the desired result.

Remark. We conjecture that if the rule in the greedy part is RRAND (in which an edge is

chosen uniformly at random among the adjacent unvisited edges of the current vertex),

then for odd values of n, i.e., when the degree is even, the overhead for cliques is O(n),

i.e., E[CE(Kn)] � |E| + O(n). For a related discussion see Section 4.

2.2. Expander graphs

We apply the same method as in the previous section on expander graphs. Let G =

(V , E) be a d-regular graph on n vertices and let A = A(G) ∈ {0, 1}V×V be its normalized

adjacency matrix, namely

A(u, v) =

{
1/d (u, v) ∈ E,

0 (u, v) /∈ E.

It is a standard fact that A has real eigenvalues, all lying in the interval [−1, 1]. Denote

the eigenvalues by 1 = λ1 � λ2 � · · · � λn � −1, and let λ(G) be the spectral radius of G,

defined by

λ(G) = max
i=2,...,n

|λi|.

We say that a d-regular graph G is an (n, d, λ)-expander if λ(G) < λ < 1 (for more details

see the excellent survey by Hoory, Linial and Wigderson [15]).

We are able to show that for d = Ω(log n), the expected edge cover time of the GRW

is linear in the number of edges. This is faster than a simple random walk, which covers

the edges in Ω(|E| log |E|) steps, as mentioned in the Introduction. Specifically, we prove

the following theorem.

Theorem 2.3. Let G be a (n, d, λ)-expander graph. Then, for any rule R the expected edge

cover time is

E[CE(G)] � |E| + O

(
n log n

1 − λ

)
.
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In particular, for an expander with d = Ω(log n), the expected edge cover time of the GRW

is linear in the number of edges.

Proof. The key observation here is that, as in the case of the complete graph, E(ti − si|Bi)

can be bounded in terms of the size of Bi, independently of its structure. We use the

following lemma of Broder and Karlin [11].

Lemma 2.4 ([11, Lemma 3]). Let G be an (n, d, λ)-expander and let S � V be a non-empty

set of vertices. Consider a simple random walk Y0, Y1 . . . on G, starting at some v ∈ S (i.e.,

Y0 = v). Let T (v, S) be the escape time of the walk from S when started from v. Then

E[T (v, S)] � C

1 − λ

(
log n +

n

n − |S |

)
for some absolute constant C .

Denoting by Ti the expected escape time from the subset Bi, by Lemma 2.4, for all

i = 1, . . . , n we have

Ti := E(ti − si|Bi) �
{

C
1−λ

(
log n + n

n−|Bi|
)

if |Bi| < n,

0 otherwise,
(2.7)

for some absolute constant C ∈ R. In order to upper-bound
∑n

i=1 E[ti − si], we apply an

analysis similar to that in the proof of Theorem 2.2. Specifically, by averaging over the

Bi, the quantity
∑n

i=1 E[ti − si] is equal to

n∑
i=1

E[ti − si] =

n∑
i=1

E[E(ti − si|Bi)] =

n∑
i=1

E[Ti] = E
[ n∑

i=1

Ti

]
,

where the last equality follows from linearity of expectation. Using (2.7) we obtain

n∑
i=1

E[ti − si] � E
[k−1∑

i=1

C

1 − λ

(
log n +

n

n − |Bi|

)]

� C

1 − λ
· n log(n) +

C

1 − λ
E

[k−1∑
i=1

n

n − |Bi|

]

� O

(
n log n

1 − λ

)
,

where the bound

k−1∑
i=1

n

n − |Bi|
� O(n log(n))

in the last inequality follows using the same proof as (2.6). Using Proposition 2.1, we have

E[CE(G)] � |E| +

n∑
i=1

E[ti − si] = |E| + O

(
n log n

1 − λ

)
,

which completes the proof of the theorem.
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Next, we strengthen Theorem 2.3 by showing that for constant degree expanders with

logarithmic girth whose vertices have even degrees, the expected edge cover time is linear

in the number of vertices. Recall that girth of a graph G, denoted by girth(G), is the

minimal length of a cycle in G. This result is claimed in [9] without proof.

Theorem 2.5. Let G be a (n, d, λ)-expander graph such that d ∈ N is even, and girth(G) = g.

Then, for any rule R the expected edge cover time is

E[CE(G)] � |E| + O

(
|E| · log(n)

(1 − λ)g

)
.

In particular, if G = (V , E) is an expander of constant even degree with girth(G) = Ω(log(n)),

then the expected edge cover time of the GRW is linear in the number of vertices.

The proof relies on the following simple observation. Suppose that the ith greedy part

starts at some vertex v = Xsi . Then, using the fact that all degrees of G are even, we con-

clude that this greedy part will end at the same vertex v. Indeed, by an Euler-path-type

argument, if a vertex has even degree and the walker entered this vertex along a new edge

that has not yet been visited, then by parity there must be another unvisited edge for the

walker to leave the vertex. In particular, the range covered by each greedy part forms a

(not necessarily simple) cycle. We summarize this observation as follows.

Observation 2.6. If the all degrees of a graph G = (V , E) are even, then in each greedy

time part [ti, si+1] it holds that Xti = Xsi+1
, i.e., every greedy part ends at the same vertex it

started from.

Therefore, since in the greedy time parts the walker crosses no edge twice, in each greedy

part [ti, si+1] the walker traverses along some (not necessarily simple) cycle, and thus the

number of steps in each greedy time part is at least girth(G).

We now turn to the proof of Theorem 2.5.

Proof. As in the proof of Theorem 2.3, the expected edge cover time can be bounded

from above by

E[CE(G)] = |E| + O

(
1

1 − λ

)
· E

[ k−1∑
i=1

(
log n +

n

n − |Bi|

)]
. (2.8)

By Observation 2.6 it follows that the random number k of greedy parts is upper-bounded

by |E|/g.
In order to bound the terms n/(n − |Bi|), note that for all i � k we have

k � i +
d · (n − |Bi|)

g
.

Indeed, if in time si the number of vertices all of whose adjacent edges have already been

covered is |Bi|, then the number of edges that have not yet been traversed is at most

d · (n − |Bi|), and hence, by the assumption on the girth of G, the number of remaining
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greedy parts is at most

d · (n − |Bi|)
g

.

Therefore, for all i � k we have

n

n − |Bi|
� dn

(k − i)g
=

2|E|
(k − i)g

.

By (2.8) we have

E[CE(G)] = |E| + O

(
1

1 − λ

)
· E[k log(n)] + O

(
1

1 − λ

)
·
( k−1∑

i=1

n

n − |Bi|

)

= |E| + O

(
|E| · log(n)

(1 − λ)g

)
+ O

(
1

1 − λ

)
·
( k−1∑

i=1

|E|
(k − i) · g

)

� |E| + O

(
|E| · log(n)

(1 − λ)g

)
,

where the last inequality uses the assumption that k � n and the facts that

k−1∑
i=1

1

k − i
� log(k) + O(1).

Theorem 2.5 follows.

We show below that the assumption that a graph has logarithmic girth in Theorem 2.5

is necessary. Specifically, we present a 6-regular expander graph G, and a rule R, such

that GRW with the rule R coves all the edges of G in expected time Ω(n log(n)). In

fact, the graph G satisfies an additional property that every vertex of G is contained in

some induced cycle of logarithmic length. This should be compared with the result of

Berenbrink, Cooper and Friedetzky [9], who have shown that if G is an even degree

expander such that every vertex of G is contained in some induced cycle of logarithmic

length, then the expected vertex cover time by GRW is linear for any rule R. This shows

a gap between the edge cover time and the vertex cover time of GRW.

Theorem 2.7. For every n = 0 (mod 3) there exists a 6-regular expander graph G = (V , E)

with |V | = n vertices such that every vertex of G is contained in an induced cycle of log-

arithmic length, and there exists a rule R such that the expected edge cover time of G by

GRW with the rule R is Ω(n log(n)).

Proof. Let H = (U, F) be a 4-regular expander graph on n/3 vertices such that every

vertex of G is contained in an induced cycle of length ε log(n) for some constant ε > 0.1

Define a graph G = (V , E) to be the Cartesian product of H with the graph K3. Namely, the

vertices of G are V = U × {1, 2, 3} and ((u, i), (u′, j)) ∈ E if and only if either (i) (u, u′) ∈ F

1 Such a graph can be obtained by choosing a random 4-regular graph. For reference see [10, Chapter II.4].
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and i = j or (ii) u = u′ and i �= j. By the properties of H , the graph G is a 6-regular

expander and it satisfies the property that every vertex of G is contained in some induced

cycle of length at least ε log(n).

The vertices of G are naturally partitioned into three subsets V = V1 ∪ V2 ∪ V3 where

Vi = {(U, i) : u ∈ U} for i = 1, 2, 3. The rule R is defined so that the first greedy part

will cover all edges of the form ((u, i)(v, i)) for all (u, v) ∈ F and i ∈ {1, 2, 3}. Assume now

that GRW starts from some arbitrary vertex (u0, 1) ∈ V1. The walker walks along some

Eulerian cycle of V1, covering all edges induced by V1. Indeed, this can be done, as the

graph induced by V1 is isomorphic to H , and hence its vertices have even degrees. After

completing the cycle in V1 and returning to the initial vertex (u0, 1), the walker moves to

(u0, 2), performs a walk along some Eulerian cycle on V2, and returns to (u0, 2). Similarly,

the walker then moves to (u0, 3), covers all edges induced by V3, and returns to (u0, 3).

Finally, the walker moves back to (u0, 1), and gets stuck for the first time. Note that at

this point all edges induced by each of the Vi have already been covered by GRW, and

the remaining edges form disjoint triangles of the form {(u, 1), (u, 2), (u, 3)} induced by

each of the vertices u ∈ U \ {u0}. Hence, each subsequent greedy part will consist of three

steps, covering one triangle at each part, and the order is defined by the first time that

the SRW reaches some vertex of a triangle {(u, i) : i = 1, 2, 3}. Noting that by ignoring all

steps from (u, i) to (u, j) in G, the random walk on G induces a simple random walk on H ,

it follows that in order to cover all triangles, the SRW needs to cover all the vertices of

a copy of H . Since by the theorem of Fiege [13] the expected vertex cover time of every

graph by SRW is at least Ω(n log(n), this bound also holds for the edge cover time of G.

This completes the proof of the theorem.

2.3. Hypercube {0, 1}d

The hypercube graph G = (V , E) is a graph whose vertices are V = {0, 1}d and (u, v) ∈ E

if and only if d(u, v) = 1, where d(·, ·) is the Hamming distance between two strings. We

show that for even dimension d the edge cover time of the hypercube is linear in the

number of edges.

Proposition 2.8. Let d ∈ N be even, and let Qd = (V , E) be the d-dimensional hypercube

graph. Then, for any rule R the expected edge cover time of Qd is bounded by

E[CE(Qd)] = O(|E|).

Proof. The proposition follows from the next lemma.

Lemma 2.9. Let G = (V , E) be a graph whose vertices have even degrees. Suppose that for

the graph G the expected vertex cover time of SRW is C . Then, the expected edge cover

time of GRW of G is at most

E[CE(G)] � |E| + C.
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Since the number of edges in Qd is |E| = 1
2
d · 2d, and using the fact that the expected

vertex cover time of the hypercube by SRW is C = O(d · 2d), Proposition 2.8 follows by

Lemma 2.9.

We now turn to the proof of Lemma 2.9.

Proof of Lemma 2.9. The proof proceeds by coupling between a simple random walk

and a greedy random walk so that the number of steps made by the GRW is larger than

the number of steps made by the SRW by at most |E|.
As observed above in Observation 2.6, for graphs of even degrees we have Xti = Xsi+1

for all i � k, i.e., every greedy part finishes at the same vertex that it started from. This

implies that the simple parts can be concatenated, as the end of the ith simple part is Xti ,

and the beginning of the (i + 1)st part is Xsi+1
. The coupling between the SRW and the

GRW is the natural one, where the SRW performs all the steps that the GRW makes

in its simple parts. Clearly, the number of steps made by the GRW is larger than the

number of steps made by the SRW by at most the total number of steps made in the

greedy parts, which is bounded by |E|.
Observe that whenever the SRW reaches some vertex v, it is either the case that (i) all

edges adjacent to v have already been covered by the GRW, or (ii) the vertex v is the

last vertex in the current simple part, and thus, using the property Xti = Xsi for all i, the

next greedy part will cover all edges adjacent to v. This implies that by the time the SRW

covers all vertices of G, the GRW has either already covered all edges of G, or will do so

in the number greedy part. Therefore, the edge cover time of the GRW is larger than the

vertex cover time of SRW by at most |E|. This completes the proof of the lemma.

We also remark (without a proof) on the edge cover time of a generalization of the

hypercube graph.

Remark. Define a generalization of the hypercube by connecting two vertices in {0, 1}d
if the distance between them is at most some parameter � � 2. Specifically, for � � 2,

let Q
(��)
d = (V , E�), where V = {0, 1}d and (x, y) ∈ E if and only if d(x, y) � �. Denoting

the number of vertices in the graph by n = 2d, the spectral radius of Q
(��)
d is bounded

from above by λ � 1 − �/log n. Therefore, by Theorem 2.3 for � � 2 the expected edge

cover time of GRW on Q
(��)
d is |E�| + O(n log2 n), where the constant in the O() notation

depends on �.

Noting that the number of edges in Q
��
d is |E�| = O(n · log� n), this implies that for

� = 2 the edge cover time is linear in the number of edges |E2| = O(n · log2 n), and for

� � 3 the edge cover time is (1 + o(1)|E�|.

2.4. d-regular trees

In this section we provide an upper bound for the edge cover time of GRW on trees. We

are able to describe the behaviour of GRW quite accurately, and subsequently provide a

tight bound on the cover time.
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Theorem 2.10. Let G = (V , E) be a tree rooted at a vertex denoted by r. For any v ∈ V let

Tv denote the subtree rooted at v and let |Tv| denote the number of edges in Tv . Then, for

any rule R the GRW edge cover time of G is

E[CE(G)] = |E| + O

( ∑
u∈G\{r}

|Tu|
)
.

If the rule for GRW is RRAND and deg(r) � 2, then there is a matching lower bound, namely

E[CE(G)] = |E| + Θ

( ∑
u∈G\{r}

|Tu|
)
.

The following corollary is immediate from Theorem 2.10.

Corollary 2.11. If G is a d-regular tree with n vertices, then the expected edge cover time

is O(n logd n).

Comparing Corollary 2.11 to the cover time of SRW on d-regular trees, we again see

an asymptotic speed-up over the Θ(n log2
d n) time of the SRW [2].

Proof. In order to use the tree structure of the graph, let us first give an overview of the

behaviour of GRW on trees. The walker starts at the root r and goes down greedily (i.e.,

an unvisited edge is traversed at every new step), until she reaches a leaf. Since she got

stuck at a leaf, she performs a simple random walk until she reaches the lowest ancestor

with an adjacent edge that has not yet been covered. The non-covered edge is necessarily

from the ancestor to one of the children (as its parent has already been visited on the

way down). The walker continues by moving down greedily until she reaches another leaf

not covered thus far, and then performs a simple random walk until she again reaches

the lowest ancestor with a child that has not been visited thus far by the walk. The walk

continues in the same manner until all edges have been covered, getting stuck only at the

leaves. In fact the walk gets stuck exactly once at each leaf, and the time CE(G) is the

time when the walker visits the last leaf of the tree. Note that when visiting some vertex

v, the walk will cover the entire subtree of v before returning to v’s parent. This property

is what makes the cover time of GRW asymptotically faster than the cover time of SRW.

The order in which the vertices are visited for the first time defines some preorder

traversal on the tree (first the root, then the subtrees), where for each vertex the order of the

subtrees is chosen according to the rule R. We observe that the vertices (Xs1 , Xs2 , . . . , Xsk )

define some order on the leaves of the tree, induced by the preorder traversal as described

above (and in particular, k is equal to the number of leaves). In addition, for every i < k,

the vertex Xti is the lowest ancestor of Xsi such that at time si not all of its descendants

have been visited by the walk. Hence, E[ti − si] equals the expected time it takes for the

simple random walk starting at Xsi to visit this ancestor. This implies that for every edge

(u, v), where u is the parent of v, there is at most one i ∈ {1, . . . , k} such that the edge (u, v)

lies on the shortest path from Xsi to Xti . Therefore, if w is the leaf where the walk got

stuck for the ith time, that is, Xsi = w, and v is its lowest ancestor whose subtree is not
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yet covered, then the expected time to reach v starting from w is

E[ti − si] = H(w, v) =
∑

(u1 ,u2)∈P(w,v)

H(u1, u2),

where H(x, y) denotes the expected number of steps required for SRW starting at x to visit

y, and the sum is over all edges on the shortest path from w to v (using the convention

that the edge (u1, u2) means that u2 is a parent of u1).

Going over all leaves in the graph, using the observation that the walk gets stuck

at each leaf exactly once (stopping at the last visited leaf at time sk), and finishing the

corresponding simple part at the lowest ancestor whose tree has not yet been covered, we

observe that for each i < k the shortest paths from Xsi to Xti are disjoint. Furthermore,

the union of all these paths covers all edges of the graph except for the path from the

last covered leaf, denoted by l = Xsk , to the root of the tree. Let P(r,l) denote the shortest

path from l to r. Then

E
[ k∑

i=1

(ti − si)

]
= E

[ ∑
(u,v)∈E\P(r,l)

H(u, v)

]
�

∑
(u,v)∈E

H(u, v), (2.9)

where H(v, u) denotes the expected number of steps required for SRW starting at v to

visit u for the first time, and the summation is over all edges (u, v), where v is the parent

of u. It is well known (see, e.g., [3, Lemma 1]) that if (u, v) is an edge in a tree, then

H(u, v) = 2|Tu| + 1. Proposition 2.1, together with (2.9), proves the upper bound of the

theorem.

Note that if we allow the walker return to the origin after covering the tree, then the

expected return time is equal to

|E| +
∑

(u,v)∈E
(2|T (u)| + 1) = 2

∑
u∈V

|T (u)| = 2
∑
u∈V

depth(u),

where depth(u) is the distance of the vertex u from the root.

If GRW uses the rule RRAND, then the subtrees rooted at the children of r are explored

completely one after another (the order of the children is random), and the walk will

return to r from all but the last subtree. Therefore, for each u child of r the subtree rooted

at u is completely explored by GRW with probability (deg(r) − 1)/deg(r), and hence, every

edge of the tree belongs to P(r,l) with probability at most 1/deg(r). Therefore, by applying

the formula in (2.9) we get

E
[ k∑

i=1

(ti − si)

]
= E

[ ∑
(u,v)∈E\P(r,l)

H(u, v)

]

�
(

1 − 1

deg(r)

) ∑
(u,v)∈E

H(u, v)

�
(

1 − 1

deg(r)

) ∑
u∈V\{r}

2|Tu|.

This completes the proof of the theorem.
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Remark. Note that in the second part we can remove the condition deg(r) � 2, and

obtain a bound of E[CE(G)] = |E| + Θ
(∑

u |Tu|
)
, where the sum is over all vertices u ∈ V

that either have at least two children or have an ancestor with at least two children.

3. Greedy random walk on Zd

In this section we study the behaviour of GRW on infinite graphs. Specifically we ask

whether the walk is recurrent or transient in different graphs.

3.1. GRW on Zd for d �= 2

Obviously, GRW on Z visits every vertex at most once. We show that for d � 3 the greedy

random walk on Zd is transient.

Theorem 3.1. Let G = (V , E) be an infinite graph all of whose vertices are of even degree.

If the simple random walk on G is transient, then for any rule R the greedy random walk is

also transient.

In particular, for d � 3, the greedy random walk on Zd returns to the origin only finitely

many times almost surely.

Proof. Partition the time [0,+∞] into two types of parts, greedy parts and simple parts,

by defining times t0 = 0, s1, t1, s2, t2, . . . ∈ N ∪ {+∞} as follows:

t0 = 0,

si+1 =

{
inf{ti � t < +∞ : Jt(Xt) = ∅} if there is such a t,

+ ∞ otherwise,

ti+1 =

{
inf{si+1 � t < +∞ : Jt(Xt) �= ∅} if there is such a t,

+ ∞ otherwise.

(An analogous partition underlies the results in Section 2. The difference here is that the

times can have the value +∞.)

For the reader’s convenience we restate Observation 2.6 adapted for the case of infinite

graphs.

Observation 3.2. If all degrees of a graph G = (V , E) are even and si+1 < ∞, then Xti =

Xsi+1
.

Assume that the event that si or ti equals +∞ for some i � 1, and tk is the first such

time, has a positive probability. Conditioning on this event, the walk remains in a simple

part starting from time sk , and hence performs a simple random walk from this time

onwards. Since SRW is transient on G, the walk will return to X0 only finitely many times

almost surely. In fact, since the random range R = {Xt : 0 � sk} is finite, and the SRW is

transient, conditioning on R, the SRW will leave R in finite time almost surely, and so tk
is almost surely finite, contradicting the assumption.
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Similarly, if the event that si or ti equals +∞ for some i � 1, and sk is the first such

time, has a positive probability, then, conditioning on this event, the walk is in a greedy

part from tk−1 onwards. In other words, from time tk−1 onwards the walker crosses each

edge at most once. Hence, as the degree of X0 is finite, the maximal number of returns to

X0 is at most

deg(X0)

2
+

tk−1

2
,

and in particular almost surely finite.

Assume now that the event that si, ti < +∞ for all i � 1 has a positive probability, and

condition on this event. Using the assumption that all vertices of the graph have even

degrees, it follows from Observation 3.2 that Xti = Xsi+1
for all i � 0. Therefore, for all

i � 0 the walk in time segments [si, ti] and [si+1, ti+1] can be concatenated. Hence, the

walk restricted to time
⋃

i�0[si, ti] is distributed as a simple random walk on G, and so,

by transience, returns to X0 finitely many times almost surely. Since in the overall greedy

parts the walker can visit X0 at most deg(X0)/2 times, the entire walk returns to X0

finitely many times almost surely.

Note that we have made great use of the fact that every vertex in our graph has

even degree. The following proposition shows a similar result by slightly relaxing this

assumption.

Proposition 3.3. Let G = (V , E) be a graph obtained from Zd by removing at most rd−2−ε

edges from any box of radius r centred at the origin for some ε > 0. Then the greedy random

walk on G is transient.

The proof generalizes the concatenation argument of Theorem 3.1. Unlike the previous

proof, which relied on the fact that all vertices had even degrees, in our case some vertices

have odd degrees. Hence it is possible that the simple parts cannot be concatenated into

one walk. However, we can divide the simple parts into classes, such that in each class

the parts can be concatenated into one simple random walk. The proof uses the fact

that a simple random walk starting from a point at distance r from the origin then visits

the origin with probability O(1/rd−2). Therefore, if there are rd−2−ε independent simple

random walkers starting on a sphere of radius r centred at the origin, then the total

number of visits to the origin by all the walkers is almost surely finite.

Proof. We start with a time partition (t0 = 0, s1, t1, s2, t2, . . .) as in the proof of The-

orem 3.1. Call a vertex v a new start if v = Xsi for some i and Xtj �= v for all j < i. As in

the proof of Theorem 3.1, the concatenation argument implies that every new start vertex

must be either the origin or have an odd degree.

Consider the walk restricted to the segments [si, ti]. The indices i � 1 can be partitioned

into classes C1, C2, . . . such that in each class Cj the segments [si, ti], i ∈ Cj , can be

concatenated into one walk that starts with a new start vertex. Namely, if Cj = {i1 < i2 <

i3 < · · · }, then Xsi1
is a new start and Xsi2

= Xti1
, Xsi3

= Xti2
, . . . Letting mj denote minCj ,
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we have that Xsmj
is necessarily a new start, and is therefore either the origin or a vertex

of odd degree. Moreover, the times {smj
}j are all distinct.

For each Cj , restricting the walk to times
⋃

{[si, ti] : i ∈ Cj} gives us a simple random

walk (possibly finite) starting from Xsmj
. Therefore there are at most O(rd−2−ε) simple

random walks, starting from a box of radius r centred at the origin. Using the fact that a

random walk in Zd starting from a vertex at distance r from the origin hits the origin with

probability O(1/rd−2), we conclude that the sum of probabilities of hitting zero converges,

when summing over all random walks. More precisely, let Pv be the probability that a

simple random walk starting at v reaches the origin, and let ODD be the set of all vertices

of odd degree. Then

∑
v∈ODD

Pv =

∞∑
n=1

∑
v∈ODD

2n−1�‖v‖<2n

Pv �
∑
n

(2n)(d−2−ε) · O
(

1

(2n)d−2

)
= O

( ∞∑
n=1

2−εn

)
< ∞.

By the first Borel–Cantelli lemma, the event that only finitely many of the walks will

reach the origin occurs with probability 1. Therefore, GRW on this graph is transient, as

required.

3.2. GRW on Z2 and the mirror model

The following observation relating the behaviour of GRW on Z2 to the mirror model is

due to Omer Angel.

In the mirror model, introduced by Ruijgrok and Cohen [18], a mirror is placed

randomly on Z2 by aligning a mirror along either one of the diagonal directions with

probability 1/3 each, or placing no mirror with probability 1/3. A particle moves along

the edges of the lattice and is reflected by the mirrors according to the law of reflection:

see, e.g., [12] for details. A major open problem in this area is to determine whether

every orbit is periodic almost surely. We claim below that this question is equivalent to

determining whether GRW with rule RRAND is recurrent in Z2. (Recall that in the rule

RRAND an edge is chosen uniformly at random among the adjacent unvisited edges of the

current vertex.)

Let (Xt)t�0 be a GRW on Z2 with the rule RRAND. Then there exists a coupling between

(Xt)t�0 and the particle motion in the planar mirror model until the first time they return

to the origin. Indeed, if at time t � 0 the GRW reaches a vertex Xt that we have not

visited so far, then in both the GRW and in the mirror model the next step will be chosen

in a non-backtracking manner, giving equal probabilities of 1/3 to each of the adjacent

vertices (except for Xt−1). In the mirror model this uniquely defines the alignment of the

mirror at vertex Xt and hence the next move of the particle in the next visit to this place,

given that the orbit is not periodic: it will go to the unvisited neighbouring vertex. On the

other hand, if at time t � 0 we reach a vertex Xt that has already been visited previously,

then the next step is uniquely determined: it is to make a move along the edge that

has not been traversed so far. This defines a coupling of the two models up to the first

returning time to zero.
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Claim 3.4. The probability that GRW with the rule RRAND on Z2 returns to the origin at

least once is equal to the probability that a particle returns to the origin in the planar mirror

model.

From Claim 3.4 we infer the following theorem.

Theorem 3.5. A GRW with rule RRAND on Z2 returns to the origin infinitely often almost

surely if and only if the orbit in the mirror model on Z2 is periodic almost surely.

Proof. Note first that a GRW on Z2 returns to the origin infinitely often if and only if

every greedy part is finite. Indeed, if there is an infinite greedy part, then there are finitely

many returns to the origin as every vertex is visited at most twice in total in all greedy

time parts. In the other direction, assume that all greedy time parts are finite. Then, by

the concatenation argument, which follows by Observation 3.2, the simple parts form an

infinite subsequence distributed as SRW on Z2 starting at the origin. The latter returns to

the origin infinitely often almost surely, and hence, so does GRW. Therefore, it is enough

to show that the orbit in the mirror model on Z2 is periodic almost surely if and only if

every greedy part is finite.

Suppose first that every orbit in the mirror model on Z2 is periodic almost surely, and

suppose that GRW starts the ith greedy part at some time ti. Then, conditioning on the

ti steps of GRW so far, we define the orientation of the mirrors in the vertices visited up

to now. Since the number of visited vertices is finite, it follows that the conditioning is on

a non-zero event, and so the trajectory of the particle starting from Xti is almost surely

periodic. Therefore, by considering the coupling between GRW and the mirror model

conditioned on that event, analogously to Claim 3.4, it follows that, with probability 1,

the ith greedy part is finite.

Assume now that every greedy part of GRW is finite. Note that by translation invariance

it is enough to show that the trajectory of a single particle starting at the origin is periodic

almost surely.2 Indeed, since GRW returns to the origin twice almost surely, it follows

from the coupling in Claim 3.4 that the trajectory of a particle starting at the origin is

periodic almost surely, as required.

4. Remarks and open problems

4.1. A conjecture regarding Theorem 2.2

Recall Observation 2.6 used in the proof of Theorem 2.5. It seems to be potentially useful

for proving stronger bounds on the edge cover time of GRW. To illustrate how this

observation can be useful, let us consider the GRW on the complete graph Kn for odd

2 Indeed, if the trajectory of a particle starting at the origin is periodic almost surely, then, by translation

invariance the trajectory of a particle starting at any vertex and moving in any direction is periodic almost

surely. Thus, by placing four particles at each vertex of the graph and letting them move in the four possible

directions, it follows that with probability 1, the trajectory of each of them is periodic, as this event is an

intersection of countably many probability 1 events. Therefore, the trajectory of a particle is periodic almost

surely if and only if all orbits are periodic almost surely.
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values of n. In the proof of Theorem 2.2 we only used the assumption that the ‘bad’ sets

Bi grow at least by one each time, thus allowing us to bound the ‘overhead’ by

E
[ k−1∑

i=1

n − 1

n − |Bi|

]
� E

[k−1∑
i=1

n − 1

n − i

]
� n log(n).

We suspect, however, that the sets Bi grow linearly in n, since by the time the walker gets

stuck for the first time, i.e., visits the starting vertex n/2 times, the number of vertices

that have already been visited n/2 times will be linear in n. The situation, however,

becomes more complicated when trying to analyse the set B2, as it seems to require some

understanding regarding the subgraph of Kn that has not been covered by the time s1
when the walker got stuck for the first time. If this is indeed true, and the sets Bi grow

linearly at each step, we would obtain a stronger bound E[
∑

(ti − si)] = O(n). We make

the following, rather bold, conjecture.

Conjecture 4.1. The expected edge cover time of GRW on Kn is

E[CE(Kn)] = |E| + Θ(n).

An interesting result in this direction is a recent result of Omer Angel and Yariv Yaari.

They showed that for the complete graph Kn for odd values of n, i.e., when the graph Kn

is of even degree, the expected number of unvisited edges in Kn until the first time the

walk got stuck (i.e., up to time s1) is linear in n [19].

4.2. Rules on vertices instead of edges

In this paper we have considered the edge cover time of graphs, rather than the vertex

cover time. This seems to be a natural quantity to analyse due to the transition rule of

GRW. A näıve modification of GRW to speed up the vertex cover time is as follows. At

each step, the walker at vertex v picks an unvisited neighbour of v according to some

rule and jumps there. If all neighbours have already been visited, the next move is chosen

uniformly at random among the neighbours of v. For example, it is obvious that in the

complete graph Kn, this walk covers all vertices in n steps.

Note that, when the walker is allowed to make some local computations at a vertex,

and each vertex has information regarding its neighbours, then one can define a rule that

will force the walk to perform depth-first search on the graph, by letting each vertex use

only the information regarding its neighbours. Such a walk crosses each edge of some

spanning tree at most twice, thus visiting all vertices of the graph in less than 2n steps.

4.3. Open problems

In order to avoid trivialities, in the questions below consider GRW with the rule RRAND.

(1) Give a tight bound for the ‘overhead’ of GRW on the complete graph. Specifically,

is it true that E[CE(Kn)] =
(
n
2

)
+ Θ(n)?

(2) Show upper bounds on CE(G) for other families of graphs. One interesting example

to look at would be the d-dimensional torus.
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(3) It would also be interesting to analyse the GRW on graphs with power-law degree

distribution. On such graphs there are hubs of very large degrees, and when visiting

them, the GRW is expected to be efficient.

(4) Show that for any transitive graph the expected edge cover time of the GRW cannot

be asymptotically larger than that of the SRW for any finite graph. We know that

this is true for vertex-transitive graphs of even degree.

(5) Give bounds on the expected vertex cover time of the GRW for finite graphs.

(6) Give bounds on the expected hitting time of GRW for different graphs.

(7) Define the GRW mixing time and show that the GRW mixing time is as fast as that

of SRW. Here [4] is relevant, and [16] may also be found to be useful.

The remaining problems are regarding recurrence/transience of GRW on infinite graphs.

(8) Is GRW on Z2 recurrent? Is GRW diffusive on Zd, for all d � 2? (See the discussion

in Section 3.2.)

(9) Is GRW on the ladder Z × Z2 recurrent?

(10) Prove that GRW is transient on any graph that is roughly isometric to Z3. In

particular, show it for odd degree lattices.

(11) Show that GRW is transient on non-amenable infinite graphs.

(12) Consider GRW on a vertex-transitive graph. Is there a zero-one law for the event

that the walker returns to the initial location infinitely often? Note that, as in the

argument in the proof of Theorem 3.5, the event above occurs almost surely if and

only if the walker returns to the initial location almost surely.
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[8] Berenbrink, P., Cooper, C., Elsässer, R., Radzik, T. and Sauerwald, T. (2010) Speeding up

random walks with neighborhood exploration. In Proc. 21st Annual ACM–SIAM Symposium

on Discrete Algorithms, pp. 1422–1435.

[9] Berenbrink, P., Cooper, C. and Friedetzky, T. (2012) Random walks which prefer unvisited

edges, and exploring high girth even degree expanders in linear time. In Proc. 31st Annual

ACM SIGACT–SIGOPS Symposium on Principles of Distributed Computing.

[10] Bollobás, B. (2001) Random Graphs, Cambridge University Press.

[11] Broder, A. Z. and Karlin, A. R. (1989) Bounds on the cover time. J. Theoret. Probab. 2 101–120.

[12] Bunimovich, L. A. and Troubetzkoy, S. E. (1992) Recurrence properties of Lorentz lattice gas

cellular automata. J. Statist. Phys. 67 289–302.

[13] Feige, U. (1995) A tight lower bound on the cover time for random walks on graphs. Random

Struct. Alg. 6 433–438.

[14] Friedrich, T. and Sauerwald, T. (2010) The cover time of deterministic random walks. In Proc.

16th Annual International Conference on Computing and Combinatorics: COCOON’10, Springer,

pp. 130–139.

[15] Hoory, S., Linial, N. and Wigderson, A. (2006) Expander graphs and their applications. Bull.

Amer. Math. Soc. 43 439–561.

[16] Madras, N. and Wu, C. C. (2005) Self-avoiding walks on hyperbolic graphs. Combin. Probab.

Comput. 14 523–548.

[17] Pemantle, R. (2007) A survey of random processes with reinforcement. Probability Surveys 4

1–79.

[18] Ruijgrok, T. and Cohen, E. (1988) Deterministic lattice gas models. Phys. Lett. A 133 415–418.

[19] Yaari, Y. (2011) MSc thesis, Weizmann Institute of Science, Israel.

[20] Zuckerman, D. (1990) A technique for lower bounding the cover time. In Proc. 22nd annual

ACM Symposium on Theory of Computing: STOC ’90, ACM, pp. 254–259.

https://doi.org/10.1017/S0963548313000552 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000552

