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An old conjecture of Z. Tuza says that for any graph G, the ratio of the minimum size,

τ3(G), of a set of edges meeting all triangles to the maximum size, ν3(G), of an edge-disjoint

triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that

for any fixed, positive α there are arbitrarily large graphs G of positive density satisfying

τ3(G) > (1 − o(1))|G|/2 and ν3(G) < (1 + α)|G|/4.

2010 Mathematics subject classification: Primary 05C70

Secondary 05C50

1. Introduction

Following [15] we write τ3(G) for the minimum size of a triangle edge cover (set of edges

meeting all triangles) in a graph1 G and ν3(G) for the maximum size of a triangle packing

(collection of edge-disjoint triangles) in G. (In standard language these are the matching

and vertex cover numbers of the hypergraph with vertex set E(G) and edges the triangles

of G.)

While τ3(G) � 3ν3(G) is trivial (for any G), a 33-year-old conjecture of Zsolt Tuza [14]

holds that this can be improved.

Conjecture 1.1. For any G, τ3(G) � 2ν3(G).

(This is sharp for the complete graphs of orders 4 and 5.)

† Supported by the US Department of Homeland Security under Grant Award 2012-ST-104-000044. The

views and conclusions contained in this document are those of the authors and should not be interpreted as

necessarily representing the official policies, either express or implied, of the US Department of Homeland

Security.
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1 All graphs in this paper are finite, simple and undirected.
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646 J. D. Baron and J. Kahn

The best general result in this direction remains that of Haxell [6], who showed

τ3(G) � (66/23)ν3(G).

On the other hand, as noted in [15], a combination of results of Krivelevich [10] and

Haxell and Rödl [7] implies that, for any G,

τ3(G) < 2ν3(G) + o(n2)

(limits as n := |V (G)| → ∞). In particular, for any fixed β > 0 and G ranging over graphs

satisfying τ3(G) � βn2,

τ3(G) < (2 + o(1))ν3(G). (1.1)

That is, Tuza’s conjecture is asymptotically correct for such graphs.

The question of Raphael Yuster [15] that motivates us here is as follows: Is the constant

2 in (1.1) optimal? That is, is Tuza’s conjecture still (asymptotically) tight for dense graphs

with no subquadratic triangle cover? Yuster suggested not, at least in the special case

where τ3(G) is nearly as large as possible.

Conjecture 1.2 ([15]). For fixed β > 0 and G ranging over graphs of density at least β,

τ3(G) > (1 − o(1))|G|/2 =⇒ ν3(G) > (1 − o(1))|G|/3

(where density is |G|/
(
n
2

)
, and |G| = |E(G)|).

This would of course (for the graphs considered) be a big improvement over (1.1),

which promises only ν3(G) > (1 − o(1))|G|/4.

Note that the inequalities τ3(G) < |G|/2 and ν3(G) � |G|/3 are easy and trivial (respect-

ively), so Yuster’s conjecture says that if G is dense and τ3(G) is close to its trivial upper

bound, then so must be ν3(G).

Yuster also suggested weakening Conjecture 1.2 to say only that there is some fixed

α ∈ (0, 1/3) (not depending on β) such that

τ3(G) > (1 − o(1))|G|/2 =⇒ ν3(G) > (1 + α)|G|/4, (1.2)

which would still significantly improve on (1.1) (when τ3(G) > (1 − o(1))|G|/2). (Yuster

did show that (1.2) is true if we allow α to depend on β.)

Surprisingly it turns out that even the weaker conjecture is wrong.

Theorem 1.3 (Main Theorem). For all α > 0, there exist β > 0 and arbitrarily large graphs

G satisfying

• |G| � β
(
n
2

)
,

• τ3(G) > (1 − o(1))|G|/2, and

• ν3(G) < (1 + α)|G|/4

(limits as n → ∞).

Thus even for dense graphs – and moreover for dense graphs where τ3(G) is near |G|/2 –

Tuza’s conjecture is essentially best possible.
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Since what follows is not entirely easy, a little orientation may be helpful. Our

construction itself is not very difficult; here it is in rough outline.

(1) Start with a triangle-free graph H with certain nice degree and eigenvalue properties

(we use the well-known graphs described by Noga Alon in [1]: see Proposition 4.1).

(2) Join two disjoint copies of H by a complete bipartite graph to produce K .

(3) Replace each vertex of K by a large clique.

(4) Take a suitable random subgraph of this blowup, yielding the graph Ga found in the

third paragraph of Section 3.

So again, there is nothing very exotic here. What seems most interesting in what follows

is how strange a route we needed to take in order to arrive at a proof that this relatively

simple construction actually works.

Also interesting is whether one could simplify our argument (or give an easier example)

if the goal were only to disprove the stronger Conjecture 1.2 (rather than (1.2)). We do

not see how to do this, and in fact most of what follows was originally developed with

the lesser goal in mind.

The rest of the paper is organized as follows. The next section covers preliminary

business: standard notation and terminology (§ 2.1); a few preliminary results, including

some previously known (§ 2.2) and one new (§ 2.3); and a long string of essential definitions

(§ 2.4) leading up to the crucial Lemma 2.15, which we call our Main Lemma. In Section 3

we prove our Main Theorem (Theorem 1.3), assuming the Main Lemma. In Section 4 we

prove the Main Lemma itself.

2. Preliminaries

2.1. Usage

Given a graph G and v ∈ V (G), N(v) is the neighbourhood of v in G, and d(v) = |N(v)| is

the degree of v. For a subgraph H of G,

NH (v) = {x ∈ V (G) | xv ∈ H}

is the set of H-neighbours of v, and dH (v) = |NH (v)|. For disjoint A,B ⊆ V (G), ∇(A,B) is

the set of edges with one endpoint in A and one in B, and ∇H (A,B) is ∇(A,B) ∩ E(H).

Also, G[A] is the subgraph of G induced by A.

For x, y ∈ V (G), the distance between x and y is the number of edges in a shortest path

from x to y. The diameter of G is the maximum distance between a pair of vertices of G.

The edge space of G, denoted E(G), is the set of binary vectors indexed by the edges of

G, viewed as a vector space over F2. The cycle space of G, denoted C(G), is the subspace

of E(G) generated by the (indicators of) cycles of G. The orthogonal complement C⊥(G)

of C(G), called the cut space of G, is exactly the set of (indicators of) cuts ∇(A,V (G) \ A)

of G (see, e.g., [4, § 1.9] for an exposition).

A fractional triangle edge cover of G is an assignment of non-negative weights to the

edges of G such that the weight of each triangle (this being the sum of the weights of

its edges) is at least 1. We let τ∗
3(G) denote the minimum total weight of such a cover.

Dually, a fractional triangle packing of G is an assignment of non-negative weights to the
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triangles of G such that the weight of each edge (the sum of the weights of the triangles

containing it) is at most 1. We let ν∗
3 (G) denote the maximum total weight of such a

packing. We have

ν3(G) � ν∗
3 (G) = τ∗

3(G) � τ3(G),

where the inequalities are trivial and the equality is by linear programming duality.

Given graphs G1, G2, the lexicographic product G1 · G2 is the graph on vertex set

V (G1) × V (G2) where (u1, u2) is adjacent to (v1, v2) if and only if either u1v1 ∈ G1, or

u1 = v1 and u2v2 ∈ G2. Note that the lexicographic product is not commutative.

As usual, the eigenvalues of a graph are those of its adjacency matrix; see, e.g., [3,

§ VIII.2].

In the context of an asymptotic probabilistic argument, a statement holds with high

probability (w.h.p.) if it holds with probability tending to 1 as some specified parameter

tends to infinity.

The notation X � Bin(n, p) means X is a random variable distributed according to a

binomial distribution with n independent Bernoulli trials of success probability p. The

symbol � is not to be confused with ∼, which denotes asymptotic equality.

Finally, for a positive integer n, [n] is the set {1, . . . , n}.

2.2. Known preliminaries

Here we recall what we need in the way of standard tools.

Lemma 2.1 (Expander Mixing Lemma [2, Corollaries 9.2.5–9.2.6]). Let H be a d-regular

graph on t vertices for which every eigenvalue except d has absolute value at most λ. Let

A,B ⊆ V (H) be disjoint with |A| = a, |B| = b. Then∣∣∣∣|∇(A,B)| − abd

t

∣∣∣∣ � λ
√
ab,

and ∣∣∣∣|H[A]| − a2d

2t

∣∣∣∣ � λa

2
.

We will use the Chernoff bound in the following form.

Theorem 2.2 ([8, Theorem 2.1]). If X � Bin(n, p), μ = np = E[X] and x � 0, then

P(X � μ + x) � exp

(
− x2

2(μ + x/3)

)

and

P(X � μ − x) � exp

(
− x2

2μ

)
.

Regarding the cycle space of a graph we need the following simple observations.
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Proposition 2.3 ([4, Proposition 1.9.1]). For any graph G, C(G) is generated by the induced

cycles of G.

Corollary 2.4. For any graph G of diameter D, C(G) is generated by the cycles of G of

length up to 2D + 1.

Proof. Every induced cycle of G has length at most 2D + 1.

Finally, we will need Szemerédi’s Regularity Lemma [12], or, more precisely, a gener-

alization thereof due to Kohayakawa [9] and Rödl (unpublished). Our presentation here

follows Section 8.3 of [8].

Definitions 2.5 (for the Regularity Lemma). Given a graph H , a real number s ∈ (0, 1]

(called a scaling factor), and disjoint U,W ⊆ V (H) =: V , the (s;H)-density ds,H (U,W )

between U and W is

ds,H (U,W ) =
|∇H (U,W )|
s|U||W | .

For ε > 0, the pair U,W is called (s;H, ε)-regular if, for all U ′ ⊆ U and W ′ ⊆ W with

|U ′| � ε|U| and |W ′| � ε|W |, we have

|ds,H (U,W ) − ds,H (U ′,W ′)| � ε.

A partition Π = (V0, V1, . . . , Vk) of V is called (ε, k)-equitable if |V1| = |V2| = · · · = |Vk|
and |V0| � ε|V |, and it is called (s;H, ε, k)-regular if it is (ε, k)-equitable and all but at

most ε
(
k
2

)
of the pairs Vi, Vj (1 � i < j � k) are (s;H, ε)-regular. In such a partition, V0 is

called the exceptional part. If k′ > k and Π′ is an (ε, k′)-equitable partition of V , then we

say Π′ refines Π if every non-exceptional part of Π′ is contained in some non-exceptional

part of Π.

For b � 1 and β > 0, H is called (s; b, β)-bounded if whenever U,W ⊆ V are disjoint

with |U|, |W | � β|V | we have ds,H (U,W ) � b. Intuitively, when H is sparse and s is the

(tiny) density of H , (s; b, β)-boundedness ensures that no substantial chunk of H is much

denser than it should be.

Lemma 2.6 (Szemerédi’s Regularity Lemma [8, Lemma 8.18]). For all ε > 0, b � 1 and

natural numbers m and r, there exist β = β(ε, b, m, r) > 0 and M = M(ε, b, m, r) � m such

that the following holds. For every choice of scaling factors si (i ∈ [r]) and (si; b, β)-bounded

graphs Hi (i ∈ [r]) on the same vertex set V with |V | � m, there exists k ∈ [m,M] and a

partition Π of V that is (si;Hi, ε, k)-regular for all i ∈ [r].

Since the proof of the Regularity Lemma starts with any partition of V into m non-

exceptional parts of size �|V |/m� and repeatedly refines this partition so that at each step

each part is broken into the same number of subparts (see, e.g., [9, 5] for details), we may

further assume that

(i) Π refines a specified partition of V with m non-exceptional parts of size �|V |/m�, and
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(ii) for any two non-exceptional parts Si, Sj of the starting partition we have |V0 ∩ Si| =

|V0 ∩ Sj |, where V0 is the exceptional part of Π.

Observe also that since every graph is trivially (1; 1, β)-bounded for all β, taking

b = r = s1 = 1 in Lemma 2.6 recovers the usual Regularity Lemma. This is all we will need

for our Main Theorem (Theorem 1.3), but the proof of our Main Lemma (Lemma 2.15

below) will require the full generality of Lemma 2.6.

Associated with the Regularity Lemma is the so-called Counting Lemma, which we will

use in the following unusual form.

Lemma 2.7 (Counting Lemma). Let H be a graph, ε ∈ (0, 1/2), s ∈ (0, 1], and A,B, B′

pairwise disjoint subsets of V (H) each of size l. If the pairs A,B and A,B′ are (1;H, ε)-

regular with (1;H)-density at least 2ε, and the pair B,B′ is (s;H, ε)-regular with (s;H)-

density at least 2ε, then H contains a triangle abb′ with a ∈ A, b ∈ B, b′ ∈ B′.

Proof. Since d1,H (A,B) � 2ε, we have |{a ∈ A | |∇(a, B)| < εl}| < εl, or else this subset

of A, along with B ⊆ B, would violate the (1;H, ε)-regularity of the pair A,B. Similarly

|{a ∈ A | |∇(a, B′)| < εl}| < εl. Thus since ε < 1/2, there exists a ∈ A satisfying |N(a) ∩
B|, |N(a) ∩ B′| � εl. Then since the pair B,B′ is (s;H, ε)-regular with (s;H)-density at

least 2ε, we have ∇(N(a) ∩ B,N(a) ∩ B′) �= ∅, yielding a triangle in H of the stated form.

2.3. A new version of Mantel’s theorem

Finally, we will need the following strengthening of Mantel’s theorem [11], which may be

of independent interest. Recall that Mantel’s theorem is the first case of Turán’s theorem

([13], or, for example, [4, Theorem 7.1.1]) and the first result in extremal graph theory,

proved in 1907.

Lemma 2.8 (Mantel’s theorem for ‘crossing triangles’). Let K be the complete graph on

X ∪ Y , where X and Y are disjoint sets of size n. Let F be a subgraph of K containing no

(‘crossing’) triangles meeting both X and Y . Then |F | � n2.

Proof. We first claim that for any largest F containing no crossing triangles, F[X] and

F[Y ] are complete multipartite. For convenience set G = F[X]. If G is not complete

multipartite, then it has vertices x, y, z satisfying xy ∈ G and xz, yz /∈ G. If dF (x) > dF (z),

then replacing NF (z) by NF (x) strictly increases |F | without introducing forbidden

triangles. Thus we may assume dF (z) � dF (x), and similarly dF (z) � dF (y). But then

replacing both NF (x) and NF (y) by NF (z) strictly increases |F | without introducing

forbidden triangles. (This neighbourhood-switching is a standard trick; see e.g., [4,

Theorem 7.1.1]. We use it again below in our proof of the Main Theorem.

So any largest F is complete multipartite in X with parts X1, X2, . . . , Xr of sizes

x1 � x2 � · · · � xr , and in Y with parts Y1, Y2, . . . , Yr of sizes y1 � y2 � · · · � yr (some of

the xi or yi being 0 if one of the partitions has more non-empty parts than the other).
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Since F has no triangles meeting both X and Y , for any a ∈ Xi and b ∈ Yj we have

ab ∈ F =⇒ NF (a) ∩ Y ⊆ Yj and NF (b) ∩ X ⊆ Xi,

so by the so-called rearrangement inequality we have

|F | �
∑

1�i<j�r

(xixj + yiyj) +

r∑
i=1

xiyi

=
1

2

r∑
i=1

[xi(n − xi + yi) + yi(n − yi + xi)]

=
1

2

r∑
i=1

[n(xi + yi) − (xi − yi)
2]

= n2 − 1

2

r∑
i=1

(xi − yi)
2.

2.4. New definitions

The following definitions are essential to our arguments.

Definition 2.9 (double of a graph). For a graph H , the double of H , denoted KH,H , is the

graph K2 · H . To be explicit, this is the graph whose vertex set is X ∪ Y , where X and

Y are disjoint sets of size |V (H)|, and whose edges satisfy KH,H [X] � KH,H [Y ] � H and

{xy | x ∈ X, y ∈ Y } ⊆ E(KH,H ). The sets X and Y (we will always use these names) are

called the sides of KH,H .

Of course, the notation KH,H is intended to suggest the notation Kt,t for a complete

bipartite graph. When the H is understood, we will frequently abbreviate KH,H by K .

We let E denote the copy of K2 on vertex set {b, s}. Here E is for ‘edge’, b is for ‘big’,

and s is for ‘small’, for reasons that will now become clear.

Definition 2.10 (compound vertex). Let G be a graph. Then G on compound vertices,

denoted G+, is the graph G · E. This term is intended to be suggestive – we imagine G+

as G with each of its vertices v replaced by a new compound structure with a big part

(v, b) and a small part (v, s). We will always abbreviate (v, b) by vb, for example. For a

generic vertex of G+ we write vx, vy, etc., understanding x, y ∈ {b, s}.

Definition 2.11 (edge types). In the context of a given K = KH,H , an edge uw ∈ K is

called internal if u and w belong to the same side, and external otherwise. Similarly, an

edge uxwy ∈ K+ with u �= w is internal if uw ∈ K is internal and external if uw ∈ K is

external. An edge vbvs ∈ K+ is called a vertex edge.
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Definition 2.12 (external triangles). Let H be a graph and K = KH,H . A triangle in K or

K+ is an external triangle if it contains an external edge. A subgraph F of K or K+ is

external triangle free (ETF) if it contains no external triangles.

Definitions 2.13 (configurations and weight). Let H be a graph with t vertices and m

edges, and K = KH,H . A configuration on K is a pair (F, φ), where F ⊆ E(K+) and

φ : V (K+) → [0, 1] satisfy the following conditions. Viewing F as a subgraph of K+, F is

ETF, contains all vertex edges of K+, and satisfies NF (vb) ∩ NF (vs) = ∅ ∀ v ∈ V (K); and φ,

which we call a mass function, satisfies φ(vb) ∈ [1/2, 1] and φ(vs) = 1 − φ(vb) ∀ v ∈ V (K).

Given a configuration and c ∈ [0, 1], the configuration’s c-weight is

wc(F, φ) =
1 − c

4m

∑
uxwy∈F
internal

φ(ux)φ(wy) +
1 − c

2t2

∑
uxwy∈F
external

φ(ux)φ(wy) +
c

t

∑
v∈V (K)

φ(vb)φ(vs). (2.1)

Here is the idea behind c-weight. Given H , we think of the vertices and edges of K as

having weights attached, as follows. Each vertex weighs c/2t, each internal edge weighs

(1 − c)/4m, and each external edge weighs (1 − c)/2t2, for a total of unit weight on K .

Passing to K+, an adversary tries to maximize the amount of this weight he can capture

in a configuration (F, φ). For each edge uw ∈ K , the fraction of that edge’s weight that

he captures is ∑
uxwy∈F

φ(ux)φ(wy),

because we think of the weight of uw ∈ K as being split among the four corresponding

edges of K+ with a φ(ux)φ(wy)-fraction residing in the edge uxwy. For each vertex

v ∈ V (K), the fraction of that vertex’s weight that our adversary captures is 2φ(vb)φ(vs),

because we think of the weight of a vertex in K as being split up in K+ analogously to

the way the weight of an edge in K is split up in K+, with a φ(vb)2-fraction of the weight

of v residing in vb, a φ(vs)2-fraction in vs, and the remaining 2φ(vb)φ(vs)-fraction in the

vertex edge vbvs. This 2 cancels the 1/2 in the vertex weight c/2t to yield the coefficient

of the third sum in (2.1). To see that the 2 is natural, observe that it lets our adversary

capture exactly half the weight of every vertex and edge of K by taking

F = {ubws | uw ∈ K} ∪ {vbvs | v ∈ V (K)}

and φ ≡ 1/2. We call this the naı̈ve configuration.

Definition 2.14 (fairness). For c ∈ [0, 1], a graph H is called c-fair if

max
(
wc(F, φ)

)
= 1/2, (2.2)

where the max is over configurations (F, φ) on K .

Observe that the 1/2 in (2.2) is best possible, since the näıve configuration has c-weight

1/2 for any c. This explains the term ‘fair’: our adversary cannot capture more than half

the weight of K , the amount to which he is näıvely entitled.
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Observe also that increasing c can only make life harder for our adversary. That is, if

H is c-fair, then it is c′-fair for any c′ ∈ [c, 1]. To see this, notice that wc(F, φ) is a convex

combination of the non-negative quantities

1

2m

∑
uxwy∈F
internal

φ(ux)φ(wy),
1

t2

∑
uxwy∈F
external

φ(ux)φ(wy) and
1

t

∑
v∈V (K)

φ(vb)φ(vs),

with coefficients (1 − c)/2, (1 − c)/2, c. Since the first two coefficients are decreasing in c

and the third quantity is at most 1/2 (note that each of the 2t terms in its sum is at most

1/4), increasing c cannot raise wc(F, φ) above 1/2. At the extremes, it is easy to see that

no graph is 0-fair and every graph is 1-fair. This, finally, motivates our Main Lemma.

Lemma 2.15 (Main Lemma). For any c ∈ (0, 1] and N ∈ N, there exists a triangle-free,

d-regular, c-fair graph H with d � N.

3. Proof of Main Theorem (Theorem 1.3)

Fixing α > 0 (we may assume α < 1/3), our goal is to show there are arbitrarily large

graphs G of positive density satisfying τ3(G) > (1 − o(1))|G|/2 but nonetheless ν3(G) <

(1 + α)|G|/4. To do this, we use a probabilistic construction starting with a graph promised

by the Main Lemma.

Set c = α/6 and let H be a triangle-free, d-regular, c-fair graph on t vertices, where

d � (2c)−1. Let

p =
1 − c

2cd
, q =

1 − c

2ct
,

noting that p, q ∈ (0, 1). Let K = KH,H , and observe that K · Ka is the graph obtained

from K when each vertex is ‘blown up’ to a clique of size a. Call each of these Ka in

K · Ka a block, and for each v ∈ V (K), let Bv denote the block corresponding to v. Also,

consistent with Definition 2.11, call an edge xy ∈ K · Ka an internal edge, external edge, or

vertex edge according to whether it comes from an internal edge, external edge, or vertex

of K .

For each a ∈ N (think: large), let Ga be the random graph obtained from K · Ka by

deleting each internal edge with probability 1 − p and each external edge with probability

1 − q, these choices made independently. Then since |∇Ga
(Bu, Bw)| � Bin(a2, p) for each

internal uw ∈ K and |∇Ga
(Bu, Bw)| � Bin(a2, q) for each external uw ∈ K , Theorem 2.2 says

that each of these numbers |∇Ga
(Bu, Bw)| is typically close to its expectation. To be precise,

for each uw ∈ K (internal or external), if we set Xuw = |∇Ga
(Bu, Bw)|, μuw = EXuw and

x = a log a, then Theorem 2.2 gives P(|Xuw − μuw| � x) = O(a−2) = o(1) as a → ∞. Since

|K| = t2 + td is fixed, μuw = Θ(a2) and x = o(a2), it holds w.h.p. as a → ∞ that Xuw ∼ μuw
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for all uw ∈ K . We may thus assume Ga satisfies this property, whence

|{xy ∈ Ga | xy internal}| ∼ tda2p =
a2t(1 − c)

2c
, (3.1)

|{xy ∈ Ga | xy external}| ∼ t2a2q =
a2t(1 − c)

2c
, (3.2)

|{xy ∈ Ga | xy vertex}| = 2t

(
a

2

)
∼ a2t. (3.3)

We claim that, w.h.p. as a → ∞, Ga meets the requirements of the Main Theorem. The

first and third conditions are easy to check. For density, letting n = |V (Ga)| = 2ta and

m = |Ga|, we have

m ∼ a2t + 2
a2t(1 − c)

2c
=

a2t

c
= n2(4tc)−1, (3.4)

where (4tc)−1 < 1/2 is a constant.

To see that ν3(Ga) < (1 + α)m/4, it suffices to find a fractional triangle edge cover of

Ga of total weight less than (1 + α)m/4, since (recall) ν3(Ga) � ν∗
3 (Ga) = τ∗

3(Ga). But this

is easy: simply placing weight 1 on all vertex edges and weight 1/2 on all external edges

yields a fractional triangle edge cover of Ga (here the triangle-freeness of H is crucial)

with total weight asymptotic to

a2t +
1

2

a2t(1 − c)

2c
=

a2t

4c
(1 + 3c) = (1 + α/2 ± o(1))

m

4
< (1 + α)

m

4
.

The real work is showing that τ3(Ga) > (1 − o(1))m/2. To this end let F ⊆ Ga be

triangle-free; we need to show |F | � (1 + o(1))m/2. More precisely, we show that given

any δ > 0, we have |F | < (1 + δ)m/2 for large enough a. For this we apply the usual

Regularity Lemma to F , that is, Lemma 2.6 with b = r = s1 = 1. Pick (with foresight)

ε < δ/(48tc), and let 2t�ε−1� be the ‘m’ of the lemma. Let Π = (V0, V1, . . . , Vk) be the

partition given by the lemma. By comments (i) and (ii) after the lemma, we may assume

Π refines the partition of V (F) = V (Ga) into blocks and splits each block into exactly

k/(2t) =: η non-exceptional parts plus some vertices in V0.

For a pair Vi, Vj ∈ Π with Vi ⊆ Bu and Vj ⊆ Bw , call the pair internal or external if uw

is an internal or external edge of K (respectively), and a vertex pair if u = w. Consider

the graph on [k] where ij is an edge if and only if Vi, Vj is an internal, external or vertex

pair. Notice that this graph is (isomorphic to) K · Kη , with blocks B′
v = {i ∈ [k] | Vi ⊆ Bv},

v ∈ V (K). Letting l = |V1|, observe also that

each

⎧⎨
⎩

vertex
internal
external

⎫⎬
⎭ edge uw ∈ K · Kη corresponds to

⎧⎨
⎩

exactly l2

about l2p
about l2q

⎫⎬
⎭ edges of Ga, (3.5)

where just as in (3.1)–(3.3), each ‘about’ in (3.5) hides an Õ(l) = Õ(n) = o(m) Chernoff

error as a → ∞.
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To account for the different quantities on the right-hand side of (3.5), we assign weights

to the edges of K · Kη: each vertex edge weighs c/(tη2), each internal edge

pc/(tη2) =
1 − c

2tdη2
,

and each external edge

qc/(tη2) =
1 − c

2t2η2
,

so that the weight w(uw) of uw ∈ K · Kη is c/(tη2l2) times the (approximate) number of

corresponding edges in Ga. With these weights, the total weight of the edges corresponding

to an internal uw ∈ K is (1 − c)/2td, the total weight of the edges corresponding to an

external uw ∈ K is (1 − c)/2t2, and the total weight of the edges in a block B′
v is(

η

2

)
c

tη2
� c

2t
,

where � means approximate equality and �.

Leaving the topic of edge weights for a moment, we now let F ′ be the subgraph of F

obtained after we delete the following edges from F: edges incident to V0; edges inside

some Vi, i ∈ [k]; edges that join pairs that are not (1;F, ε)-regular; and edges that join

pairs with (1;F)-density less than 2ε. (This cleanup is of course a standard concomitant

of the Regularity Lemma.) Since l � n/k, this deletes at most

εn2 + k

(
l

2

)
+ ε

(
k

2

)
l2 + 2εl2

(
k

2

)
� 3εn2 (3.6)

edges from F .

Let F̃ be the subgraph of K · Kη with ij ∈ F̃ if and only if there is an edge joining

Vi and Vj in F ′. By Lemma 2.7 (with s = 1) and the triangle-freeness of F , F̃ is also

triangle-free. Let F ′′ be the subgraph of Ga defined by

∇F ′′ (Vi, Vj) =

{
∇Ga

(Vi, Vj) if ij ∈ F̃ ,

∅ if ij /∈ F̃ ,

With these definitions, (3.5), (3.6) and the calculations between them give

|F | � |F ′| + 3εn2 � |F ′′| + 3εn2 ∼ w(F̃)/(c/(tη2l2)) + 3εn2, (3.7)

where (of course) w(F̃) =
∑

uw∈F̃ w(uw).

Our next goal is to massage F̃ until it resembles a configuration on K . For each

x ∈ V (F̃) = V (K · Kη), let w(x) be the sum of the weights of its incident F̃-edges.2 Fix

some order π of V (K), and for each v ∈ V (K), in the chosen order, do the following,

making changes to F̃ as necessary. We continue to write F̃ for the evolving graph.

(1) Pick x ∈ B′
v such that w(x) = maxy∈B′

v
w(y).

2 For the rest of the argument we use x, y, z and w, rather than i and j, for vertices of K · Kη , since we want

several letters from the same part of the alphabet. We use u and v for vertices of K .
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(2) Set Sv = {y ∈ B′
v | xy ∈ F̃} and Tv = B′

v \ Sv .

(3) For each y ∈ Tv \ {x}, replace NF̃ (y) by NF̃ (x).

(4) Pick z ∈ Sv such that w(z) = maxw∈Sv w(w).

(5) For each w ∈ Sv \ {z}, replace NF̃ (w) by NF̃ (z).

Let F̃ ′ ⊆ K · Kη be the graph obtained from F̃ after performing these steps for each

v ∈ V (K). We make the following observations about F̃ ′.

(i) w(F̃ ′) � w(F̃).

(ii) F̃ ′ is triangle-free, since F̃ is; note in particular that Sv ⊆ NF̃ (x) implies F̃[Sv] = ∅.

(iii) For each v ∈ V (K), F̃ ′[B′
v] is the complete bipartite graph between Sv and Tv .

(iv) For each v ∈ V (K), z, w ∈ Sv , and x, y ∈ Tv , we have NF̃ ′(z) = NF̃ ′ (w) and NF̃ ′(x) =

NF̃ ′(y).

The only tricky point here is (iv). Clearly for a given u ∈ V (K), the condition in (iv) holds

at u immediately after we perform steps (1)–(5) at u. But how do we know we will not

violate the condition at u in the process of doing steps (1)–(5) at some other v ∈ V (K)

coming later in π? Assume we do, so that there exist x, y ∈ Ru ∈ {Su, Tu} and z ∈ B′
v such

that xz ∈ F̃ ′ and yz /∈ F̃ ′. Just before we began steps (1)–(5) at v, z was F̃-adjacent to

either both of x, y or neither, so we must have replaced NF̃ (z) in the course of doing

steps (1)–(5) at v. So there was some w ∈ B′
v (whose F̃-neighbourhood replaced that of z)

which, just before beginning steps (1)–(5) at v, was F̃-adjacent to exactly one of x, y. But

this is a contradiction.

For each v ∈ V (K), let Rv be the larger of Sv, Tv , and Pv the smaller (choose arbitrarily

if they are the same size). Let F̂ be the subgraph of K+ obtained from F̃ ′ by collapsing

each Rv to a vertex vb and each Pv to a vertex vs, and set φ(vb) = |Rv|/η and φ(vs) =

|Pv|/η = 1 − φ(vb) for each v ∈ V (K). Then (ii)–(iv) imply that (F̂ , φ) is a configuration

on K , after adding vertex edges vbvs for those v ∈ V (K) for which Pv = ∅ (if any).

Now since H is c-fair, we have wc(F̂ , φ) � 1/2. By the weight calculations after (3.5),

we have wc(F̂ , φ) � w(F̃ ′) (the only error here comes from the weight in a block of K · Kη

being
(
η
2

)
(c/tη2) instead of exactly c/2t). Thus by (3.7) and (i), using ηl � n/(2t) and

ε < δ/(48tc), we have

|F | � w(F̃)

c/(tη2l2)
+ 3εn2 + o(m) � w(F̃ ′)

c/(tη2l2)
+ 3εn2 + o(m)

� 1/2

c/(tη2l2)
+ 3εn2 + o(m)

< n2(8tc)−1 + n2δ(16tc)−1 + o(m)

< (1 + δ/2 + o(1))m/2

< (1 + δ)m/2,

where the penultimate inequality recalls (3.4) and the last holds for large enough a.

4. Proof of Main Lemma (Lemma 2.15)

We now turn to the proof of Lemma 2.15, that for any c > 0 there are triangle-free,

d-regular, c-fair graphs H with arbitrarily large d. Luckily we need not invent anything
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here; rather we show – though not so easily – that for any fixed c, all sufficiently large

graphs from a well-known family are c-fair. The relevant family was described by Noga

Alon in [1]; since he proved therein that all graphs in this family are triangle-free and

regular, with degree going to infinity, this will prove the Main Lemma. We first list the

relevant properties of these graphs.

Proposition 4.1 ([1, Theorem 2.1]). For all t0 ∈ N, there exist t � t0 and a triangle-free

graph Ht on t vertices satisfying:

• Ht is d-regular, with d = Θ(t2/3), and (4.1)

• all eigenvalues λi of Ht, other than the largest, satisfy |λi| = O(
√
d) = O(t1/3). (4.2)

Alon gives much more detailed information about these graphs, including a precise

formula for d and bounds on the eigenvalues, but the above properties are all we will

need. In fact, a weaker eigenvalue bound than (4.2) would suffice for our purposes. (We

need such a bound primarily to guarantee good density properties for H , for which our

(standard) tool is Lemma 2.1). It is probably not too hard – e.g., by random methods,

somewhat relaxing the regularity requirement of the Main Lemma – to produce other

families of graphs, less nice than Alon’s, that would be adequate here. Recognizing this,

we nonetheless gladly use Alon’s graphs because they are convenient and they work.

Setup for the rest of this section. We fix c ∈ (0, 1] at the outset, and throughout we let

(F, φ) be a configuration on K = KH,H , where H = Ht for some t. We denote the degree

of H by d and its eigenvalues by d = λ1 > λ2 � · · · � λt, and set λ = maxi>1 |λi|.

Goal: To show that H is c-fair whenever t is sufficiently large. (4.3)

Each proposition in what follows is an asymptotic statement, making some claim about

H or (F, φ) as t grows to infinity; thus our asymptotic notation all refers to t → ∞. Our

usage here may be a little confusing, since we treat t as tending to infinity, whereas the

discussion in Section 3 calls for a fixed H = Ht depending on c (i.e. on α). But of course

what we are showing here is that given c, Ht is c-fair for large enough t, so that for

our application in Section 3 we can fix such a t. We always assume (as we may) that

wc(F, φ) � 1/2; we want to show that in fact wc(F, φ) = 1/2.

Though a configuration on K is defined via K+, it will be more convenient in what

follows to think of it in terms of K itself. We next set up some notation and terminology

for this purpose.

Definitions 4.2 (edge classes, weight captured, gain/loss). Given a graph H = Ht and a

configuration (F, φ) on K = KH,H , we divide the edges of K into four classes. An edge

uw ∈ K is of

• class 1 if ubwb, usws ∈ F ,

• class 2 if ubwb ∈ F , usws /∈ F ,

• class 3 if ubws, uswb ∈ F , and

• class 4 otherwise.
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For each uw ∈ K , we will say our configuration captures the fraction∑
uxwy∈F

φ(ux)φ(wy)

of the weight of the edge. This weight is (1 − c)/2td for internal edges and (1 − c)/2t2 for

external edges. Similarly, we say our configuration captures the fraction 2φ(vb)φ(vs) of

the weight of each vertex v of K . This weight is c/2t. For v ∈ V (K), set δv = φ(vb) − 1/2,

so that δv measures how far from evenly the configuration splits the mass of v. Then, for

example, if uw ∈ K is of class 1, our configuration captures the fraction(
1

2
+ δu

)(
1

2
+ δw

)
+

(
1

2
− δu

)(
1

2
− δw

)
=

1

2
+ 2δuδw

of the weight of uw, and if uw is of class 3 then it captures the fraction 1/2 − 2δuδw .

Similarly, it captures the fraction 1/2 − 2δ2
v of the weight of each vertex v.

Given uw ∈ K , we sometimes want to compare the fraction of the weight of uw

captured by our configuration to the fraction of the weight of uw captured by the näıve

configuration, namely 1/2. We call this difference∑
uxwy∈F

φ(ux)φ(wy) − 1

2
∈

[
−1

2
,

1

2

]

the fractional gain at uw, and its negative the fractional loss at uw. (Either of these can be

positive or negative.) More often we want to weight the fractional gain (loss) at an edge

by the appropriate edge weight ((1 − c)/2td or (1 − c)/2t2); we call this product simply

the gain (loss) at the edge (no ‘fractional’). (Examples: if the fractional gain at internal

edge uw is 0.16, then the gain at uw is 0.16((1 − c)/2td); if vz is an external edge of class 3,

then the loss at vz is 2δvδz((1 − c)/2t2).) We use analogous terminology for vertices: the

fractional loss at v is 2δ2
v , and the loss at v is cδ2

v /t.

Write ζi (respectively ζe) for the average fraction of the weight of an internal (respectively

external) edge captured by our configuration, that is,

ζi =
1

td

∑
uxwy∈F
internal

φ(ux)φ(wy) and ζe =
1

t2

∑
uxwy∈F
external

φ(ux)φ(wy),

and set γi = ζi − 1/2, γe = ζe − 1/2. Thus γi and γe represent the average fractional gain

of our configuration on internal and external edges of K , respectively. Lastly, write δ for

the average of the δv over V (K).

With these definitions, notice that ((1 − c)/2)(γi + γe) is the total gain over all edges of

K . So, to reiterate (4.3), our goal is to show that this is always counterbalanced by an

equal or larger loss in the vertices of K whenever t is sufficiently large. What follows is a

long string of propositions culminating in a proof of this.

Proposition 4.3. Let R be an ETF subgraph of K containing fractions ξi(R) and ξe(R) of

the internal and external edges of K , respectively. Then

ξi(R) + ξe(R) < 1 + o(1). (4.4)
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Proof. We apply Lemma 2.6 with r = b = 2, ε arbitrarily small but fixed, m = 2�ε−1�,

H1 = R[X] ∪ R[Y ], H2 = ∇R(X,Y ), s1 = d/t, and s2 = 1.

We must first check that (for large enough t) H1 is (d/t; 2, β)-bounded and H2 is (1; 2, β)-

bounded, where β = β(ε, b, m, r) > 0 is given by the lemma (but of course the statement

is really that these hold for any fixed β and, again, sufficiently large t). The second of

these is trivial. For the first, letting U,W ⊆ V (K) be disjoint with |U|, |W | � 2tβ, we have,

using Lemma 2.1,

dd/t,H1
(U,W ) =

|∇H1
(U,W )|

(d/t)|U||W | =
|∇H (U ∩ X,W ∩ X)|

(d/t)|U||W | +
|∇H (U ∩ Y ,W ∩ Y )|

(d/t)|U||W |

� |U ∩ X||W ∩ X|d/t + λ
√

|U ∩ X||W ∩ X|
(d/t)|U||W |

+
|U ∩ Y ||W ∩ Y |d/t + λ

√
|U ∩ Y ||W ∩ Y |

(d/t)|U||W |

� |U||W |d/t + λ
√

|U||W |
(d/t)|U||W | � 1 + o(1),

which is at most 2 for large enough t.

Let Π = (V0, V1, . . . , Vk) be the partition given by Lemma 2.6. By comment (i) following

the lemma we may assume each non-exceptional part of Π is contained in either X or Y ,

and by comment (ii) we may assume |V0 ∩ X| = |V0 ∩ Y |, implying that X and Y each

contain exactly k/2 parts of Π. Given a pair of non-exceptional parts of Π, we say the

pair is external if exactly one of them is contained in X, and internal otherwise.

We now delete the following edges from R: edges incident to V0; edges inside some

Vi, i ∈ [k]; edges that join (internal) pairs that are not (d/t;H1, ε)-regular; edges that

join (external) pairs that are not (1;H2, ε)-regular; edges that join internal pairs with

(d/t;H1)-density less than 2ε; and edges that join external pairs with (1;H2)-density less

than 2ε. Table 1 lists upper bounds for the numbers of edges deleted from H1 and H2 in

each of these categories. For convenience we set l := |V1| � 2t/k.

Let X̃ = {i ∈ [k] | Vi ⊆ X} and Ỹ = [k] \ X̃. Let R̃ be the graph on X̃ ∪ Ỹ where ij ∈ R̃

if and only if there is an undeleted edge joining Vi and Vj in R. Then since R is ETF,

Lemma 2.7 gives that R̃ is as well (meaning, as usual, that it contains no triangles meeting

both X̃ and Ỹ ).

Now each internal edge of R̃ corresponds to a pair in Π whose R-edges contribute a

total of at most

l2d/t + λl

td
� 4

k2
+

2λ

kd
= 4/k2 + o(1)

to the fraction ξi(R). Similarly each external edge of R̃ corresponds to a pair in Π

whose R-edges contribute a total of at most l2/t2 � 4/k2 to the fraction ξe(R). By

Lemma 2.8 |R̃| � k2/4, so the contribution to ξi(R) + ξe(R) from undeleted R-edges is at

most 1 + k2o(1) = 1 + o(1). And as computed in Table 1, the contribution to ξi(R) + ξe(R)

from deleted R-edges is at most 13ε + o(1). Thus ξi(R) + ξe(R) � 1 + 13ε + o(1). Since ε

was arbitrarily small, the proposition is proved.
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Table 1. Upper bounds for the numbers of edges deleted from H1 and H2.

H1 = R[X] ∪ R[Y ] H2 = ∇R(X,Y )

Edges incident to V0 � d|V0| � 2εtd � t|V0| � 2εt2

Edges inside some Vi � k

(
l2d

2t
+

λl

2

)
� 2td/k + tλ � ε(td + tλk) � εtd(1 + o(1)) 0

Edges joining pairs that are not (d/t;H1, ε)-regular � ε

(
k

2

) (
l2d

t
+ λl

)
� ε(2td + λtk) � εtd(2 + o(1)) 0

Edges joining pairs that are not (1;H2, ε)-regular 0 � ε

(
k

2

)
l2 � 2εt2

Edges joining internal pairs with (d/t;H1)-density less than 2ε � 2

(
k/2

2

)
(2εl2d/t) � 2εdt 0

Edges joining external pairs with (1;H2)-density less than 2ε 0 � (k/2)22εl2 � 2εt2

TOTAL � (7 + o(1))εtd � 6εt2
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We now return to our configuration (F, φ).

Proposition 4.4. We have ζi + ζe < 1 + o(1), or equivalently,

γi + γe < o(1). (4.5)

Proof. Suppose that for each v ∈ V (K) we randomly choose one of vb, vs, with Pr(vx) =

φ(vx) and these choices made independently. This produces a random ETF subgraph R

of K in the obvious way: uw ∈ R if and only if uxwy ∈ F , where we chose ux ∈ {ub, us}
and wy ∈ {wb, ws}. Observe that Pr(uw ∈ R) is the fraction of the weight of uw captured

by our configuration. With this observation, we calculate

ζi + ζe =
1

td

∑
uw∈K

internal

Pr(uw ∈ R) +
1

t2

∑
uw∈K

external

Pr(uw ∈ R)

= E[|R ∩ (K[X] ∪ K[Y ])|/td] + E[|R ∩ ∇(X,Y )|/t2]

= E[ξi(R) + ξe(R)]

< 1 + o(1),

where the last inequality is given by Proposition 4.3.

Proposition 4.5. We have δ = o(1).

Proof. We simply calculate wc(F, φ) (which, recall, we assume is at least 1/2):

wc(F, φ) =
1 − c

2
ζi +

1 − c

2
ζe +

c

2t

∑
v∈V (K)

(1/2 − 2δ2
v )

= 1/2 +

(
1 − c

2

)
(γi + γe) − c

t

∑
v∈V (K)

δ2
v

� 1/2 + o(1) − 2c

(
1

2t

∑
v∈V (K)

δv

)2

= 1/2 − 2cδ2 + o(1),

where we used Proposition 4.4 and Cauchy–Schwarz between the second and third

lines.

From now on we call a vertex v of K balanced if δv <
√
δ, and unbalanced otherwise;

thus, in view of Proposition 4.5, all but a o(1)-fraction of the vertices of K are balanced.

Also, we let G be the subgraph of K consisting of all edges of classes 1–3, and Γ the

subgraph of G consisting of edges of classes 1 and 2. Notice that since F is ETF,

Γ has even intersection with every external triangle in G. (4.6)

The next three facts say that in various senses, as t grows, G accounts for nearly all of K .
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Proposition 4.6. The total loss on K \ G is o(1).

Proof. The total gain on G is at most what it would be if all edges of K were of class 1.

Since at most o(t) vertices are unbalanced, the total weight of all edges of K incident to

unbalanced vertices is o(1), so this gain is at most

(1 − c)2
√
δ

2
+ o(1)(1 − c)2(1/2)2,

which is o(1) by Proposition 4.5. Thus if the loss on K \ G were Ω(1), we would have

wc(F, φ) < 1/2 for sufficiently large t (since loss on vertices is always non-negative).

Corollary 4.7. There are at most o(t2) class 4 edges in K .

Proof. Assume otherwise, so that |K \ G| = Ω(t2). Then since at most a o(1)-fraction of

the edges of K are incident to unbalanced vertices, most class 4 edges join two balanced

vertices. The fractional loss at any such edge is Ω(1) (at least about 1/4, in view of

Proposition 4.5), so the total loss on K \ G is Ω(1), contradicting Proposition 4.6.

Corollary 4.8. There are at most o(td) class 4 edges in each of K[X], K[Y ].

Proof. Assume for a contradiction that |(K \ G)[X]| = Ω(td) (the proof for Y is of course

the same). Then since at most o(td) edges of K[X] are incident to unbalanced vertices,

most class 4 edges in K[X] join two balanced vertices. The fractional loss at any such

edge is Ω(1) (at least about 1/4, in view of Proposition 4.5), so the total loss on K \ G is

Ω(1), contradicting Proposition 4.6.

The next result concerns only H , not K or (F, φ).

Proposition 4.9. For any H ′ ⊆ H of size (1 − o(1))|H |, there is a U ⊆ V (H) of size o(t)

such that H ′ − U is connected and C(H ′ − U) is spanned by cycles of length up to 11.

Proof. By Corollary 2.4 (and noting that finite diameter implies connectedness), it suffices

to find a U of size o(t) such that H ′ − U has diameter at most 5. To this end, let

U1 = {v ∈ V (H) | dH\H ′ (v) � d/3}.

Then

u1 := |U1| � 2|H \ H ′|/(d/3) = o(t).

Let

U2 = {v ∈ V (H) \ U1 | |N(v) ∩ U1| � d/3}.

We claim u2 := |U2| = o(t1/3) (we just need o(d)). Indeed, applying Lemma 2.1 to H , we

have

(1/3 − o(1))u2d �
∣∣∣∣ |∇(U1, U2)| − u1u2d

t

∣∣∣∣ � λ
√
u1u2,
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which (since d = Θ(t2/3) and λ = O(t1/3)) gives

u2 � O(t−2/3u1) = o(t1/3),

as claimed.

Set U = U1 ∪ U2 and H ′′ = H ′ − U, and for each v ∈ V (H ′′) let N2(v) denote the second

neighbourhood of v in H ′′; that is, the set of vertices at distance exactly 2 from v in H ′′.

We want to show that H ′′ has diameter at most 5. For this it suffices to show that every

v satisfies d2(v) := |N2(v)| = Ω(t), since for any S, T ⊆ V (H ′′) with |S |, |T | = Ω(t) we have

∇H ′′ (S, T ) �= ∅ (using Lemma 2.1 on H and the fact that |H \ H ′| = o(|H |)).
To see that (for any v) d2(v) = Ω(t), note first that

dH ′′ (v) � (1/3 − o(1))d (= Ω(d)),

since v loses at most a third of its H-neighbours to H \ H ′, at most another third to U1,

and a o(1)-fraction to U2. Thus, since H is triangle-free,

|∇H (NH ′′ (v), N2(v))| = Ω(d2) = Ω(t4/3).

On the other hand Lemma 2.1 gives

|∇H (NH ′′ (v), N2(v))| � dH ′′ (v)d2(v)d/t + λ
√

dH ′′ (v)d2(v)

= O(t1/3)d2(v) + O(t2/3)
√

d2(v),

implying d2(v) = Ω(t) as claimed.

Corollary 4.10. Any H ′ ⊆ H of size (1 − o(1))|H | has a component with t − o(t) vertices.

(This is strictly weaker than Proposition 4.9; we include it for easy reference later.)

We now return to K and our configuration (F, φ). The next result does most of the

heavy lifting for our Main Lemma.

Proposition 4.11. There exist S ⊆ V (K) of size o(t) and a partition A � B of V (K) \ S such

that Z := Γ � ∇G(A,B) satisfies

Z ⊆ ∇(X,Y )

and

dZ (v) = o(t) ∀ v ∈ V (K) \ S.

Proof. Let

κ = |(K \ G) ∩ ∇(X,Y )|/t2,

which is o(1) by Corollary 4.7. Let

S0 = {v ∈ V (K) | v is incident to at least t
√
κ external class 4 edges}.

Then |S0|t
√
κ � 2κt2, implying |S0| = O(t

√
κ) = o(t). Now apply Proposition 4.9 to each

of G[X \ S0] and G[Y \ S0], which we may do by Corollary 4.8. Let S1 be the union of
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S0 and the two deleted sets from Proposition 4.9, and set Ḡ = G − S1, X̄ = X \ S1 and

Ȳ = Y \ S1.

Let T (Ḡ) be the subspace of C(Ḡ) generated by the external triangles of Ḡ. Then we

observe, crucially, that

all cycles of G[X̄] and G[Ȳ ] of length up to 11 belong to T (Ḡ). (4.7)

To see this, let C = x1 · · · xkx1 be a cycle, say in G[X̄], with k � 11. If there exists y ∈ Ȳ

with xiy ∈ G ∀ i ∈ [k], then C ∈ T (Ḡ), because C is the sum of the triangles xixi+1yxi,

where of course we take subscripts mod k. But if there is no such y then for some xi we

have

|∇K\G(xi, Ȳ )| � |Ȳ |/11,

implying xi ∈ S0, which it is not.

Now by (4.7) and our choice of S1, we have

Γ[X̄] = ∇G(X̄1, X̄2) and Γ[Ȳ ] = ∇G(Ȳ1, Ȳ2)

for some partitions X̄1 � X̄2 of X̄ and Ȳ1 � Ȳ2 of Ȳ , since Γ is orthogonal (over F2, recall)

to all external triangles in Ḡ (see (4.6)), and thus to all cycles in G[X̄] and G[Ȳ ] of length

up to 11 (by (4.7)), and thus to all cycles in G[X̄] and G[Ȳ ] (see Proposition 4.9).

By Corollary 4.10 we can find a U ⊆ X̄ ∪ Ȳ of size o(t) such that G[X̄ \ U] and

G[Ȳ \ U] are connected. Set S = S1 ∪ U, producing the S of the proposition. Finally,

set X ′
1 = X̄1 \ U, X ′

2 = X̄2 \ U and X ′ = X ′
1 ∪ X ′

2 (= X̄ \ U), and define Y ′
1 , Y ′

2 and Y ′

similarly.

Now suppose x ∈ X ′. Since all but a o(1)-fraction of the external edges at x belong to

∇G(x, Y ′), the subgraph of G induced by the corresponding vertices (that is, G[NG(x) ∩ Y ′])

has a component of size t − o(t) (Corollary 4.10 again), say with vertex set Y x
1 ∪ Y x

2 , where

Y x
1 ⊆ Y ′

1 and Y x
2 ⊆ Y ′

2 . Since

Γ[Y x
1 ∪ Y x

2 ] = ∇G(Y x
1 , Y

x
2 ),

(4.6) gives

yz ∈ ∇G(Y x
1 , Y

x
2 ) ⇒ |Γ ∩ {xy, xz}| = 1,

yz ∈ G[Y x
1 ] ∪ G[Y x

2 ] ⇒ |Γ ∩ {xy, xz}| ∈ {0, 2}.

Thus the connectivity of G[Y x
1 ∪ Y x

2 ] implies that

∇Γ(x, Y x
1 ∪ Y x

2 ) ∈ {∇G(x, Y x
1 ),∇G(x, Y x

2 )}. (4.8)

Moreover, the connectivity of G[X ′] and the fact that any u, w ∈ X ′ have common

G-neighbours in (Y u
1 ∪ Y u

2 ) ∩ (Y w
1 ∪ Y w

2 ) (in fact many, since u, w /∈ S0) imply ‘coherence’

of the choices in (4.8), meaning that u and w choose the same option if and only if

they are on the same side of X ′
1 ∪ X ′

2. Of course, a similar analysis applies with the roles

of X and Y reversed. Assuming without loss of generality that each x ∈ X1 chooses

∇Γ(x, Y x
1 ∪ Y x

2 ) = ∇G(x, Y x
2 ) in (4.8), the proposition is proved, with A = X ′

1 ∪ Y ′
1 and

B = X ′
2 ∪ Y ′

2 .
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At long last we can accomplish the goal set forth in (4.3).

Proof of Main Lemma (Lemma 2.15). Let S, A, B ⊆ V (K) and Z ⊆ ∇(X,Y ) be as in

Proposition 4.11, and set W = V (K) \ S (= A ∪ B). We analyse K[W ] first, and edges

meeting S later.

Set

p =
1 − c

2td
, q =

1 − c

2t2
.

Let ϕ be the vector indexed by X ∪ Y with

ϕv =

⎧⎪⎪⎨
⎪⎪⎩
δv if v ∈ A,

−δv if v ∈ B,

0 if v ∈ S.

Let C be the adjacency matrix of H , J the t × t matrix of 1s, and I the 2t × 2t identity

matrix. Lastly, let N be the weighted adjacency matrix of K , and T the adjacency matrix

of Z . These matrices look like this:

X Y

N =

X pC qJ

,

Y qJ pC

X Y

T =

X 0
o(t) 1s

.

per row

Y
o(t) 1s

0
per row

On K[W ], the weight our configuration captures is at most what it would be if all

class 2 edges, as well as all class 4 edges in ∇(A,B), were instead class 1, and all class 4

edges in K[A] ∪ K[B] were instead class 3. In this case, our configuration’s overall loss

on K[W ] (edges and vertices) would be exactly

ϕᵀ(N − 2qT + (c/t)I)ϕ. (4.9)

To show that our configuration captures at most half the weight of K[W ] it would

suffice to show (4.9) to be non-negative, but we instead show the stronger

ϕᵀMϕ � 0, (4.10)

where M = N − 2qT + (0.66c/t)I . Thus we show that the gain on edges of K[W ] is at

most (0.66c/t)
∑

v∈W δ2
v , reserving the remaining vertex loss in W , (0.34c/t)

∑
v∈W δ2

v , for

use below in handling edges meeting S . For (4.10), we simply show M is positive definite.

We first treat the N term and then the T term, helping ourselves to a little bit of the

I term in each of these steps. As will be clear below, and as is perhaps hinted by the

constants 0.66 and 0.34, nothing in this argument is very delicate.

Let P and Q be the ‘pC ’ and ‘qJ ’ portions of N, respectively. Since P and Q are

symmetric and commute, they admit a common orthonormal basis of eigenvectors. We
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seek to describe these eigenvectors and their corresponding eigenvalues in terms of

the eigenvectors and eigenvalues of C , so let w1 = t−1/21, w2, . . . , wt be an orthonormal

eigenbasis for C with corresponding eigenvalues d = λ1 > λ2 � · · · � λt. Then a common

orthonormal eigenbasis for P and Q is

v1 = 2−1/2(w1, w1)

v2 = 2−1/2(w1,−w1)

}
, . . . ,

{
v2t−1 = 2−1/2(wt, wt)

v2t = 2−1/2(wt,−wt)

where (x, y) is the concatenation of x and y. These eigenvectors have corresponding

eigenvalues pd, pd, pλ2, pλ2, . . . , pλt, pλt for P and qt,−qt, 0, 0, . . . , 0 for Q, and therefore

pd + qt =
1 − c

t
, pd − qt = 0, pλ2, pλ2, . . . , pλt, pλt for N.

Call these N-eigenvalues μ1, . . . , μ2t (for use below). Now since |λt| � O(t1/3) (see (4.2)), all

eigenvalues of N are at least −O(t−4/3) = −o(t−1). Thus (e.g.) N + (0.33c/t)I is (eventually)

positive definite.

We now turn to the T term in M, which is easier. As every absolute row sum of T is

o(t), so is every eigenvalue of T . Thus every eigenvalue of −2qT is at least −o(t−1), so

(e.g.) −2qT + (0.33c/t)I is (eventually) positive definite. Therefore M is positive definite,

as claimed.

Finally we deal with contributions involving S . For this let δ̄ = 〈δv | v ∈ V (K)〉, δ̄′ =

1W ◦ δ̄ (where ◦ denotes componentwise product), αi = δ̄ · vi and α′
i = δ̄′ · vi, i ∈ [2t] (where

· denotes the usual inner product). The total gain from edges meeting S is at most what

it would be if all these edges were class 1, which is exactly

δ̄tNδ̄ − (δ̄′)tNδ̄′ =

2t∑
i=1

μi(α
2
i − (α′

i)
2)

= μ1(α2
1 − (α′

1)2) +

2t∑
i=2

μi(α
2
i − (α′

i)
2). (4.11)

In view of what we know about the μi, the sum in (4.11) is at most

pλ2

∑
v∈V (K)

δ2
v − (min μi)

∑
v∈W

δ2
v � O(t−4/3)

[ ∑
v∈V (K)

δ2
v +

∑
v∈W

δ2
v

]
, (4.12)

while, with ε defined by α′
1 = (1 − ε)α1, the first term in (4.11) is

μ1(2ε − ε2)α2
1 =

1 − c

t
(2ε − ε2)

1

2t

( ∑
v∈V (K)

δv

)2

< εt−2

( ∑
v∈V (K)

δv

)2

(4.13)

� min

{
ε−1t−2

(∑
v∈S

δv

)2

, 2εt−1
∑

v∈V (K)

δ2
v

}
(4.14)

(actually (4.13) is equal to the first expression in (4.14)).
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On the other hand, we get to subtract from these gains

c

t

∑
v∈S

δ2
v +

0.34c

t

∑
v∈W

δ2
v =

0.66c

t

∑
v∈S

δ2
v +

0.34c

t

∑
v∈V (K)

δ2
v

� 0.66c

t|S |

(∑
v∈S

δv

)2

+
0.34c

t

∑
v∈V (K)

δ2
v . (4.15)

We need to say that this is larger than the sum of the right-hand sides of (4.12) and

(4.14), which is easy. For example, half the second term of (4.15) dominates the right-hand

side of (4.12), while the right-hand side of (4.14) is at most half the second term of (4.15)

if ε � 0.17c/2 (to be unnecessarily precise), and otherwise, since |S | = o(t), it is dominated

by the first term of (4.15).
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