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This paper deals with the partition function of the Ising model from statistical mechanics,

which is used to study phase transitions in physical systems. A special case of interest is

that of the Ising model with constant energies and external field. One may consider such an

Ising system as a simple graph together with vertex and edge weights. When these weights

are considered indeterminates, the partition function for the constant case is a trivariate

polynomial Z(G; x, y, z). This polynomial was studied with respect to its approximability by

Goldberg, Jerrum and Paterson. Z(G; x, y, z) generalizes a bivariate polynomial Z(G; t, y),

which was studied in by Andrén and Markström.

We consider the complexity of Z(G; t, y) and Z(G; x, y, z) in comparison to that of

the Tutte polynomial, which is well known to be closely related to the Potts model in

the absence of an external field. We show that Z(G; x, y, z) is #P-hard to evaluate at all

points in Q3, except those in an exceptional set of low dimension, even when restricted

to simple graphs which are bipartite and planar. A counting version of the Exponential

Time Hypothesis, #ETH, was introduced by Dell, Husfeldt and Wahlén in order to study

the complexity of the Tutte polynomial. In analogy to their results, we give under #ETH

a dichotomy theorem stating that evaluations of Z(G; t, y) either take exponential time in

the number of vertices of G to compute, or can be done in polynomial time. Finally, we

give an algorithm for computing Z(G; x, y, z) in polynomial time on graphs of bounded

clique-width, which is not known in the case of the Tutte polynomial.

AMS 2010 Mathematics subject classification: Primary 05C31

Secondary 05C85; 82B20

1. Introduction

An Ising system is a simple graph G = (V , E) together with vertex and edge weights.

Every edge (u, v) ∈ E has an interaction energy and every vertex u ∈ V has an external

magnetic field strength associated with it. A function σ : V → {±1} is a configuration of

the system or a spin assignment. The partition function of an Ising system is a generating

function related to the probability that the system is in a certain configuration.
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In [14], Goldberg, Jerrum and Paterson investigated the Ising polynomial in three

variables Z(G; x, y, z) for the case where both the interaction energies of an edge (u, v)

and the external magnetic field strength of a vertex v are constant. They consider

the existence of fully polynomial randomized approximation schemes (FPRAS) for the

graph parameters Z(G; γ, δ, ε), depending on the values of (γ, δ, ε) ∈ Q3. They provide

approximation schemes for some regions of Q3 while showing that other regions do not

admit such approximation schemes. Approximation schemes for Z(G; x, y, z) were further

studied in [32, 25]. Jerrum and Sinclair [17] studied the approximability and #P-hardness

of another case of the Ising model, where weights are provided as part of the input and

no external field is present. The bivariate Ising polynomial Z(G; t, y), which was studied

in [1] for its combinatorial properties, is equivalent to setting x = z = t in Z(G; x, y, z). It

is shown in [1] that Z(G; t, y) encodes the matching polynomial, and is equivalent to a

bivariate generalization of a graph polynomial introduced by van der Waerden [28].

The trivariate and bivariate Ising polynomials fall under the general framework of

partition functions, the complexity of which has been studied extensively starting with

[7] and followed by [3, 13, 27, 4]. From [27, Theorem 6.1] and implicitly from [13] we

get that the complexity of evaluations of the Ising polynomials satisfies a dichotomy

theorem, saying that the graph parameter Z(G; γ, δ) is either polynomial-time computable

or #P-hard. However, δ must be positive here.

The q-state Potts model deals with a similar scenario to the Ising model, except that the

spins are not restricted to ±1 but instead receive one of q possible values. The complexity

of the q-state Potts model has attracted considerable attention in the literature. The

partition function of the Potts model in the case where no magnetic field is present is

closely related to the Tutte polynomial T (G; x, y). It is well known that for every γ, δ ∈ Q,

except for points (γ, δ) in a finite union of algebraic exceptional sets of dimension at most

1, computing the graph parameter T (G; γ, δ) is #P-hard on multigraphs: see [8]. This

holds even when restricted to bipartite planar graphs: see [30] and [29]. In contrast, the

restriction of the Tutte polynomial to the so-called Ising hyperbola, which corresponds

to the case of the Ising model with no external field, is tractable on planar graphs: see

[9, 18, 8].

Dell, Husfeldt and Wahlén [6] introduced a counting version of the Exponential

Time Hypothesis (#ETH), which roughly states that counting the number of satisfying

assignments to a 3CNF formula requires exponential time. This hypothesis is implied by

the Exponential Time Hypothesis (ETH) for decision problems introduced by Impagliazzo

and Paturi [16]. Under #ETH, the authors of [6] show that the computation of the Tutte

polynomial on simple graphs requires exponential time in mG

log3 mG
in general, where mG is

the number of edges of the graph. For multigraphs they show that the computation of

the Tutte polynomial generally requires exponential time in mG.

In this paper we prove that the bivariate and trivariate Ising polynomials satisfy

analogues of some complexity results for the Tutte polynomial. For the bivariate Ising

polynomial we show a dichotomy theorem stating that evaluations of Z(G; t, y) are either

#P-hard or polynomial-time computable. Moreover, assuming the counting version of the

Exponential Time Hypothesis, the bivariate Ising polynomial requires exponential time to

compute. Let nG be the number of vertices of G.
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Theorem 1.1 (Dichotomy theorem for the bivariate Ising polynomial). For all (γ, δ) ∈ Q2,

we have the following.

(i) If γ ∈ {−1, 0, 1} or δ = 0, then Z(G; γ, δ) is polynomial-time computable.

(ii) Otherwise:

• Z(G; γ, δ) is #P-hard on simple graphs, and

• unless #ETH fails, requires exponential time in nG
log6 nG

on simple graphs.

We show that the evaluations of Z(G; x, y, z), except for those in a small exceptional

set B ⊆ Q3, are hard to compute even when restricted to simple graphs which are both

bipartite and planar.

Theorem 1.2 (Hardness of the trivariate Ising polynomial). There is a set B ⊆ Q3 such

that, for every (γ, δ, ε) ∈ Q3 \ B, Z(G; γ, δ, ε) is #P-hard on simple bipartite planar graphs.

B is a finite union of algebraic sets of dimension 2.

Although Z(G; x, y, z) is hard to compute in general, its computation on restricted

classes of graphs can be tractable. Computing Z(G; x, y, z) is fixed-parameter tractable

with respect to tree-width using the general logical framework of [19]. This implies in

particular that Z(G; x, y, z) is polynomial-time computable on graphs of tree-width at

most k, for any fixed k, which also follows from [22]. Likewise, the Tutte polynomial is

known to be polynomial-time computable on graphs of bounded tree-width: see [2, 21]. In

contrast, for graphs of bounded clique-width, a width notion which generalizes tree-width,

the best algorithm known for the Tutte polynomial is subexponential: see [12]. We show

the following.

Theorem 1.3 (Tractability on graphs of bounded clique-width). There exists a function f(k)

such that Z(G; x, y, z) is computable on graphs of clique-width at most k in running time

O(nG
f(k)).

In particular, Z(G; x, y, z) can be computed in polynomial time on graphs of clique-

width1 at most k, for any fixed k. On the other hand, it follows from [11] that, unless

FPT = W[1], Z(G; x, y, z) is not fixed-parameter tractable with respect to clique-width, i.e.,

there is no algorithm for Z(G; x, y, z) which runs in time O(q(nG) · f(k)) on graphs G of

clique-width at most k for every k such that q is a polynomial.

2. Preliminaries

2.1. Definitions of the Ising polynomials

Let G be a simple graph with vertex set V (G) and edge set E(G). We denote nG = |V (G)|
and mG = |E(G)|. All graphs in this paper are simple and undirected unless otherwise

stated.

1 Rank-width can replace clique-width here and in Theorem 1.3, since the clique-width of a graph is bounded

by a function of the rank-width of the graph.
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Given S ⊆ V (G), we denote by EG(S) the set of edges in the graph induced by S in G

and by EG(S̄) the set of edges in the graph obtained from G by deleting the vertices of S

and their incident edges. We may omit the subscript and write, for example, E(S) when

the graph G is clear from the context.

Definition 2.1 (The trivariate Ising polynomial). The trivariate Ising polynomial is

Z(G; x, y, z) =
∑

S⊆V (G)

x|EG(S )|y|S |z|EG(S̄ )|.

For every G, Z(G; x, y, z) is a polynomial in Z[x, y, z] with positive coefficients.

Definition 2.2 (The bivariate Ising polynomial). The bivariate Ising polynomial is ob-

tained from Z(G; x, y, z) by setting x = z = t. In other words,

Z(G; t, y) =
∑

S⊆V (G)

t|EG(S )|+|EG(S̄)|y|S |.

The cut [S, S̄]G is the set of edges with one end-point in S and the other in S̄ = V (G) \ S .

The bivariate Ising polynomial can be rewritten as follows, using that EG(S), EG(S̄) and

[S, S̄]G form a partition of E(G):

Z(G; t, y) = tmG

∑
S⊆V (G)

t−|[S,S̄ ]G|y|S |. (2.1)

The bivariate Ising polynomial is defined in this paper in a way which is slightly

different from, and yet equivalent to, the way it was defined in [1]. The definition in [1]

is reminiscent of equation (2.1).

In Section 3 we use a generalization of the bivariate Ising polynomial.

Definition 2.3. For every B,C ⊆ V (G) such that B ∩ C = ∅, we define

Z(G;B,C; t, y) =
∑

B⊆S⊆V (G)\C

t|EG(S )|+|EG(S̄)|y|S |.

Clearly,

Z(G; ∅, ∅; t, y) = Z(G; t, y).

In Section 4 we use a multivariate version of Z(G;B,C; x, y, z). In Section 5 we use a

different multivariate generalization of Z(G; x, y, z).

We denote by [i] the set {1, . . . , i} for every i ∈ N+.

2.2. Complexity of the Ising polynomial

Here we collect complexity results from the literature in order to discuss the complexity of

computing, for every graph G, the trivariate (bivariate) polynomial Z(G; x, y, z) (Z(G; t, y)).
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By computing the polynomial we mean computing the list of coefficients of monomials

xiyjzk such that i, k ∈ {0, 1, . . . , mG} and j ∈ {0, 1, . . . , nG}.
In [1] it is shown that several graph invariants are encoded in Z(G; t, y).

Proposition 2.4. The following are polynomial-time computable in the presence of an oracle

to the bivariate polynomial Z(G; t, y). The oracle receives a graph G as input and returns

the matrix of coefficients of terms tiyj in Z(G; t, y),

• the matching polynomial and the number of perfect matchings,

• the number of maximum cuts,

and, for regular graphs,

• the independent set polynomial and the vertex cover polynomial.

The following propositions apply two hardness results from the literature to Z(G; t, y)

using Proposition 2.4.

Proposition 2.5. Z(G; t, y) is #P-hard to compute, even when restricted to simple 3-regular

bipartite planar graphs.

Proof. The proposition follows from a result in [31] which states that it is #P-hard

to compute #3RBP − VC, the number of vertex covers on input graphs restricted to be

3-regular, bipartite and planar.

For the next proposition we need the following definition, introduced in [6] follow-

ing [16].

Definition 2.6 (# Exponential Time Hypothesis (#ETH)). Let s be the infimum of the

set

{c : there exists an algorithm for #3SAT which runs in time O(cnG )}.

The # Exponential Time Hypothesis is the conjecture that s > 1.

Proposition 2.7. There exists c > 1 such that the computation of Z(G; t, y) requires Ω(cnG )

time on simple graphs, unless #ETH fails.

Proof. The claim follows from a result of [6] which states that there exists c > 1 for

which computing the number of maximum cuts in simple graphs G takes at least Ω(cmG )

time, unless the #ETH fails. It is easy to see that the problem of computing the number

of maximum cuts of disconnected graphs can be reduced to that of connected graphs and

so no subexponential algorithm exists for connected graphs, and the proposition follows

since for connected graphs nG = O(mG).

On the other hand, Z(G; t, y) and Z(G; x, y, z) can be computed näıvely in time which

is exponential in nG.

The three above propositions apply to Z(G; x, y, z) as well.
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2.3. Clique-width

Let [k] = {1, . . . , k}. A k-graph is a tuple (G, c̄) which consists of a simple graph G together

with labels cv ∈ [k] for every v ∈ V (G). The class CW (k) of k-graphs of clique-width at

most k is defined inductively. Singletons belong to CW (k), and CW (k) is closed under

disjoint union � and two other operations, ρi→j and µi,j , to be defined next. For any

i, j ∈ [k], ρi→j(G, c̄) is obtained by relabelling any vertex with label i to label j. For any

i, j ∈ [k], µi,j(G, c̄) is obtained by adding all possible edges (u, v) such that cu = i and

cv = j. The clique-width of a graph G is the minimal k such that there exists a labelling c̄

for which (G, c̄) belongs to CW (k). We denote the clique-width of G by cw(G).

A k-expression is a term t which consists of singletons, disjoint unions �, relabelling

ρi→j and edge creations µi,j , which witnesses that the graph val(t) obtained by performing

the operations on the singletons is of clique-width at most k. Every graph of tree-width at

most k is of clique-width at most 2k+1 + 1: see [5]. While computing the clique-width of a

graph is NP-hard, Oum and Seymour showed that given a graph of clique-width k, finding

a (23k+2 − 1)-expression is fixed-parameter tractable with clique-width as parameter: see

[23, 24].

3. Exponential time lower bound

In this section we prove that in general the evaluations (γ, δ) ∈ Q2 of Z(G; t, y) require

exponential time to compute under #ETH. In analogy with the use of Theta graphs to

deal with the complexity of the Tutte polynomial, we define Phi graphs and use them to

interpolate the indeterminate t in Z(G; t, y). We interpolate y by a simple construction.

3.1. Phi graphs

Our goal in this subsection is to define Phi graphs ΦH and compute the bivariate Ising

polynomial at y = 1 on graphs G ⊗ ΦH to be defined below. In order to define Phi graphs

we must first define Lh-graphs. For every h ∈ N, the graph Lh is obtained from the path

Ph+1 with h edges as follows. Let hd(h) denote one of the end-points of Ph+1. Let tr1(h)

and tr2(h) be two new vertices. Lh is obtained from Ph+1 by adding edges to make both

tr1(h) and tr2(h) adjacent to all the vertices of Ph+1.

We can also construct Lh recursively from Lh−1 by

• adding a new vertex hd(h) to Lh−1,

• renaming tri(h − 1) to tri(h) for i = 1, 2, and

• adding three edges to make hd(h) adjacent to hd(h − 1), tr1(h) and tr2(h).

Figure 1 shows L5.

We denote by B � C a partition of the set {tr1, tr2, hd}. We let B(h) denote the subset of

{tr1(h), tr2(h), hd(h)} which corresponds to B, and let C(h) be defined similarly. We have

that B(h) and C(h) form a partition of {tr1(h), tr2(h), hd(h)}.

Definition 3.1. We denote bB,C(h) = Z(Lh;B(h), C(h); t, 1).

The next two lemmas are devoted to computing bB,C(h).
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hd(5)

tr1(5)

(a)

tr2(5)

hd(4) hd(5)

tr1(4)

(b)

tr2(4)

Figure 1. The graph L5 and the construction of L5 from L4. L5 is obtained from L4 by adding the vertex

hd(5) and its incident edges, and renaming tr1(4) and tr2(4) to tr1(5) and tr2(5) respectively.

Lemma 3.2.

b{tr1 ,hd},{tr2}(h) = b{tr2 ,hd},{tr1}(h) = b{tr1},{tr2 ,hd}(h) = b{tr2},{tr1 ,hd}(h) = (t2 + t)h · t.

Proof. We have

b{tr1 ,hd},{tr2}(h) = b{tr2 ,hd},{tr1}(h) = b{tr1},{tr2 ,hd}(h) = b{tr2},{tr1 ,hd}(h),

by symmetry. We compute b{tr1 ,hd},{tr2}(h) by finding a simple linear recurrence relation

which it satisfies, and solving it. We divide the sum b{tr1 ,hd},{tr2}(h) into two sums,

b{tr1 ,hd},{tr2}(h) = Z(Lh; {tr1(h), hd(h), hd(h − 1)}, {tr2(h)}; t, 1)

+ Z(Lh; {tr1(h), hd(h)}, {tr2(h), hd(h − 1)}; t, 1),

depending on whether hd(h − 1) is in the iteration variable S of the sum b{tr1 ,hd},{tr2}(h) (as

in Definition 2.3). These two sums can be obtained from

b{tr1 ,hd},{tr2}(h − 1) and b{tr1},{tr2 ,hd}(h − 1)

by adjusting for the addition of hd(h) and its incident edges.

• The case hd(h − 1) ∈ S . Adding hd(h) (to the graph and to S) puts two new edges in

E(S) � E(S̄), namely (tr1, hd(h)) and (hd(h − 1), hd(h)). Hence,

Z(Lh; {tr1(h), hd(h), hd(h − 1)}, {tr2(h)}; t, 1) = b{tr1 ,hd},{tr2}(h − 1) · t2.

• The case hd(h − 1) /∈ S . Adding hd(h) puts just one new edge in E(S) � E(S̄), namely

(tr1, hd(h)). Hence,

Z(Lh; {tr1(h), hd(h)}, {tr2(h), hd(h − 1)}; t, 1) = b{tr1},{tr2 ,hd}(h − 1) · t.

Using that b{tr1 ,hd},{tr2}(h − 1) = b{tr1},{tr2 ,hd}(h − 1), we get

b{tr1 ,hd},{tr2}(h) = b{tr1 ,hd},{tr2}(h − 1) · (t2 + t), (3.1)

and the lemma follows since b{tr1 ,hd},{tr2}(0) = t (note that L0 is simply a path of

length 3).
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We are left with two distinct cases of bB,C(h) to compute, since by symmetry,

b{tr1 ,tr2 ,hd},∅(h) = b∅,{tr1 ,tr2 ,hd}(h) and b{tr1 ,tr2},{hd}(h) = b{hd},{tr1 ,tr2}(h).

Lemma 3.3. Let

λ1,2 =
t

2

(
1 + t2 ±

√
5 − 2t2 + t4

)
,

c1 = t2 − c2,

c2 =
t
(
−t3 − 2 + t + t

√
5 − 2t2 + t4

)
2
√

5 − 2t2 + t4
,

d1 = 1 − d2,

d2 =
−1 − 2t + t2 +

√
5 − 2t2 + t4

2
√

5 − 2t2 + t4
.

Here λ1 corresponds to the + case. If t ∈ R then c1, c2, d1, d2, λ1, λ2 ∈ R, λ1 
= λ2, and

b{tr1 ,tr2 ,hd},∅(h) = c1λ
h
1 + c2λ

h
2,

b{tr1 ,tr2},{hd}(h) = d1λ
h
1 + d2λ

h
2.

Proof. The content of the square root is always strictly positive for t ∈ R. Hence, λ1 
= λ2

and c1, c2, d1, d2, λ1, λ2 ∈ R.

The sequences b{tr1 ,tr2 ,hd},∅(h) and b{tr1 ,tr2},{hd}(h) satisfy a mutual linear recurrence as

follows:

b{tr1 ,tr2 ,hd},∅(h) = b{tr1 ,tr2 ,hd},∅(h − 1) · t3 + b{tr1 ,tr2},{hd}(h − 1) · t2,

b{tr1 ,tr2},{hd}(h) = b{tr1 ,tr2 ,hd},∅(h − 1) + b{tr1 ,tr2},{hd}(h − 1) · t.

This implies that both b{tr1 ,tr2 ,hd},∅(h) and b{tr1 ,tr2},{hd}(h) satisfy linear recurrence relations

with the following initial conditions:

b{tr1 ,tr2 ,hd},∅(0) = t2 and b{tr1 ,tr2 ,hd},∅(1) = t5 + t2,

b{tr1 ,tr2},{hd}(0) = 1 and b{tr1 ,tr2},{hd}(1) = t2 + t.

These recurrences can be calculated and solved using standard methods: see, e.g., [10] or

[15].

Using the previous two lemmas, we get the following result.

Lemma 3.4.

Z(Lh; {tr1}, {tr2}; t, 1) = Z(Lh; {tr2}, {tr1}; t, 1) = 2t(t2 + t)h,

Z(Lh; {tr1, tr2}, ∅; t, 1) = Z(Lh; ∅, {tr1, tr2}; t, 1) = (c1 + d1)λ
h
1 + (c2 + d2)λ

h
2,

where c1, c2, d1, d2, λ1, λ2 are as in Lemma 3.3.

Proof. The lemma follows from Lemmas 3.2 and 3.3.
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tr1(H)

tr2(H)

Figure 2. An example of a Phi graph: the graph ΦH for H = {1, 3, 4}.

Definition 3.5 (Phi graphs). Let H be a finite set of positive integers. We denote by ΦH
the graph obtained from the disjoint union of the graphs Lh : h ∈ H as follows. For each

i = 1, 2, the vertices tri(h), h ∈ H, are identified as one vertex denoted tri(H).

The number of vertices in ΦH is 2 +
∑

h∈H(h + 1). Figure 2 shows Φ{1,3,4}.

Lemma 3.6. Let H be a finite set of positive integers. Then

Z(ΦH; {tr1(H)}, {tr2(H)}; t, 1) = (2t)|H|
∏
h∈H

(t2 + t)h,

and

Z(ΦH; {tr1(H), tr2(H)}, ∅; t, 1) = Z(ΦH; ∅, {tr1(H), tr2(H)}; t, 1)

=
∏
h∈H

(
(c1 + d1)λ

h
1 + (c2 + d2)λ

h
2

)
.

Proof. The proof follows from Lemma 3.4 using that all edges are contained in

some Lh.

We can now define the graphs G ⊗ H.

Definition 3.7 (G ⊗ H). Let H be a finite set of positive integers. Let G be a graph. For

every edge e = (u1, u2) ∈ E(G), let ΦH,e be a new copy of ΦH, where we denote tr1(H) and

tr2(H) for ΦH,e by tr1(H, e) and tr2(H, e). Let G ⊗ ΦH = G ⊗ H be the graph obtained

from the disjoint union of the graphs

ΦH,e : e ∈ E(G)

by identifying tri(H, e) with ui, i = 1, 2, for every edge e = (u1, u2) ∈ E(G).2

2 It does not matter how we identify u1 and u2 with tr1(H, e) and tr2(H, e), since the two possible alignments

will give rise to isomorphic graphs.
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Lemma 3.8. Let H be a finite set of positive integers. Let ft,H and gp,H be the following

functions:

ft,H(e1, e2, r1, r2) =
∏
h∈H

(
e1r

h
1 + e2r

h
2

)
,

fp,H(t) =

(
(2t)|H|

∏
h∈H

(t2 + t)h
)mG

.

Then

Z(G ⊗ H; t, 1) = fp,H(t) · Z
(
G; ft,H

(
c1 + d1

2t
,
c2 + d2

2t
,

λ1

t2 + t
,

λ2

t2 + t

)
, 1

)
.

Proof. Let G̃ = G ⊗ H. By definition,

Z(G̃; t, 1) =
∑

S⊆V (G̃)

t|EG̃(S )�EG̃(S̄ )|.

We can rewrite this sum as

Z(G̃; t, 1) =
∑

S⊆V (G)

( ∏
e∈[S,S̄]G

Z(ΦH,e; {tr1(H, e)}, {tr2(H, e)}; t, 1)

)

·
( ∏

e∈EG(S )�EG(S̄ )

Z(ΦH,e; {tr1(H, e), tr2(H, e)}, ∅; t, 1)

)
,

since edges only occur within some ΦH,e. Using Lemma 3.6, the sum in the last equation

can be written as

∑
S⊆V (G)

(
(2t)|H|

∏
h∈H

(t2 + t)h
)|[S,S̄]G|

·
(∏

h∈H

(
(c1 + d1)λ

h
1 + (c2 + d2)λ

h
2

))|EG(S )�EG(S̄)|
.

Since |[S, S̄ ]G = mG − |EG(S) � EG(S̄)|, we can rewrite the last equation as(
(2t)|H|

∏
h∈H

(t2 + t)h
)mG

·
∑

S⊆V (G)

(∏
h∈H

(
(c1 + d1)λ

h
1 + (c2 + d2)λ

h
2

)
(2t)|H| ∏

h∈H(t2 + t)h

)|EG(S )�EG(S̄ )|
.

The last sum can be rewritten as

∑
S⊆V (G)

[∏
h∈H

(
c1 + d1

2t

(
λ1

t2 + t

)h

+
c2 + d2

2t

(
λ2

t2 + t

)h)]|EG(S )�EG(S̄ )|

,

and the lemma follows.

The construction described above will be useful for dealing with the evaluation of

Z(G; t, y) with y = −1 due to the following lemma. For a graph G, let G(1) be the graph

obtained from G by adding, for each v ∈ V (G), a new vertex v′ and an edge (v, v′). So v′

is adjacent to v only. G(1) is a graph with 2nG vertices.

Lemma 3.9. Z(G; t, 1) = (t − 1)−nGZ(G(1); t,−1).
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Proof. By definition we have

Z(G(1); t,−1) =
∑

S⊆V (G(1))

t
|EG(1)

(S )�EG(1)
(S̄)|

(−1)|S |

=
∑

S⊆V (G)

t|EG(S )�EG(S̄ )|(t − 1)|S |(t − 1)nG−|S |,

where the last equality is by considering the contribution of v′ for each v ∈ V (G): if v ∈ S

then v′ contributes either −t or 1; if v /∈ S then v′ contributes either t or −1. The last

expression in the equation above equals

(t − 1)nG
∑

S⊆V (G)

t|EG(S )�EG(S̄ )| = (t − 1)nG · Z(G; t, 1).

3.2. The Ising polynomials of certain trees

We denote by Sn the star with n leaves. Let cent(Sn) be the central vertex of the star

Sn. A construction based on stars will be used to interpolate the y indeterminate from

Z(G; γ, δ). First, notice the following.

Proposition 3.10. For every n ∈ N+,

Z(Sn; {cent(Sn)}, ∅; t, y) = y · (yt + 1)n,

Z(Sn; ∅, {cent(Sn)}; t, y) = (y + t)n.

Proof. By definition,

Z(Sn; {cent Sn}, ∅; t, y) =
∑

S :{cent(Sn)}⊆S⊆V (Sn)

t|ESn (S )�ESn (S̄)|y|S |,

Z(Sn; ∅, {cent Sn}; t, y) =
∑

S⊆V (Sn)\{cent(Sn)}

t|ESn (S )�ESn (S̄ )|y|S |.

Consider a leaf v of Sn. For Z(Sn; {cent(Sn)}, ∅; t, y), a leaf v has two options: either v ∈ S ,

in which case it contributes the weight of its incident edge, so its contribution is yt; or

v 
∈ S , in which case it contributes 1. For Z(Sn; ∅, {cent(Sn)}; t, y), v has two options: either

v ∈ S , in which case it does not contribute the weight of its edge, so its contribution is y;

or v 
∈ S , in which case its edge contributes t.

Definition 3.11 (The graph SH). Let H be a set of positive integers. The graph SH is

obtained from the disjoint union of Sn : n ∈ H and a new vertex cent(H) by adding edges

between cent(H) and the centres cent(Sn) of all the stars Sn : n ∈ H.

See Figure 3(a) for an example.
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cent({2, 4})

cent(S4) cent(S2)

(a) The graph S{2,4}

cent({2, 4}, u) = u cent({2, 4}, v) = v

(b) The graph S{2,4}(K2)

Figure 3. Examples of SH and SH(G). In (b), the black vertices u, v are the vertices of K2. They are also

denoted cent(H, u) and cent(H, v) respectively.

Proposition 3.12. Let H be a set of positive integers. Then,

Z(SH; {cent(H)}, ∅; t, y) = y ·
∏
h∈H

(
yt · (yt + 1)h + (y + t)h

)
,

Z(SH; ∅, {cent(H)}; t, y) =
∏
h∈H

(
y · (yt + 1)h + t · (y + t)h

)
.

Proof. We have

Z(SH; {cent(H)}, ∅; t, y)

= y ·
∏
h∈H

(
t · Z(Sh; {cent(Sh)}, ∅; t, y) + Z(Sh; ∅, {cent(Sh)}; t, y)

)
,

Z(SH; ∅, {cent(H)}; t, y)

=
∏
h∈H

(
Z(Sh; {cent(Sh)}, ∅; t, y) + t · Z(Sh; ∅, {cent(Sh)}; t, y)

)
,

and by Proposition 3.10 the claim follows.

Definition 3.13 (The graph SH(G)). Let H be a set of positive integers and let G be a

graph. For every vertex v of G, let SH,v(G) be a new copy of SH. We denote the centre of

each such copy of SH by cent(H, v). Let SH(G) be the graph obtained from the disjoint

union of the graphs in the set

{G} ∪ {SH,v : v ∈ V (G)}

by identifying the pairs of vertices v and cent(H, v).

In other words, SH(G) is the rooted product of G and (SH, cent(H)). See Figure 3(b) for

an example.

Proposition 3.14. Let H be a set of positive integers. Let

gp,H(t, y) =

(∏
h∈H

(
y · (yt + 1)h + t · (y + t)h

))|V (G)

,

gy,H(t, y) = y
∏
h∈H

yt · (yt + 1)h + (y + t)h

y · (yt + 1)h + t · (y + t)h
.
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Then

Z(SH(G); t, y) = gp,H(t, y) · Z(G; t, gy,H(t, y)).

Proof. By definition

Z(SH(G); t, y) =
∑

S⊆V (SH(G))

t|ESH(G)(S )�ESH(G)(S̄ )|y|S |.

We would like to rewrite this sum as a sum over S ⊆ V (G). By the structure of SH(G),

Z(SH(G); t, y) =
∑

S⊆V (G)

t|EG(S )�EG(S̄ )|

(∏
v∈S

Z(SH,v; {cent(H, v)}, ∅; t, y) +
∏
v∈S̄

Z(SH,v; ∅, {cent(H, v)}; t, y)

)
.

By Proposition 3.12,

Z(SH(G); t, y) =
∑

S⊆V (G)

t|EG(S )�EG(S̄ )|

((
y ·

∏
h∈H

(
yt · (yt + 1)h + (y + t)h

))|S |(∏
h∈H

(
y · (yt + 1)h + t · (y + t)h

))|V (G)\|S |)
,

and the claim follows.

The following propositions will be useful.

Proposition 3.15. Let gy,H(t, y) be as in Proposition 3.14. Let hy,H be the function given by

hy,H(e1, e2, r) =
∏
h∈H

(
1 +

1

e1 + e2 · rh

)
.

Let γ, δ /∈ {−1, 0, 1} such that γ 
= −δ. There exist constants h1, u1, u2, w (which depend on γ

and δ) such that for every two finite sets of positive even numbers H1 and H2 which satisfy

• |H1| = |H2|, and H1,H2 ⊆ N+ \ {1, . . . , h1},

we have

(i) gy,H1
(γ, δ), gy,H1

(γ, δ), hy,H1
(u1, u2, w), hy,H2

(u1, u2, w) ∈ R \ {0}, and

(ii) gy,H1
(γ, δ) = gy,H2

(γ, δ) if and only if hy,H1
(u1, u2, w) = hy,H2

(u1, u2, w)

Furthermore, u1 and u2 are non-zero and w /∈ {−1, 0, 1}.

Proof. It cannot hold that |δγ + 1| = |δ + γ|. Furthermore we know that γ, δ 
= 0. Hence,

there exists h1 such that for every even h > h1, the sequences δ(δγ + 1)h + γ · (δ + γ)h and

δγ(δγ + 1)h + (δ + γ)h are strictly ascending or descending, and in particular, are non-zero.

Therefore we have gy,H1
(γ, δ), gy,H1

(γ, δ) ∈ R \ {0}.
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We have for i = 1, 2

gy,Hi
(γ, δ) = δ

∏
h∈Hi

δγ · (δγ + 1)h + (δ + γ)h

δ(δγ + 1)h + γ · (δ + γ)h

=
δ

γ|Hi|

∏
h∈Hi

δγ2 · (δγ + 1)h + γ · (δ + γ)h

δ(δγ + 1)h + γ · (δ + γ)h

=
δ

γ|Hi|

∏
h∈Hi

(
1 +

δ(γ2 − 1) · (δγ + 1)h

δ(δγ + 1)h + γ · (δ + γ)h

)

=
δ

γ|Hi|

∏
h∈Hi

(
1 +

1
1

γ2−1
+ γ

δ(γ2−1)
· ( δ+γ

δγ+1
)h

)
.

Let u1 = 1
γ2−1

, u2 = γ
δ(γ2−1)

and w = δ+γ
δγ+1

. We have u1, u2, w ∈ R \ {0} and w /∈ {−1, 1}.
Hence, we can take h1 to be sufficiently large that u1 + u2 + wh non-zero. Since u1 + u2 + wh

is strictly ascending or descending for even h, we have hy,H1
(u1, u2, w), hy,H2

(u1, u2, w) ∈
R \ {0} for large enough values of h.

Proposition 3.16. Let γ, δ /∈ {−1, 0, 1} and γ 
= −δ. Let H be a set of positive even integers.

Let gp,H(t, y)) be from Proposition 3.14. Then there exists h2 such that if H ⊆ N+ \ {1, . . . , h2}
then gp,H(γ, δ)) 
= 0.

Proof. Recall that

gp,H(γ, δ)) =

(∏
h∈H

(
δ(δγ + 1)h + γ · (δ + γ)h

))|V (G)|
.

We have that δ + γ is non-zero. If δγ + 1 = 0 then the claim holds even for h2 = 0.

Otherwise, using that |δγ + 1| 
= |δ + γ|, at least one of (δγ + 1)h, (δ + γ)h becomes strictly

larger in absolute value than the other for large enough h.

3.3. Proof of Theorem 1.1

The following lemma is a variation of Lemma 4 in [6]. For any H, let σ(H) =
∑

h∈H h.

Lemma 3.17. Let γ /∈ {−1, 0, 1}, δ 
= 0, e1, e2 
= 0 and r1, r2 /∈ {−1, 0, 1} such that |r1| 
=
|r2|. For every positive integer q′ there exist q̂ = Ω(q′) sets of positive even integers H0, . . . ,Hq̂

such that

(i) σ(Hi) = O(log3 q′) for all i,

(ii) σ(Hi) = σ(Hj) for all i 
= j,

(iii) ft,Hi
(e1, e2, r1, r2) 
= ft,Hj

(e1, e2, r1, r2) for i 
= j,

where ft,H(e1, e2, r1, r2) is from Proposition 3.8. If, in addition, δ /∈ {−1, 1} and γ 
= −δ, we

have

(iv) gy,Hi
(γ, δ) 
= gy,Hj

(γ, δ) for i 
= j.

(v) gp,Hi
(γ, δ) 
= 0,

where gy,H(e1, e2, r1) is from Proposition 3.14.
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The sets Hi can be computed in polynomial time in q′.

Proof. Let q = q′ log3 q′. First we define sets H′
0, . . . ,H′

q . We will use these sets to define

the desired sets H0, . . . ,Hq̂ .

For i = 0, . . . , q, let i[0], . . . , i[�] ∈ {0, 1} be the binary expansion of i, where � = log q�.3
Let ∆ denote a positive even integer to be chosen later. Let τ ∈ {1, 2} be such that

|rτ| = max{|r1|, |r2|}. Then |r3−τ| = min{|r1|, |r2|}. Let m0 be an even integer such that

m0 > h1 from Proposition 3.15 and m0 > h2 from Proposition 3.16. We choose H′
i as

follows:

H′
i = {m0 + ∆�log q� · (2j + i[j]) : 0 � j � �}.

The sets H′
i satisfy the following:

(a) they are distinct,

(b) they have equal cardinality �+1,

(c) they contain only positive even integers between m0 and m0 + ∆(log q + 1)(2 log q + 1),

and

(d) for i, j and any a ∈ H′
i and b ∈ H′

j , either a = b or |a − b| � ∆ log q.

It is easy to see that σ(H′
i) = Ω(log q), i = 0, . . . , q. On the other hand, since all the numbers

in each of the H′
i are bounded by O(log2 q) and the size of each H′

i is O(log q), we get

that σ(H′
i) = O(log3 q) for each i. From this we get that at least

q̂ = Ω

(
q′ log3 q′ + 1

log3 q′

)
= Ω(q′)

of the sets H′
0, . . . ,H′

q have the same sum value σ(H′
i). Let {H0, . . . ,Hq̂} be a subset of

{H′
0, . . . ,H′

q} such that all the sets in {H0, . . . ,Hq̂} have the same sum value σ(Hi). We

have (i), (ii) and (v) for H0, . . . ,Hq̂ .

We now turn to (iii) and (iv). The proofs of (iii) and (iv) are similar but not identical.

Let 0 � i 
= j � q̂, Hi\j = Hi \ Hj and Hj\i = Hj \ Hi. Notice that Hi\j ∩ Hj\i = ∅. Let

σ = σ(Hi\j) = σ(Hj\i) and let d = |Hi\j | = |Hj\i|.

(iii) We write ft,Hi
for short instead of ft,Hi

(e1, e2, r1, r2) in this proof. When other

parameters are used instead of e1, e2, r1, r2, we write them explicitly. Since ft,Hi
= ft,Hi\j ·

ft,Hi∩Hj
, ft,Hj

= ft,Hj\i · ft,Hi∩Hj
and ft,Hi∩Hj


= 0, it is enough to show that ft,Hi\j −
ft,Hj\i 
= 0.

Since σ(Hi\j) = σ(Hj\i) we have

ft,Hi\j = ft,Hj\i if and only if ft,Hi\j (e1, e2, r
−1
2 , r−1

1 ) = ft,Hj\i(e1, e2, r
−1
2 , r−1

1 ).

Hence we can assume from now on that |rτ| > 1 (otherwise we look at r−1
1 and r−1

2

instead).

3 In fact we will also need that � is larger than a constant depending on e1, but this is true for large enough

values of q.
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For every H, ft,H can be rewritten as follows:

ft,H =
∏
h∈H

(eτr
h
τ + e3−τr

h
3−τ) = e�+1

3−τ

∑
X⊆H

sH(X),

where

sH(X) =

(
eτ

e3−τ

)|X|
rσ(X)
τ r

σ(H\X)
3−τ .

We think of h ∈ X (respectively h ∈ H \ X) as corresponding to eτr
h
τ (respectively e3−τr

h
3−τ).

It suffices to show that ∑
X1⊆Hi\j

sHi\j (X) −
∑

X2⊆Hj\i

sHj\i(X) 
= 0. (3.2)

It holds that

sHi\j (Hi\j) = sHj\i(Hj\i) =

(
eτ

e3−τ

)�+1

rστ .

Hence, sHi\j (Hi\j) and sHj\i(Hj\i) cancel out in (3.2). Similarly, sHi\j (∅) = sHj\i(∅) = rσ3−τ

cancel out. Let m1 be the minimal element in Hi\j � Hj\i. Without loss of generality,

assume m1 ∈ Hi\j . We have

sHi\j (Hi\j \ {m1}) =

(
eτ

e3−τ

)�

rσ−m1
τ rm1

3−τ.

Here sHi\j (Hi\j \ {m1}) has the largest exponent of rτ out of all the monomials in both of

the sums in inequality (3.2), and any other exponent of rτ is smaller by at least ∆ log q.

We will demonstrate that (3.2) holds by showing the following:

|sHi\j (Hi\j \ {m1})| >
∑

X�Hi\j\{m1}

|sHi\j (X)| +
∑

X�Hj\i

|sHj\i(X)|. (3.3)

Each of the sums in inequality (3.3) has at most 2log q+1 = 2q monomials corresponding to

the subsets of Hi\j and Hj\i respectively. The absolute value of each of these monomials

can be bounded from above by s · |rτ|σ−m1−∆ log q|r3−τ|m1+∆ log q , where s is the maximum of

| eτ
e3−τ

|� and 1. Hence, the right-hand side of (3.3) is at most

4q · s|rτ|σ−m1−∆ log q|r3−τ|m1+∆ log q = 4qs

(
eτ

e3−τ

)−�

·
∣∣∣∣ r3−τ

rτ

∣∣∣∣
∆ log q

|sHi\j (Hi\j − {m1})|.

There exists a number ∆′ which does not depend on q such that

4qs

(
eτ

e3−τ

)−�

< (∆′)log q,

and (iii) follows by setting ∆ sufficiently large that

∆′ ·
∣∣∣∣ r3−τ

rτ

∣∣∣∣
∆

< 1.
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(iv) By Proposition 3.15, there exist u1, u2 
= 0 and w /∈ {−1, 0, 1} depending on γ, δ for

which it is enough to show that hy,Hi
(u1, u2, w) 
= hy,Hj

(u1, u2, w) to get (iv). We write hy,Hi

for short instead of hy,Hi
(u1, u2, w) in this proof.

Since we have hy,Hi
= hy,Hi\j · hy,Hi∩Hj

, hy,Hj
= hy,Hj\i · hy,Hi∩Hj

and hy,Hi∩Hj

= 0, it is

enough to show that

hy,Hi\j − hy,Hj\i 
= 0,

that is,

∏
h∈Hi\j

(
1 +

1

u1 + u2 · wh

)
−

∏
h∈Hj\i

(
1 +

1

u1 + u2 · wh

)

= 0,

or equivalently, ∏
h∈Hi\j

(
u1 + u2 · wh + 1

) ∏
h∈Hj\i

(
u1 + u2 · wh

)

−
∏

h∈Hj\i

(
u1 + u2 · wh + 1

) ∏
h∈Hi\j

(
u1 + u2 · wh

)

= 0. (3.4)

Consider a product of the form found in inequality (3.4):∏
h∈Ha

(
u1 + u2 · wh + 1

) ∏
h∈Hb

(
u1 + u2 · wh

)
=

∑
X⊆Ha∪Hb

(u1 + 1)|Ha\X|u
|Hb\X|
1 wσ(X)u

|X|
2 .

Let

p(X) =
(
(u1 + 1)|Hi\j\X|u

|Hj\i\X|
1 − (u1 + 1)|Hj\i\X|u

|Hi\j\X|
1

)
· u|X|

2 wσ(X).

It suffices to show that ∑
X⊆Hi\j∪Hj\i

p(X) 
= 0. (3.5)

We have p(∅) = p(Hi\j � Hj\i) = 0, using that |Hi\j | = |Hj\i|. Let m1 be the minimal

element in Hi\j � Hj\i. Without loss of generality, assume m1 ∈ Hi\j . We have

|p(Hi\j � Hj\i − {m1})| = |u2d−1
2 w2σ−m1 |,

|p({m1})| = |((u1 + 1)u1)
d−1u2w

m1 |.

The largest exponent of w in inequality (3.5) is w2σ−m1 . For all other monomials in (3.5),

the power of w is smaller by at least ∆ log q. Similarly, the smallest exponent of w in (3.5)

is wm1 . For all other monomials in (3.5), the power of w is larger by at least ∆ log q.

Let X0 ⊆ Hi\j � Hj\i) be maximal with respect to |p(X0)|. Since d � log q + 1, we can

choose ∆ large enough so that we have X0 = Hi\j � Hj\i − {m1} if |w| > 1 and X0 = {m1}
if |w| < 1.

We have ∣∣∣∣ ∑
X⊆Hi\j�Hj\i:X 
=X0

p(X)

∣∣∣∣ < |p(X0)|, (3.6)
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implying that inequality (3.5) holds. To see that inequality (3.6) holds, note that∣∣∣∣ ∑
X⊆Hi\j�Hj\i:

X 
=X0

p(X)

∣∣∣∣ � 22 log q+2 max
X⊆Hi\j�Hj\i:X 
=X0

|p(X)|.

Let

k(d) = max
(
|(u1 + 1)d|, 1

)
· max

(
|ud1|, 1

)
· max

(
|ud2|, 1

)
.

Then ∣∣∣∣ ∑
X⊆Hi\j�Hj\i:

X 
=X0

p(X)

∣∣∣∣ �
{

4 · 2log q+1 · k(d) · |w|2σ−m1−∆ log q |w| > 1,

4 · 2log q+1 · k(d) · |w|m1+∆ log q |w| < 1.

So, there is a constant c > 0 depending on u1, u2, w such that (for large enough values

of q) ∣∣∣∣ ∑
X⊆Hi\j�Hj\i:

X 
=X0

p(X)

∣∣∣∣ �
{

clog q|w|2σ−m1−∆ log q |w| > 1,

clog q|w|m1+∆ log q |w| < 1.

It remains to choose ∆ sufficiently large that{
clog q

u2d−1
2

< |w|∆ log q |w| > 1,

|w|∆ log q < ((u1+1)u1)
d−1

clog q |w| < 1.

We are now ready to prove Theorem 1.1.

Theorem 3.18. Let (γ, δ) ∈ Q2. If γ /∈ {−1, 0, 1} and δ 
= 0, then

(i) computing Z(G; γ, δ) is #P-hard, and

(ii) unless #ETH fails, computing Z(G; γ, δ) requires exponential time in nG
log6 nG

.

Otherwise, Z(G; γ, δ) is polynomial-time computable.

Proof. We set t = γ and y = δ with γ /∈ {−1, 0, 1} and δ 
= 0. By abuse of notation we

refer to c1, c2, d1, d2, λ1, λ2 from Lemma 3.3 as the values they obtain when t = γ. Since

γ 
= {−1, 0, 1}, it is easy to verify that the following hold:

(a) c1 + d1, c2 + d2 
= 0,

(b) λ1, λ2 
= 0,

(c) λ1, λ2 
= ±(γ2 + γ), and

(d) λ1 
= ±λ2.

Let ei = ci+di
2γ

and ri = λi
γ2+γ

for i = 1, 2. Let q′ = n2
G. Let H0, . . . ,Hq̂ be the sets guaranteed

in Lemma 3.17 with respect to q′, γ, δ, e1, e2, r1, r2.

First we deal with the case when γ 
= −δ. We return to γ = −δ later.

We want to compute the q̂ + 1 values Z(G ⊗ Hk; γ, 1). If δ = 1 we simply do it using

the oracle to Z at (γ, 1). If δ = −1 we use Lemma 3.9. Otherwise we proceed as follows.
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By Proposition 3.14, for each 0 � i, k � q̂,

Z(SHi
(G ⊗ Hk); γ, δ) = gp,Hi

(γ, δ) · Z(G ⊗ Hk; γ, gy,Hi
(γ, δ)). (3.7)

It is guaranteed in Lemma 3.17 that for i 
= j, gy,Hi
(γ, δ) 
= gy,Hj

(γ, δ).

We want to use equation (3.7) to interpolate, for each 0 � k � mG, the univariate

polynomials Z(G ⊗ Hk; γ, y). We use the fact that the sizes of G ⊗ Hk , and therefore

the y-degrees of Z(G ⊗ Hk; γ, y), are at most O(nG log3 nG), Since gp,Hi
(γ, δ) is non-zero,

we can interpolate in polynomial time, for each 0 � k � mG, the mG + 1 polynomials

Z(G ⊗ Hk; γ, y).

So, we computed Z(G ⊗ Hk; γ, 1) for 0 � k � q̂. Now we use these values to interpolate

t and get the univariate polynomial Z(G ⊗ Hk; t, 1). By Lemma 3.8,

Z(G; ft,Hk
(e1, e2, r1, r2), 1) = Z(G ⊗ Hk; γ, 1) ·

(
fp,Hk

(γ)
)−1

.

Since γ /∈ {−1, 0, 1}, fp,Hk
(γ) 
= 0. By Lemma 3.17, ft,Hk

(e1, e2, r1, r2) are distinct and

polynomial-time computable. Hence, the univariate polynomial Z(G; t, 1) can be interpol-

ated. We get (i) by Proposition 2.5. Since Z(−; γ, δ) is only queried on graphs SHi
(G ⊗ Hk)

of sizes at most O(nG log6 nG), (ii) holds by Proposition 2.7.

Consider the case γ = −δ. By Proposition 3.14, for every G we have

Z(S{1}(G); γ, δ) = (δ · (1 − δ2))nG · Z(G; γ,−δ2),

and the desired hardness results follow by the corresponding for Z(G; γ,−δ2) (using that

γ 
= −(−δ2), −δ2 
∈ {−1, 0, 1} and that (δ · (1 − δ2))nG is non-zero).

Now we consider the cases where γ ∈ {−1, 0, 1} or δ = 0. Two cases are easily computed,

namely Z(G; 1, δ) = (1 + δ)nG and Z(G; γ, 0) = 1.

The other two cases follow, for example, from Lemma 6.3 in [13]. In that lemma it is

shown in particular that partition functions ZA,D(G) with a matrix A of edge-weights and

a diagonal matrix D of vertex weights can be computed in polynomial time if A has rank

1 or is bipartite with rank 2. For γ = 0 we have

A =

(
0 1

1 0

)
, D =

(
δ 0

0 1

)
,

so A is bipartite with rank 2. For γ = −1 we have

A =

(
−1 1

1 −1

)
, D =

(
δ 0

0 1

)
,

so A has rank 1. Note that Lemma 6.3 in [13] extends to negative values of δ. We refer

the reader to [13] for details.

4. Simple bipartite planar graphs

In this section we show that the evaluations of Z(G; x, y, z) are generally #P-hard to

compute, even when restricted to simple graphs which are both bipartite and planar. To

do so, we use that for 3-regular graphs, Z(G; x, y, z) is essentially equivalent to Z(G; t, y).

We use a two-dimensional graph transformation R�,q(G), which is applied to simple

https://doi.org/10.1017/S0963548312000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000259


762 T. Kotek

Figure 4. The construction of the graph R�,q(P2) for � = 1 and q = 2, where P2 is the path with two vertices

and one edge.

3-regular bipartite planar graphs and emits simple bipartite planar graphs in order to

interpolate Z(G; t, y).

4.1. Definitions

The following is a variation of k-thickening for simple graphs.

Definition 4.1 (k-simple thickening). Given � ∈ N+ and a graph H , we define a graph

STh�(H) as follows. For every edge e = (u, w) in E(H), we add 4� new vertices ve,1, . . . , ve,4�
to H . For each ve,i, we add two new edges (u, ve,i) and (w, ve,i). Finally, we remove the

edge e from the graph. Let N�(e)
+ denote the subgraph of STh�(H) induced by the set of

vertices {ve,1, . . . , ve,4�, u, v}.

The graph transformation used in the hardness proof is as follows.

Definition 4.2 (R�,q(G)). Let G be a graph. For each w ∈ V (G), let Gq
w = (Vq

w, E
q
w) be

a new copy of the star with 2q leaves. Denote by cw the centre of the star Gq
w . Let

R�,q(G) = (V�,q
R , E

�,q
R ) be the graph obtained from the disjoint union of STh�(G) and

STh�(Gq
w) for all w ∈ V (G) by identifying w and cw for all w ∈ V (G).

Remarks.

(i) The construction of R�,q(G) can also be described as follows. Given G, we attach

2q new vertices to each vertex v of V (G) to obtain a new simple graph G′. Then,

R�,q(G) = STh�(G′).

(ii) For every simple planar graph G and �, q ∈ N+, R�,q(G) is a simple bipartite planar

bipartite graph with nR vertices and mR edges, where nR = nG(1 + 2q(1 + 4�)) + 4�mG

and and mR = 8�mG + 16�qnG.

Figure 4 shows the graph R1,2(P2).
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In the following it is convenient to consider a multivariate version of Z(G; x, y, z)

denoted Z(G; x̄, ȳ.z̄). This approach was introduced for the Tutte polynomial by Sokal [26].

Z(G; x̄, ȳ.z̄) has indeterminates which correspond to every v ∈ V (G) and every e ∈ E(G).

Definition 4.3. Let x̄ = (xe : e ∈ E(G)), ȳ = (yu : u ∈ V (G)) and z̄ = (ze : e ∈ E(G)) be

tuples of distinct indeterminates. Let

Z(G; x̄, ȳ, z̄) =
∑

S⊆V (G)

( ∏
e∈EG(S )

xe

)(∏
u∈S

yu

)( ∏
e∈EG(S̄ )

ze

)
.

We may write xw,v and zw,v instead of xe and ze for an edge e = (w, v). Clearly, by

setting xe = x and ze = z for every e ∈ E(G), and yu = y for every u ∈ V (G), we get

Z(G; x̄, ȳ, z̄) = Z(G; x, y, z).

We furthermore define a variation of Z(G; x̄, ȳ, z̄) obtained by restricting the range of

the summation variable as follows.

Definition 4.4. Given a graph H and B,C ⊆ V (H) with B and C disjoint, let

Z(H,B, C; x̄, ȳ, z̄) (4.1)

=
∑

A:B⊆A⊆V (H), A∩C=∅

( ∏
e∈EG(A)

xe

)( ∏
u∈A\B

yu

)( ∏
e∈EG(Ā)

ze

)
,

where the summation is over all A ⊆ V (H), such that A contains B and is disjoint from C .

We have Z(H, ∅, ∅; x̄, ȳ, z̄) = Z(H; x̄, ȳ, z̄).

4.2. Lemmas, statement of Theorem 1.2 and its proof

For every edge e ∈ E(G) between u and v, let

ω1(e, S) = Z(N�(e)
+, S ∩ {u, v}, {u, v} \ S; x̄, ȳ, z̄),

and for every vertex w ∈ V , let

ω2(w, S) = Z(STh�(Gq
w), S ∩ {w}, {w} \ S; x̄, ȳ, z̄).

Let

ω1(S) =
∏

e∈E(G)

ω1(e, S) and ω2(S) =
∏

w∈V (G)

ω2(w, S).

Let ωi,triv(S) for i = 1, 2 be the polynomials in x, y and z obtained from ωi(S) by setting

xe = x and ze = z for every e ∈ E�,q and yv = y for every v ∈ V
�,q
R .

Lemma 4.5.

Z(R�,q(G); x.y.z) =
∑

S⊆V (G)

ω1,triv(S) · ω2,triv(S) · y|S |.
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Proof. Each edge of R�,q(G) is either contained in some N�(e)
+ for e ∈ E(G) or in some

STh�(Gq
w) for w ∈ V (G). Hence, by the definitions of Z(R�,q(G); x̄, ȳ, z̄), ω1(S) and ω2(S),

Z(R�,q(G); x̄, ȳ, z̄) =
∑

S⊆V (G)

ω1(S) · ω2(S) ·
∏
w∈S

yw

holds and the lemma follows.

Lemma 4.6. Let e = (u, w) be an edge of G. Then

ω1,triv(e, S) =

⎧⎪⎪⎨
⎪⎪⎩

(y + z2)4� |{u, v} ∩ S | = 0,

(xy + z)4� |{u, v} ∩ S | = 1,

(yx2 + 1)4� |{u, v} ∩ S | = 2.

Proof. The value of ω1(e, S) depends only on whether u, w ∈ S . Consider A ⊆ V (N�(e)
+),

which satisfies the summation conditions in equation (4.1) for Z(N�(e)
+, S ∩ {u, w}, {u, w} \

S; x, y, z).

(i) The case w ∈ S and u /∈ S . Exactly one edge e′ incident to ve,i crosses the cut [A, Ā]N�(e)+ .

The other edge e′′ incident to ve,i belongs to E(A) or E(Ā), depending on whether

ve,i ∈ A. We get

ω1(e, S) =

4�∏
i=1

(xve,i ,wyve,i + zve,i ,u).

(ii) The case w /∈ S and u ∈ S . This case is similar to the previous case, and we get

ω1(e, S) =

4�∏
i=1

(xve,i ,uyve,i + zve,i ,w).

(iii) The case w, u ∈ S . For each ve,i, either ve,i ∈ A, in which case both edges (ve,i, w) and

(ve,i, u) are in E(A), or ve,i /∈ S , and both edges (ve,i, w) and (ve,i, u) cross the cut. We get

ω1(e, S) =

4�∏
i=1

(yve,ixve,i ,uxve,i ,w + 1).

(iv) The case w, u /∈ S . For each ve,i, either ve,i ∈ S and then both edges incident to ve,i
cross the cut, or ve,i /∈ S and neither of the two edges crosses the cut. We get

ω1(e, S) =

4�∏
i=1

(yve,i + zve,i ,wzve,i ,u).

The lemma follows by setting xe = x and ze = z for every edge e and yu = y for every

vertex u.

Lemma 4.7. Let

g�,q(x, y, z) = y ·
(
yx2 + 1

)4�
+

(
yx + z

)4�
,

h�,q(x, y, z) =
(
y + z2

)4�
+ y ·

(
yx + z

)4�
.
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Let w be a vertex of G. Then

ω2,triv(w, S) =

{ (
g�,q(x, y, z)

)2q
w ∈ S,(

h�,q(x, y, z)
)2q

w /∈ S.

Proof. Consider A which satisfies the summation conditions in equation (4.1) for

Z(STh�(Gq
w), S ∩ {w}, {w} \ S; x̄, ȳ, z̄).

(i) The case w ∈ S (or, equivalently, cw ∈ A). Let u ∈ Vq
w \ {cw} and e = {u, cw}. If u ∈ A,

then the vertices u and ve,1, . . . , ve,4� contribute

yu

4�∏
i=1

(yve,ixve,i ,wxve,i ,u + 1).

Otherwise, if u /∈ A, then the vertices u and ve,1, . . . , ve,4� contribute

4�∏
i=1

(yve,ixve,i ,w + zve,i ,u).

Hence, ω2(w, S ) equals in this case

∏
u∈Vq

w

(
yu

4�∏
i=1

(yve,ixve,i ,wxve,i ,u + 1) +

4�∏
i=1

(yve,ixve,i ,w + zve,i ,u)

)
.

(ii) The case w 
∈ S (or, equivalently, cw /∈ A). Let u ∈ Vq
w \ {cw} and e = {u, cw}. If u ∈ A,

then the vertices u and ve,1, . . . , ve,4� contribute

yu

4�∏
i=1

(yve,ixve,i ,u + zve,i ,w).

Otherwise, if u /∈ A, then the vertices u and ve,1, . . . , ve,4� contribute

4�∏
i=1

(yve,i + zve,i ,wzve,i ,u).

Hence, ω2(w, S ) equals in this case

∏
u∈Vq

w

( 4�∏
i=1

(yve,ixve,i ,u + zve,i ,w) +

4�∏
i=1

(yve,i + zve,i ,wzve,i ,u)

)
.

The lemma follows by setting xe = x and ze = z for every edge e and yu = y for every

vertex u.

Lemma 4.8. If G is d-regular, then

fp,R(x, y, z, �, q) · Z(G; ft,R(x, y, z, �), fy,R(x, y, z, �, q)) = Z(R�,q(G); x, y, z),
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where

fp,R(x, y, z, �, q) =
(
h�,q(x, y, z)

)2qnG (y + z2)2�dnG ,

ft,R(x, y, z, �) =

(
(yx + z)2

(yx2 + 1)(y + z2)

)2�

,

fy,R(x, y, z, �, q) = y ·
(

yx2 + 1

y + z2

)2�d(
g�,q(x, y, z)

h�,q(x, y, z)

)2q

.

Proof. We want to rewrite Z(R�,q(G); x̄, ȳ, z̄) as a sum over subsets S of vertices of G.

Using Lemma 4.5, in order to compute Z(R�,q(G); x, y, z) we first need to find ω1,triv(S)

and ω2,triv(S). Using Lemma 4.7, ω2,triv(S) is given by

ω2,triv(S) =
(
g�,q(x, y, z)

)2q|S | ·
(
h�,q(x, y, z)

)2qnG−2q|S |
.

In order to compute ω1,triv(S), consider S ⊆ V (G). Since G is d-regular, the number of

edges contained in S is 1
2
(d · |S | − |[S, S̄]G|), and the number of edges contained in S̄ is

1
2
(dnG − d · |S | − |[S, S̄ ]G|). Hence, by Lemma 4.6, ω1,triv(S) is given by

ω1,triv(S) = (xy + z)4�|[S,S̄]G|(yx2 + 1)4�· d·|S |−|[S,S̄]G |
2 (y + z2)4�· dnG−d·|S |−|[S,S̄]G |

2 .

Using Lemma 4.5,

Z(R�,q(G); x, y, z) =
∑

S⊆V (G)

ω1,triv(S) · ω2,triv(S) · y|S |,

which is equal to (y + z2)4�· dnG2 times

∑
S⊆V (G)

(
(yx + z)2

(yx2 + 1)(y + z2)

)2�|[S,S̄]G|(
y ·

(
yx2 + 1

y + z2

)2�d)|S |
· ω2,triv(S). (4.2)

Plugging the expression for ω2,triv(S) into equation (4.2), we get that Z(R�,q(G); x, y, z)

equals fp,R(x, y, z, �, q) times

∑
S⊆V (G)

(
(yx + z)2

(yx2 + 1)(y + z2)

)2�|[S,S̄ ]G|(
y ·

(
yx2 + 1

y + z2

)2�d(
g�,q(x, y, z)

h�,q(x, y, z)

)2q)|S |
,

and the lemma follows.

Lemma 4.9. Let e ∈ Q\{−1, 0, 1} and let a, b, c > 0 and b 
= c. Then there is c1 ∈ N for

which the sequence

h(�) =
e · b� + a�

c� + e · a� (4.3)

is strictly monotone increasing or decreasing for � � c1.

Proof. h(�) can be rewritten as

h(�) =
e · b̃� + 1

c̃� + e
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by dividing both the numerator and the denominator of the right-hand side of equation

(4.3) by a� and setting b̃ = b
a

and c̃ = c
a
. We have b̃ 
= c̃ and b̃, c̃ > 0.

Let h(x) = e·b̃x+1
c̃x+e

. The derivative of h(x) is given by

h′(x) =
e ln b̃ · b̃x(c̃x + e) − ln c̃ · c̃x(e · b̃x + 1)

(c̃x + e)2
=

e2 ln b̃ · b̃x − ln c̃ · c̃x + e(ln b̃ − ln c̃)b̃xc̃x

(c̃x + e)2
.

(4.4)

The denominator of h′(x) is non-zero for large enough x. Therefore, there exists x0 such

that h′(x) is continuous on [x0,∞), so it is enough to show that h′(x) 
= 0 for all large

enough x to get the desired result.

If b̃ = 1 then (c̃x + e)2h′(x) = −(1 + e) ln c̃ · c̃x, and if c̃ = 1 then (c̃x + e)2h′(x) = (e2 +

e) ln b̃ · b̃x. In both cases h′(x) is non-zero, using that b̃ 
= c̃ and b̃, c̃ > 0.

Otherwise, b̃, c̃ and b̃c̃ are distinct. Let A1 = {b̃x, c̃x, b̃xc̃x}. Let A2 be the subset of A1

which contains the functions of A1 which have non-zero coefficients in equation (4.4). Note

that b̃xc̃x belongs of A2. There is a function in A2 which dominates the other functions of

A2. This implies that h′(x) is non-zero for large enough values of x.

Theorem 1.2 is now given precisely and proved as follows.

Theorem 4.10. For all (γ, δ, ε) ∈ Q3 such that

(i) δ 
= {−1, 0, 1},
(ii) δ + ε2 /∈ {−1, 0, 1},
(iii) δ + ε2 
= ±(δγ2 + 1),

(iv) δγ2 + 1 
= 0,

(v) γδ + ε 
= 0, and

(vi) (γδ + ε)4 
= (δγ2 + 1)2(δ + ε2)2.

Z(−; γ, δ, ε) is #P-hard on simple bipartite planar graphs.

Proof. We will show that, on 3-regular bipartite planar graphs G, the polynomial

Z(G; t, y) is polynomial-time computable using oracle calls to Z(−; γ, δ, ε). The oracle

is only queried with input of simple bipartite planar graphs. Using Proposition 2.5,

computing Z(G; t, y) is #P-hard on 3-regular bipartite planar graphs.

Using (i) and (ii), it can be verified that there exists c0 ∈ N+ such that for all � � c0

and q ∈ N+, fp,R(γ, δ, ε, 2�, q) 
= 0. We can use Lemma 4.8 to manufacture, in polynomial

time, evaluations of Z(G; t, y) that will be used to interpolate Z(G; t, y).

Let � � c0 and let

Ey,1 =
δγ2 + 1

δ + ε2
and Ey,2,� =

δ(δγ2 + 1)4� + (γδ + ε)4�

(δ + ε2)4� + δ(γδ + ε)4�
.

We have that fy,R(γ, δ, ε, �, q) = δ(Ey,1)
2d�(Ey,2,�)

2q . Using (iv) we have Ey,1 
= 0.

Consider Ey,2,� as a function of �. Using (i), (ii), (iii) and (iv) and Lemma 4.9 with

a = (γδ + ε)4, b = (δγ2 + 1)4, c = (δ + ε2)4 and e = δ, there exists c1 such that Ey,2,� is

strictly monotone increasing or decreasing. Hence, there exists c2 � c1 such that, for every

� � c2, Ey,2,� /∈ {−1, 0, 1}. Moreover, c2 = c2(γ, δ, ε) is a function of γ, δ and ε.
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We get that for q1 
= q2 ∈ [nG + 1] and � > c2, (Ey,2,�)
2q1 
= (Ey,2,�)

2q2 . Since δ(Ey,1)
2d�

is not equal to 0 and does not depend on q, we get that for q1 
= q2 ∈ [nG + 1],

fy,R(γ, δ, ε, �, q1) 
= fy,R(γ, δ, ε, �, q2).

For every � ∈ [mG + c2 + 1] \ [c2], we can interpolate in polynomial time the univariate

polynomial Z(G; ft,R(γ, δ, ε, �), y). Then, we can use the polynomial Z(G; ft,R(γ, δ, ε, �), y)

to compute Z(G; ft,R(γ, δ, ε, �), j) for every � ∈ [mG + c2 + 1] \ [c2] and every j ∈ [nG + 1].

Let

Et =

(
(γδ + ε)2

(δγ2 + 1)(δ + ε2)

)2

,

and it holds that ft,R(γ, δ, ε, �, q) = (Et)
�. Clearly, Et 
= −1 and, by (v) and (vi), Et /∈ {0, 1}.

Hence, for every �1 
= �2 ∈ N+ we have ft,R(γ, δ, ε, �1) 
= ft,R(γ, δ, ε, �2). Therefore, we can

compute the value of the bivariate polynomial Z(G; t, y) on a grid of points of size

(mG + 1) × (nG + 1) in polynomial time using the oracle, and use them to interpolate

Z(G; t, y).

5. Computation on graphs of bounded clique-width

In this section we prove Theorem 1.3. Let G be a graph and let cw(G) be its clique-

width. As discussed in Section 2.3, a k-expression t(G) for G with k � 23cw(G)+2 − 1 can

be computed in FPT-time. Let c̄ = (cv : v ∈ V (G)) be the labels from [k] associated with

the vertices of G by t(G). We will show how to compute a multivariate polynomial

Zlabelled(G, c̄; x̄, ȳ, z̄) with indeterminate set

{x{i,j}, yi, z{i,j} | i, j ∈ [k]},

to be defined below. Note that it is not the same multivariate polynomial as in Section 4.

For simplicity of notation we write, for example, xi,j or xj,i for x{i,j}. The multivariate

polynomial Zlabelled(G, c̄; x̄, ȳ, z̄) is defined by

∑
S⊆V (G)

(∏
v∈S

ycv

)( ∏
(u,v)∈EG(S )

xcu,cv

)( ∏
(u,v)∈EG(S̄)

zcu,cv

)
. (5.1)

The leftmost product in equation (5.1) is over all vertices v in S . The two other products

are over all edges in EG(S) and EG(S̄) respectively. It is not hard to see that Z(G; x, y, z)

is obtained from Zlabelled(G, c̄; x̄, ȳ, z̄) by substituting all the indeterminates xi,j , yi and zi,j
by three indeterminates, x, y and z, respectively.

Given tuples of natural numbers ā = (ai : i ∈ [k]), b̄ = (bi,j : i, j ∈ [k]) and c̄ = (ci,j : i, j ∈
[k]), we denote by tā,b̄ ,̄c(G) the coefficient of the monomial∏

i∈[k]

yai
i

∏
i,j∈k

x
bi,j
i,j z

ci,j
i,j

in Zlabelled(G; x̄, ȳ, z̄). We call a triple (ā, b̄ , c̄) valid if a1 + . . . + ak � nG and, for all i, j ∈
[k], bi,j , ci,j � mG. If (ā , b̄ , c̄) is not valid, then tā,b̄ ,̄c(G) = 0. Therefore, to determine the

polynomial Zlabelled(G; x̄, ȳ, z̄) we need only find tā ,b̄ ,̄c(G) for all valid triples (ā, b̄ , c̄).
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The tā,b̄ ,̄c(G) form an (k + 2k2)-dimensional array with (max{nG, mG})k+2k2
integer entries.

Each entry in this table can be bounded from above by 2nG and thus can be written in

polynomial space, so the size of the table is of the form nG
p1(cw(G)), where p1 is a function

of cw(G) which does not depend on nG.

We compute Zlabelled(G, c̄; x̄, ȳ, z̄) of G by dynamic programming on the structure of the

k-expression of G.

Algorithm 5.1.

1 If (G, i) is a singleton of any colour i, Zlabelled(G, c̄; x̄, ȳ, z̄) = 1 + yi.

2 If (G, c̄) is the disjoint union of (H, c̄H1
) and (H2, c̄H2

), then

Zlabelled(G, c̄; x̄, ȳ, z̄) = Zlabelled(H1, c̄H1
; x̄, ȳ, z̄) · Zlabelled(H2, c̄H2

; x̄, ȳ, z̄).

3 The case (G, c̄) = ηp,r(H, c̄H ). Let dr and dp be the number of vertices of colours r and p

in H , respectively.

3(a) For every valid (ā, b̄ , c̄), if

bp,r =

{
ap · ar p 
= r,(ap

2

)
p = r,

and cp,r =

{
(dp − ap) · (dr − ar) p 
= r,(dp−ap

2

)
p = r,

(5.2)

set

tā,b̄ ,̄c(G) =
∑
b̄ ′ ,c̄ ′

tā,b̄ ′ ,c̄ ′ (H),

where the summation is over all valid tuples b̄ ′ = (b ′
i,j : i, j ∈ [k]) and c̄ ′ = (c ′

i,j : i, j ∈
[k]) such that b ′

i,j = bi,j and c ′
i,j = ci,j if {i, j} 
= {p, r}.

3(b) For every valid (ā, b̄ , c̄), if equation (5.2) does not hold, set tā,b̄ ,̄c(G) = 0.

4 The case (G, c̄) = ρp→r(H, c̄H ).

4(a) For every valid (ā, b̄ , c̄), if ap = 0, set

tā,b̄ ,̄c(G) =
∑

ā ′ ,b̄ ′ ,̄c ′

tā ′ ,b̄ ′ ,̄c ′ (H),

where the summation is over all valid tuples ā ′ = (a ′
i : i ∈ [k]), b̄ ′ = (b ′

i,j : i, j ∈ [k])

and c̄ ′ = (c ′
i,j : i, j ∈ [k]) such that

• ar = a ′
p + a ′

r ,

• ai = a ′
i for all i /∈ {p, r},

• for all j ∈ [k] \ {p},

bj,r =

{
b ′
j,p + b ′

j,r if j 
= r,

b ′
r,r + b ′

p,r + b ′
p,p if j = r,

and cj,r =

{
c ′
j,p + c ′

j,r if j 
= r,

c ′
r,r + c ′

p,r + c ′
p,p if j = r,

and

• for all i, j ∈ [k] \ {p, r}, bi,j = b ′
i,j and ci,j = c ′

i,j .

4(b) For every valid (ā, b̄ , c̄), if ap 
= 0, set tā,b̄ ,̄c(G) = 0.
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Correctness.

1 By direct computation.

2 Proved in [1] for Z(G; t, y). The trivariate case is similar.

3 The case G = ηp,r(H). Let S be a subset of vertices of V (G) = V (H) with ap and ar
vertices of colours p and r respectively. After adding all possible edges between vertices

of colour p and colour r in S , the number of edges between such vertices in EG(S) is

ap · ar if r 
= p and
(ap

2

)
if p = r. Similarly, the number of edges between vertices coloured

p and r in EG(S̄) is (dp − ap) · (dr − ar) if r 
= p and
(dp−ap

2

)
if p = r.

4 The case G = ρp→r(H). Let S be a subset of vertices of V (G) = V (H). After recolouring

every vertex of colour p in S to colour r, we have ap = 0. Every edge between a vertex

coloured p and any other vertex lies after the recolouring between a vertex coloured r

and another vertex. There is one special case, which is the edges that lie between vertices

coloured r after the recolouring. Before the recolouring these edges were incident to

vertices coloured any combination of p and r.

Running time. The size of the (23cw(G)+2 − 1)-expression is bounded by nc · f1(k) for some

constant c, which does not depend on cw(G), and for some function f1 of cw(G). Now we

look at the possible operations performed by Algorithm 5.1.

1 The time does not depend on n since G is of size O(1).

2 The time can be bounded by the size of the table tā,b̄ ,̄c to the power of 3, i.e., n3p1(cw(G)).

3 For µp,r , the algorithm loops over all the values in the table tā,b̄ ,̄c , and for each entry

possibly computes a sum over at most mG elements. Then, the algorithm loops over all

the values again and performs O(1) operations.

4 For ρp→r , the algorithm loops over all the values in the table tā,b̄ ,̄c , and for each entry

possibly computes a sum over elements of the table tā,b̄ ,̄c . Then, the algorithm loops over

all the values again and performs O(1) operations.

Hence, Algorithm 5.1 runs in time O(nf(cw(G))
G ) for some function f.4

6. Conclusion and open problems

Applying the reductions used in the proof of Theorem 1.1 to planar graphs gives again

planar graphs. Combining Theorem 1.1 and its proof with Lemma 4.8, a hardness result

for the trivariate Ising polynomial on planar graphs analogous to Theorem 1.2 follows.

However, neither Theorem 1.2 nor the analogue for planar graphs are dichotomy theorems,

since each of them leaves an exceptional set of low dimension unresolved. Theorem 1.2

serves mainly to suggest the existence of a dichotomy theorem for Z(G; x, y, z) on bipartite

planar graphs.

Another open problem which arises from the paper is whether Z(G; x, y, z) requires

exponential time to compute in general under #ETH. One approach to the latter problem

would be to prove that, say, the permanent or the number of maximum cuts require

exponential time under #ETH even when restricted to regular graphs.

4 Running times of this kind are referred to as fixed-parameter polynomial time (FPPT) in [20], where the

computation of various graph polynomials of graphs of bounded clique-width is treated.
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