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We consider the complete graph Kn on n vertices with exponential mean n edge lengths. Writing
Ci j for the weight of the smallest-weight path between vertices i, j ∈ [n], Janson [18] showed
that maxi, j∈[n]Ci j/ logn converges in probability to 3. We extend these results by showing that
maxi, j∈[n]Ci j − 3logn converges in distribution to some limiting random variable that can be
identified via a maximization procedure on a limiting infinite random structure. Interestingly, this
limiting random variable has also appeared as the weak limit of the re-centred graph diameter of
the barely supercritical Erdős–Rényi random graph in [22].
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1. Introduction

We consider the complete graph Kn on the vertex set [n] := {1,2, . . . ,n} and edge set En :=
{{i, j} : i < j ∈ [n]}. Each edge e ∈ En, is assigned an exponential mean n edge length Ee,
independent across edges. This implies that for any vertex v, the closest neighbour to this vertex
is OP(1) distance away. Define the length of a path π as

w(π) := ∑
e∈π

Ee. (1.1)

This assignment of random edge lengths makes Kn a (random) metric space often referred to as
the stochastic mean-field model of distance (see Section 3). By continuity of the distribution of
edge lengths, this metric space has unique geodesics. For any two vertices i, j ∈ [n], let π(i, j)
denote the shortest path between these two vertices and write Ci j for the length of this geodesic;
precisely, writing Pi j for the collection of all paths from i to j, then Ci j = min

Pi j
w(π). The

functional of interest in this paper is the diameter of the metric space:

Diamw(Kn) := max
i, j∈[n]

Ci j. (1.2)
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We first dive into the statement of the main result, postponing a full discussion to
Section 3.

2. Results

The main aim of this paper is to prove that the diameter defined in (1.2) properly re-centred
converges to a limiting random variable. We start by constructing this limiting random variable.

2.1. Construction of the limiting random variable
The limiting random variable arises as an optimization problem on an infinite randomly weighted
graph G∞ = (V,E). The vertex set of this graph is the set of positive integers Z+ = {1,2, . . .},
while the edge set consists of all undirected edges E = {{i, j} : i, j ∈ Z+, i �= j}. Let P be a
Poisson process on R with intensity measure having density

λ (y) = e−y, −∞ < y < ∞. (2.1)

It is easy to check that max{x : x∈P}< ∞ a.s. Thus we can order the points in P as Y1 >Y2 > · · · .
We think of Yi as the vertex weight at i ∈ Z+. The edge weights are easier to describe. Let
(Λst)s,t∈Z+,s<t be a family of independent standard Gumbel random variables, namely Λst has
cumulative distribution function

F(x) = e−e−x
, −∞ < x < ∞. (2.2)

The random variable Λs,t gives the weight of an edge {s, t} ∈ E . Now consider the optimization
problem

Ξ := max
s,t∈Z+,s<t

(Ys +Yt −Λst). (2.3)

Although this is not obvious, we shall show that Ξ < ∞ a.s. The main result in this paper is as
follows. We write

w−→ to denote convergence in distribution.

Theorem 2.1 (diameter asymptotics). For the diameter of the stochastic mean-field model of
distance, as n → ∞,

max
i, j∈[n]

Ci j −3logn
w−→ Ξ,

and

E
[

max
i, j∈[n]

Ci j

]
−3logn → E[Ξ], Var

(
max
i, j∈[n]

Ci j

)
→ Var(Ξ). (2.4)

Remark. Theorem 2.1 solves [18, Problems 1 and 2]. Further, our proof shows that for any
fixed p � 1, as n → ∞,

E
(

max
i, j∈[n]

Ci j −3logn
)p

→ E(Ξp).

2.2. Basic notation
Let us briefly describe the notation used in the rest of the paper. We write

P−→ to denote con-
vergence in probability. For a sequence of random variables (Xn)n�1, we write Xn = OP(bn)
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when (|Xn|/bn)n�1 is a tight sequence of random variables as n → ∞, and Xn = oP(bn) when

|Xn|/bn
P−→ 0 as n → ∞. Further we write Xn = ΘP(bn) if (Xn/bn)n�1 and (bn/Xn)n�1 are both

a tight sequence of random variables. For a non-negative function n �→ g(n), we write f (n) =
O(g(n)) when | f (n)|/g(n) is uniformly bounded, and f (n) = o(g(n)) when limn→∞ f (n)/g(n) =
0. Furthermore, we write f (n) = Θ(g(n)) if f (n) = O(g(n)) and g(n) = O( f (n)). Finally, we
write that a sequence of events (An)n�1 occurs with high probability (w.h.p.) when P(An) →
1. We use Y ∼ exp(λ ) for a random variable with exponential distribution with rate λ . At
several places we will use the fact that for Y ∼ exp(1) then log(1/Y ) has a standard Gumbel
distribution with distribution as in (2.2). To ease notation we will occasionally use symbols
representing a real number when an integer is required (e.g. ∑

√
n

j=1) and suppress the precise 	·

notation.

3. Background and related results

We now discuss our results and place them in the context of results in the literature.

3.1. Stochastic mean-field model of distance
The stochastic mean-field model of distance has arisen in a number of different contexts in
understanding the structure of combinatorial optimization problems in the presence of random
data, ranging from shortest path problems [18] to random assignment problems [2, 3], minimal
spanning trees [15, 17] and travelling salesman problems [25]; see [6] for a comprehensive survey
and related literature. The closest work to this study is the paper by Janson [18]. Recall that Ci j

denotes the length of the geodesic between two vertices i, j ∈ [n]; by symmetry this has the same
distribution for any two vertices in i, j. For any vertex i ∈ [n], write Flood[i] := max j∈[n]Ci j for
the maximum time started at i to reach all vertices in Kn (often called the flooding time). Then
Janson proved that, as n → ∞,

Ci j

logn
P−→ 1,

Flood[i]
logn

P−→ 2,
Diamw(Kn)

logn
P−→ 3, (3.1)

and further

Ci j − logn
w−→ Λ1 +Λ2 −Λ12, (3.2)

while

Flood[i]−2logn
w−→ Λ1 +Λ2. (3.3)

Here Λ1,Λ2,Λ12 are all independent standard Gumbel random variables as in (2.2). Problems
1 and 2 in [18] then ask whether a result similar to (3.2) and (3.3) holds for the diameter
Diamw(Kn) (with (3.1) obviously re-centred by 3logn).

The main aim of this paper is to answer this question in the affirmative. We discuss more
results about the distribution of Ξ in Section 4.8. In the context of (2.4), for Ci j and Flood[i],
Janson also shows convergence of the expectation and variance with explicit limit constants. We
have been unable to derive explicit values for the limit constants E(Ξ) and Var(Ξ).

https://doi.org/10.1017/S0963548317000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000232


800 S. Bhamidi and R. van der Hofstad

3.2. Hopcount and extrema
This paper looks at the length of optimal paths (measured in terms of the edge weights). One
could also look at the hopcount or the number of edges |π(i, j)| on the optimal path as well as
the largest hopcount D� = maxi, j∈[n] |π(i, j)|. The entire shortest path tree from a vertex i has the
same distribution as a random recursive tree on n vertices (see [24] for a survey). Janson used
this in [18] to show that

|π(i, j)|− logn√
logn

w−→ Z,

where Z has a standard normal distribution. The maximal hopcount Hn(i) = max j∈[n] |π(i, j)|
from a vertex i has the same distribution as the height of a random recursive tree, which by [12]
or [21] satisfies the asymptotics

Hn(i)/ logn
P−→ e as n → ∞.

The first-order asymptotics for the maximum hopcount D� were recently proved in [1], show-
ing that

D�/ logn
P−→ α�,

where α� ≈ 3.5911 is the unique solution of the equation x logx− x = 1.

3.3. First passage percolation on random graphs
The last few years have seen progress in the understanding of optimal paths in the presence of
edge disorder (usually assumed to have exponential distribution) in the context of various random
graph models (see e.g. [7, 8, 11] and the references therein). In particular, Proposition 4.4 below
with a sketch of proof has appeared in [4, 5, 10].

In the context of our main result, [7] studied the weighted diameter for the random r-regular
graphs Gn,r with exponential edge weights, and proved first-order asymptotics. We conjecture
that one can adapt the main techniques in this paper to show the second-order asymptotics for
r � 3, that is,

Diamw(Gn,r)−
(

1
r−2

+
2
r

)
logn

w−→ Ξr, (3.4)

for a limit random variable Ξr that satisfies that, as r → ∞,

rΞr
w−→ Ξ. (3.5)

3.4. Diameter of the barely supercritical Erdős–Rényi random graph
Consider the barely supercritical Erdős–Rényi random graph Gn(n,(1+ε)/n) where ε = εn → 0
but εn3 → ∞. It turns out that the random variable Ξ in Theorem 2.1 is closely related to the
random variable describing second-order fluctuations for the graph diameter Diamg(Gn(n,(1 +
ε)/n)). Here we use Diamg(·) for the graph diameter of a graph, namely the largest graph
distance between any two vertices in the same component. We now describe this result. Consider
the minor modification of the optimization problem defining Ξ in Section 2 where the Poisson
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process P generating the vertex weights has intensity measure with density

λ (y) = γe−y, −∞ < y < ∞.

As before, the edge weights Λst are independent standard Gumbel random variables. Let Ξγ
denote the random variable corresponding to the optimization problem in (2.3). Let λ = 1 + ε
and let λ∗ < 1 be the unique value satisfying λ∗e

−λ∗ = λe−λ . After an initial analysis in [13, 14],
Riordan and Wormald in [22, Theorem 5.1] showed that there exists a constant γ > 0 such that

Diamg(Gn(n,(1+ ε)/n))− logε3n
logλ

−2
logε3n

log1/λ∗

w−→ Ξγ .

We believe that the Poisson cloning technique in [13, 14] coupled with the techniques in this
paper may yield an alternative proof of this result, but we defer this to future work.

4. Proofs

We start with the basic ideas behind the main result. We then describe the organization of the rest
of the section, which deals with converting this intuitive picture into a proper proof.

4.1. Proof idea
We write Sn = (Kn,(Ee)e∈En

) for the (random) metric space where (Ee)e∈En
are i.i.d. mean n

exponential random variables. Recall from Janson’s result, as described in (3.2), that the distance
Ci j between typical vertices i, j ∈ [n] scales like logn + OP(1). Intuitively, the extra 2 logn in
the diameter arises due to the following reason. Consider ranking the vertices according to
the distance to their closest neighbour. More precisely, for each vertex i ∈ [n], write X(i) =
min j∈[n], j �=i Ei j, the distance to the closest vertex to i. Arrange these as X(V1) > X(V2) > · · · > X(Vn).
We shall show that:

(a) the point process Pn = (X(Vi)
− logn)i�1 converges to the Poisson point process P in Section 2

with intensity measure given by (2.1);
(b) the diameter of Kn corresponds to the shortest path between a pair of these ‘slow’ vertices

(Vs,Vt);
(c) further, after reaching the closest vertex, the remaining path behaves like a typical optimum

path in the original graph Kn equipped with exponential mean n edge lengths, but now
between two disjoint pairs of vertices.

More precisely, part (c) entails that CVs,Vt
≈ X(Vs) + X(Vt )

+ dw(A,B), where A = {a,b}, B =
{c,d} with a,b,c,d four distinct vertices in [n] and dw(A,B) is a random variable independent of
X(Vt )

,X(Vs) having the same distribution as the distance between the sets A,B in the original metric
space Sn. The first two terms correspond to the time to get out of these ‘slow’ vertices, which
scale like logn + OP(1) by (a) while dw(A,B) scales like logn + OP(1), thus implying that the
diameter scales like 3logn + OP(1). By investigating the fluctuations of X(Vs),X(Vt )

and dw(A,B),
we can also identify the fluctuations of maxi, j∈[n]Ci j.

Organization of the proof. We start in Section 4.2 by describing the distribution of the shortest
path between two disjoint sets of vertices. Section 4.3 proves a weaker version of the Poisson
point process limit described in (a) above. Section 4.4 describes the limiting joint distribution of
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the (properly re-centred) weights of optimal paths between multiple source destination pairs in
Sn := (Kn,{Ee : e ∈ En}). Section 4.5 uses the results in Section 4.3 and 4.4 to study asymptotics
for the joint distribution of distances between the slow vertices (Vs)s∈[n]. Section 4.6 shows
that the diameter of Kn corresponds to the optimal path between one of the ‘first few’ slow
vertices. The last three sections use these ingredients to show distributional convergence as well
as the convergence of the moments of Diamw(Kn)− 3logn to the limiting random object, thus
completing the proof of the main result.

4.2. Explicit distributions for distances between sets of vertices
In this section we explain the proof by Janson of (3.2). We also extend that analysis to the
smallest-weight path between disjoint sets of vertices. We remind the reader that the standing
assumption henceforth is that each edge has exponential mean n distribution. We start with the
following lemma.

Lemma 4.1 (distances between sets of vertices). Consider two disjoint non-empty sets A,B ⊆
[n]. Then,

dw(A,B) d=
N+|A|−1

∑
k=|A|

Ek

k(n− k)
, (4.1)

where

(i) (Ek)k�1 are i.i.d. mean n exponential random variables;
(ii) N is independent of the sequence (Ek)k�1 with the same distribution as the number of draws

required to select the first black ball in an urn containing |B| black balls and n−|A|− |B|
white balls, where one is drawing balls without replacement from the urn.

Proof. We start by exploring the neighbourhood of the set A in a similar way as in [18]. Recall
that each edge has an exponential mean n edge length. After having found the �th minimal edge
and with k = (|A|+ �), there are k(n− k) edges incident to the found vertices. The minimal edge
weight thus has an exponential distribution with mean n/k(n−k). This process stops the first time
we find a vertex in B. Since every new vertex added to the cluster of reached vertices is chosen
uniformly amongst the set of present unreached vertices, the distribution of the number of steps
required to reach a vertex in B has the distribution N asserted in the lemma, independently of the
inter-arrival times of new vertices found. Thus the time it takes to find the first element in B is

N−1

∑
�=0

Ek

(�+ |A|)(n− �−|A|) . (4.2)

Defining k = �+ |A| proves the claim.

Now we specialize to a particular case of the above lemma. Fix a vertex, say vertex v = 1, and
another set B ⊆ [n]\{1}. For much of what follows, we will be concerned with the optimal path
between such a vertex and a set of size |B| = Θ(

√
n). This is an appropriate time to think about

two different but equivalent ways to find such an optimal path.
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Process 1. The first way to find the optimal path is the exploration process described in the
previous lemma where we start at vertex v = 1 and keep adding the closest vertex to the cluster
until we hit a vertex in B. Write MB for the number of vertices other than B that are found in this
exploration. Note that the proof of the previous lemma implies that

(dw({1},B),MB) d=
( NB

∑
k=1

Ek

k(n− k)
,NB

)
, (4.3)

where NB is independent of the sequence (Ek)k�1 and has the same distribution as the number
of balls required to get the first black ball when drawing balls without replacement from an urn
containing |B| black balls and n−1−|B| white balls.

Process 2. The second way to find the optimal path is the following. We think of water starting
at source vertex v = 1 at time t = 0 percolating through the network at rate one using the edge
lengths. Write SWG(1)

t (an acronym for smallest-weight graph) for the set of vertices reached by
time t starting from vertex 1. More precisely,

SWG(1)
t := {u ∈ [n] : dw(1,u) � t}. (4.4)

By convention, vertex v = 1 is in SWG(1)
t for all t � 0. Now note that the size process (|SWG(1)

t |)t�0

is a pure-birth Markov process (with respect to the filtration (Ft)t�0 = (σ(SWGt))t�0) with rate
of birth given by n/k(n− k) when the size |SWG(1)

t | = k. Each new vertex added to this cluster
is chosen uniformly amongst all available unreached vertices at that time, that is, the vertices
[n]\SWG(1)

t . Finally, the distance dw({1},B) can be recovered as

dw({1},B) := inf{t � 0: SWG(1)
t ∩B �= ∅}. (4.5)

In this section, we use Process 1 to prove the following initial result. We use Process 2 in
Section 4.4 below.

Lemma 4.2 (distances between vertex and set of size b
√

n). Let B ⊆ [n] with |B| = b
√

n.
Then as n → ∞, (

dw({1},B)− 1
2

logn,MB/
√

n

)
w−→ (Λ+ log(Ê/b), Ê/b), (4.6)

where Ê is exponential with parameter 1, Λ is Gumbel, and Ê and Λ are independent.

Proof. The above is equivalent to showing

(dw({1},B)− logMB,MB/
√

n) w−→ (Λ, Ê/b),

with Λ, Ê independent standard Gumbel and exp(1) respectively. Fix constants 0 < α < β and
y ∈ R. Define the event

An(y,α,β ) := {dw({1},B)− logMB � y}∩{α � MB/
√

n � β}.
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Let (E ′
k)k�1 be independent sequence of mean one exponential random variables. Equation (4.3)

implies

P(An(y,α,β )) =
β
√

n

∑
j=α

√
n

P

( j

∑
k=1

nE ′
k

k(n− k)
− log j � y

)
P(NB = j). (4.7)

Noting that ∑ j
k=1 1/ j ≈ log j + γ as j → ∞, where γ is Euler’s constant, gives

j

∑
k=1

nE ′
k

k(n− k)
− log j ≈

j

∑
k=1

E ′
k −1
k

+ γ +Rn, (4.8)

where the error term Rn can be bounded independently of j by

|Rn| �
β
√

n

∑
k=1

E ′
k

n− k
P−→ 0, (4.9)

as n → ∞. Thus, uniformly for j ∈ [α
√

n,β
√

n],

P

( j

∑
k=1

nE ′
k

k(n− k)
− log j � y

)
→ P

( ∞

∑
k=1

E ′
k −1
k

+ γ � y

)
.

It is easy to check (see e.g. [18, Section 3]) that
∞

∑
k=1

E ′
k −1
k

+ γ d= Λ. (4.10)

By (4.7), to complete the proof it is enough to show that

P(α � NB/
√

n � β ) → P(α � Ê/b � β ).

This follows easily, since for any x > 0

P(NB > x
√

n) =
x
√

n

∏
k=1

(
1− b

√
n

n−1− k

)
∼ e−bx,

as n → ∞.

4.3. Poisson limit for the number of vertices with large minimal edge weights.
The aim of this section is to understand the distribution of edges emanating from the slow
vertices, namely the set of vertices for which the closest vertex is at distance ≈ logn. For vertex
i ∈ [n], let X(i) = min j∈[n] Ei j denote the minimal edge weight emanating from a given vertex
i ∈ [n]. Fix α ∈ R and let Nn(α) = #{i ∈ [n] : X(i) � logn−α} denote the number of vertices with
minimal outgoing edge weight at least logn−α . We prove the following Poisson limit for Nn(α).

Proposition 4.3 (number of vertices with large minimal edge weight). As n → ∞,

Nn(α) w−→ N(α), (4.11)

where N(α) is a Poisson random variable with mean eα . More precisely, for n large enough,

dTV(Nn(α),N(α)) � 2(1+ εn)e2α logn
n

, (4.12)
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where dTV denotes the total variation distance and

εn = exp

(
logn−α

n

)
−1.

Proof. We use the Stein–Chen method for Poisson approximation. Write

Nn(α) = ∑
i∈[n]

Zi, Zi = 11{X(i) � logn−α}.

For fixed i ∈ [n], note that X(i) has an exponential distribution with mean n/(n − 1). Writing
pn = P(Zi = 1) so that λ := E(Nn(α)) = npn, it is easy to check that

E(Nn(α)) = (1+ εn)eα . (4.13)

Thus, λ → eα as n → ∞. For each fixed i ∈ [n], suppose we can couple Nn(α) with a random
variable W ′

i such that the marginal distribution of W ′
i is

W ′
i +1

d= Nn(α)
∣∣
{Zi=1}, (4.14)

that is, W ′
i + 1 has the same distribution as Nn(α) conditionally on {Zi = 1}. Then Stein–Chen

theory [9] implies that in total variation distance

dTV(L(Nn(α)),Poi(λ )) � (1∧λ−1) ∑
i∈[n]

E(Zi)E(|Nn(α)−W ′
i |). (4.15)

Let us describe W ′
1, the same construction switching indices works for any i. Let

Sn := {Kn,(Ee)e∈En
}

be the original edge lengths and let Nn(α) be defined as above for the random metric space
Sn. Let us construct the edge lengths of Kn conditional on the event {Z1 = 1} so that X(1) −
logn � −α . We shall write S ′

n := {Kn,(E ′
e)e∈En

} for Sn conditioned on this event. Note that
this event only affects edges incident to vertex 1 and further, by the lack of memory property of
the exponential distribution, every such edge incident to vertex 1 has distribution logn−α + E
where E is an exponential mean n random variable, independently across edges. Thus, we can
construct the edge lengths on S ′

n using the edge lengths Ee in Sn with the following description:

(a) for each edge e = {1, i} incident to vertex i, set E ′
e = logn−α +Ee,

(b) for any edge not incident to vertex 1, set E ′
e = Ee.

Define X ′
(i) analogously to X(i) as the minimal edge length incident to vertex i but in S ′

n . Finally,
define

Z′
i := 11{X ′

(i) > logn−α}, W ′
1 = ∑

v�=1

11{X ′
(v) � logn−α}.

Then W ′
1 by construction has the required distribution in (4.14). Note that

|Nn(α)−W ′
1| � 11{X(1) > logn−α}+∑

i�=1

|Zi −Z′
i |.

Taking expectations, by symmetry,

E(|Nn(α)−W ′
1|) � pn +(n−1)E |Z2 −Z′

2|. (4.16)
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Now

E |Z2 −Z′
2| = P(Z2 = 1, Z′

2 = 0)+P(Z2 = 0, Z′
2 = 1).

Since the edge lengths in S ′
n are at least as large as the edge lengths in Sn, we have {Z2 =

1, Z′
2 = 0} = ∅. For the second term,

{Z2 = 0, Z′
2 = 1} ≡ {E2,1 < logn−α, min

j �=1,2
E2, j � logn−α}.

Since Ei, j are exponential mean n, we immediately get

P(Z2 = 0, Z′
2 = 1) � (1+o(1))eα logn

n2
.

Using this in (4.16), the total variation bound (4.15) completes the proof.

4.4. Joint convergence of distances between multiple vertices
The aim of this section is to understand the re-centred asymptotic joint distribution of the minimal
weight between multiple vertices. To prove this, it turns out that Process 2 using the smallest-
weight graph SWG(v)

t from vertices v ∈ [n] is more useful than Process 1. Versions of Proposi-
tion 4.4 below have appeared in [4, 5, 10]. We give a new proof, both for completeness and since
we need a variant of this argument below.

Fix m � 2. Let (Λα)α∈[m] and (Λαβ )α,β∈[m],s<t be independent standard Gumbel random vari-
ables. In the following proposition, we identify the limiting distribution of
(dw(α,β )− logn)α,β∈[m],α<β , an extension of the result given in (3.2) proved by Janson [18]
for m = 2.

Proposition 4.4 (joint distances between many vertices). As n → ∞,

(dw(α,β )− logn)α,β∈[m],α<β
w−→ (Λα +Λβ −Λαβ )α,β∈[m],α<β . (4.17)

Proof. Fix m � 2. Write

D(m) := (Λα +Λβ −Λαβ )α,β∈[m],α<β , (4.18)

for the limiting array. The idea of the proof is as follows. We start by sequentially growing the
smallest-weight graphs, SWGs, from the m vertices until they meet. This gives us a sequence
of collision times (Tαβ )α<β∈[m]. An appropriately chosen linear transformation of these collision
times stochastically dominates the array of the lengths of shortest paths. We show that this linear
transformation of the collision times converges to the array D(m). A simple limiting argument
using the convergence of the marginal distribution of two point distances implies that the joint
distribution of the distances themselves converge to D(m) and this completes the proof.

Let us now begin the proof. We write Sn for the random metric space (Kn,(Ee)e∈En
), where

once again we remind the reader that Ee are i.i.d. exponential random variables with mean n.
Now start the smallest weight cluster SWG(1)

t from vertex α = 1. Write

T1 = inf{t : |SWG(1)
t | =

√
n} (4.19)
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for the time for SWG(1)
t to grow to size

√
n. Now

T1
d=

√
n

∑
k=1

nEk/[k(n− k)],

where {Ek}k�1 is a sequence of independent rate one exponential random variables. This implies
(see (4.8) and (4.10)) that

T1 −
1
2

logn
w−→ log(1/Ê1), (4.20)

where Ê1 is exponential with mean 1. For every vertex v ∈ SWG(1)
t , write B(1)(v) := dw(1,v) for

the time when the flow from vertex 1 reaches v. We now work conditionally on the flow cluster
SWG(1)

T1
. By construction, as n → ∞,

P(2 /∈ SWG(1)
T1

) = 1−
√

n
n

→ 1. (4.21)

Further, by the memoryless property of the exponential distribution, conditionally on SWG(1)
T1

,

for every boundary edge e = {u,v} with u ∈ SWG(1)
T1

and v /∈ SWG(1)
T1

, the remaining edge length

Ee − (T1 −B(1)(u)) has an exponential distribution with mean n, and all these remaining edge
lengths are independent.

Freeze the cluster SWG(1)
T1

. Start a flow from vertex 2 as the source and write SWG(2)
t for the

smallest-weight graph. Write

T12 := inf{t : SWG(2)
t ∩SWG(1)

T1
�= ∅}, (4.22)

so that T12 is the first time that a vertex in the flow cluster from vertex α = 1 at time T1 is hit by
the flow cluster from 2. Conditionally on SWG(1)

T1
, on the event {2 /∈ SWG(1)

T1
}, we have that

(a) the length of the smallest-weight path between 1 and 2 is given by dw(1,2) = T1 +T12;
(b) the random variable T12 has the same distribution as dw({1},B) in the random (unconditional)

metric space Sn where B is a fixed set of size
√

n.

By Lemma 4.2 with b = 1 we immediately get(
T12 −

1
2

logn, |SWG(2)
T12
|/
√

n

)
w−→ (log(1/Ê2)+ log(Ê12), Ê12), (4.23)

where Ê2 and Ê12 are independent of each other and independent of Ê1, which arises as the limit
in (4.20). Combining (4.20) and (4.23) we get

(dw(1,2)− logn, |SWG(2)
T12
|/
√

n) =
(

T12 −
1
2

logn+T1 −
1
2

logn,N/
√

n

)
w−→ (log(1/Ê1)+ log(1/Ê2)+ log(Ê12), Ê12). (4.24)

This proves the claim for m = 2. We next extend the computation to m = 3.
For ease of notation, write B =

√
n = |SWG(1)

T1
| and R = |SWG(2)

T12
|, here B and R will be

mnemonics for ‘black’ and ‘red’ respectively. We now work conditionally on A := SWG(1)
T1
∪

SWG(2)
T12

. Since |A| = ΘP(
√

n),

P(3 /∈ SWG(1)
T1
∪SWG(2)

T12
) → 1 as n → ∞. (4.25)
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Freeze the above two flow clusters. Start a flow from vertex β = 3 and consider the smallest-
weight graph SWG(3)

t emanating from vertex 3. We need to modify this process after the first
time it finds a vertex in A = SWG(1)

T1
∪SWG(2)

T12
, namely after time

T ∗
3 = inf{t : SWG(3)

t ∩A �= ∅}.

Suppose this happens due to SWG(3)
T3

finding a vertex in SWG(1)
T1

. Remove all vertices in SWG(1)
T1

and all adjacent edges from Kn and then continue until the process finds a vertex in SWG(2)
T12

.

Similarly, if this happens due to a vertex in SWG(2)
T12

being found, then remove all vertices in

SWG(2)
T12

and continue. Although this is not quite the smallest-weight graph emanating from vertex
3, to minimize notational overhead, we shall continue to denote this modified process by the same
{SWG(3)

t }t�0. Define the stopping times

T13 = inf{t � 0 : SWG(3)
t ∩SWG(1)

T1
�= ∅},

and

T23 = inf{t � 0 : SWG(3)
t ∩SWG(2)

T12
�= ∅}.

Similarly, define the sizes of the cluster SWG(3)
t at these stopping times as

C(13)
n = |SWG(3)

T13
|, C(23)

n = |SWG(3)
T23
|. (4.26)

Similar to the urn description in (4.3), it is easy to check that conditionally on A and on the
event {3 /∈A}, the distribution of the random variables (T13,T23,C

(13)
n ,C(23)

n ) can be constructed as
follows. Consider an urn with n balls out of which B = |SWG(1)

T1
| black balls, R = |SWG(2)

T12
| red

balls and the remaining n−B−R white balls. Also let (Ek)k�1 be an independent sequence of
mean n exponential random variables. Start drawing balls at random without replacement till the
first time N1 we get either a black or a red ball.

(a) Suppose the first ball amongst the black or red balls is a black ball. Remove all black balls so
that there are now (n−N1−B) balls in the urn. Continue drawing balls without replacement
till we get a red ball. Let N2 > N1 be the time for the first pick of a red ball. Let C(13)

n = N1,
C(23)

n = N2. Finally, let

T13 :=
N1

∑
k=1

Ek

k(n− k)
, T23 := T13 +

N2

∑
k=N1+1

Ek

k(n− k−B)
, (4.27)

where, as before, (Ek)k�1 is an independent sequence of exponential random variables with
mean n.

(b) Suppose the first ball amongst black and red balls to be picked is a red ball. Then, in the
above formulae, simply interchange the roles of 1 and 2 and B and R.

Using (4.23) and arguing exactly as in the proof of Lemma 4.2, we see that(
C(13)

n√
n

,
C(23)

n√
n

,T13 −
1
2

logn,T23 −
1
2

logn

)
(4.28)

w−→ (Ê13, Ê23/Ê12, log(1/Ê3)+ log(Ê13), log(1/Ê3)+ log(Ê23/Ê12).

Here Ê3, Ê13, Ê23 are independent of Ê1, Ê2, Ê12 and i.i.d. exponential mean one random variables.
Now note that by construction, there is a path of length Dn(1,3) := T1 + T13 between vertices 1
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and 3 and similarly of length Dn(2,3) := T12 +T23 between vertices 2 and 3. Thus, by (4.23) and
(4.28)

dw(1,3)− logn � T13 −
1
2

logn+T1 −
1
2

logn
w−→ log(1/Ê1)+ log(1/Ê3)+ log(Ê13), (4.29)

and

dw(2,3)− logn � T23 −
1
2

logn+T12 −
1
2

logn (4.30)

w−→ log(1/Ê3)+ log(Ê23/Ê12)+ log(1/Ê2)+ log(Ê12)

= log(1/Ê2)+ log(1/Ê3)+ log(Ê23),

Thus the limiting array D(3) in (4.18) is a limiting upper bound in the weak sense for the array
dn(3) := (dw(α,β )− logn : 1 � α < β � 3). However, we have equality for m = 2 by (4.24). Thus
the marginals of dn(3) converge to the marginals of D as n → ∞. This implies dn(3) w−→ D(3) as
n → ∞.

This entire construction extends inductively for higher values of m. For example, for m = 4,
we consider the random sets C1 = SWG(1)

T1
,C2 = SWG(2)

T12
and C3 = SWG(3)

T(12)3
, where T(12)3 =

max(T12,T13). Then we define A as the union of the above three sets and proceed with the
construction as above. This completes the proof.

Remark. We learned about this reduction from the sums of collision times to lengths of optimal
paths via stochastic domination from [23].

The following is an easy corollary of the proof of the above result. Recall that for any two
vertices α,β ∈ [n], π(α,β ) denotes the unique shortest path (geodesic) between them.

Corollary 4.5. Consider the random metric space Sn = (Kn,{Ee}e∈En
). Fix m � 2.

(a) Let Dn be the event that ∃α �= β �= γ ∈ [m] such that γ ∈ π(α,β ). Then P(Dn)→ 0 as n → ∞.
(b) Fix 1/2 < ϑ < 1. Consider the smallest-weight graphs {SWG(i)

ϑ logn}i∈[m] from these m ver-
tices at time ϑ logn. Then w.h.p. the shortest paths π(α,β ) are contained in the union of
these balls, that is, as n → ∞,

P
(
π(α,β ) ⊆ ∪m

i=1SWG(i)
ϑ logn ∀α,β ∈ [m]

)
→ 1.

Proof. Part (a) follows from extending (4.21) and (4.25) to general m. Part (b) follows from the
above proof, which proves that for any pair of vertices α,β , π(α,β ) can be found in SWG(α)

rn
∪

SWG(β )
rn

where rn = 1
2 logn+OP(1).

4.5. Distances between vertices with large minimal edge weight
Fix α ∈ R. Recall that

Nn(α) =
n

∑
i=1

11{X(i) � logn−α}
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denotes the number of vertices with minimum outgoing edge length at least logn−α . Fix m � 2
and condition on the event Nn(α) = m. Let V1, . . . ,Vm denote the m vertices for which X(Vi)

�
logn−α .

Our aim in this section is to understand, conditionally on the event {Nn(α) = m}, the asymp-
totic joint distribution of (dw(Vi,Vj) : i < j ∈ [m]). Recall the array D(m) from (4.18) giving
the asymptotic joint distribution of the re-centred (by logn) length of smallest paths between m
typical vertices in Sn. The main aim of this section is to prove the following result.

Proposition 4.6 (distances between vertices with large minimal edge weight). Fix α ∈ R

and m � 2. Recall (4.18). Conditionally on Nn(α) = m, as n → ∞,

(dw(Vi,Vj)−3logn+2α)i, j∈[m],i< j
w−→ (Λi +Λ j −Λi j)i, j∈[m],i< j = D(m). (4.31)

We start with two preparatory results, Lemmas 4.7 and 4.8, which we then use to complete the
proof of the proposition at the end of this section. Let us start by disentangling exactly what the
conditioning event {Nn(α) = m} implies about the edge length distribution. To ease notation, we
assume without loss of generality that Vi = i. Then this conditioning implies that the edge length
distributions can be formulated in the following two rules.

(a) Translation. Every edge E ′
e incident to one of the vertices in [m] is conditioned to be at

least logn−α . By the memoryless property of the exponential distribution, we can write
E ′

e = logn−α +Ee, where (Ee) is an independent family of mean n independent exponential
random variables.

(b) Conditioning. For every vertex i /∈ [n]\ [m], the edges (E ′
i, j) j/∈[m] are independent exponential

mean n random variables conditioned on

X(i),[m+1:n] := min
m+1� j�n

E ′
i, j < logn−α. (4.32)

Let us use our original metric space Sn to sequentially overlay the effect of the above two
effects. Recall that we have used π(i, j) for the smallest-weight path between i, j in Sn. The
following lemma deals with the effect of the simpler translation event (without dealing with the
conditioning), and will be the starting point of our analysis.

Lemma 4.7. Fix m � 1 and consider the metric space Sn. For every edge e incident to one of
the vertices in [m], replace the edge Ee by Ee + logn−α . Leave all other edges unchanged. Call
this new metric space S ′

n(tr). Write π ′(i, j) for the smallest-weight path between i, j and write
d′

w for the corresponding metric. Then, for all i, j ∈ [m], and on the event that Ei j + logn−α >

dw(i, j) for all i, j ∈ [m],

π ′(i, j) = π(i, j), d′
w(i, j) = dw(i, j)+2logn−2α. (4.33)

In particular,

(d′
w(i, j)−3logn+2α)i, j∈[m],i< j

w−→ (Λi +Λ j −Λi j)i, j∈[m],i< j. (4.34)

Proof. The distributional convergence follows from (4.33) and Proposition 4.4. Equation (4.33)
follows since we can construct the smallest-weight path problem for S ′

n(tr) restricted to [m] as
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follows. To Sn adjoin m new vertices {i′ : i′ ∈ [m]}. Each new vertex i′ has only one edge, namely,
to vertex i of length logn−α . Call this new metric space S ∗

n and the corresponding metric d∗
w

and smallest-weight path π∗(·, ·). Then the metric space S ′
n(tr) can be constructed as follows.

For i, j ∈ [m] let d′
w(i, j) = d∗

w(i′, j′) and π∗(i′, j′) = {i′ � i}∪π ′(i, j)∪{ j � j′}.

By the translation rule (a) and conditionally on Nn(α) = m, the distances (dw(Vi,Vj))i, j∈[m],i< j
are identical in distribution (assuming EViVj

+ logn−α > dw(Vi,Vj) for all i, j ∈ [m] which occurs

w.h.p.) to (d′
w(i, j)−3logn+2α)i, j∈[m],i< j conditionally on Nn,m(α) = 0, where Nn,m(α) denotes

the number of vertices in [n] \ [m] for which X(i),[m+1:n] � logn−α , where X(i),[m+1:n] is defined in
(4.32). In order to transfer (4.34) in Lemma 4.7 to the related statement (4.31) in Proposition 4.6,
it suffices to prove that the distance matrix (dw(i, j)− logn)i, j∈[m],i< j is asymptotically independ-
ent of Nn,m(α). That is the content of the next lemma.

Lemma 4.8. Fix α ∈ R and m � 1. The matrix of distances (dw(i, j)− logn)i, j∈[m],i< j is asymp-
totically independent of Nn,m(α). Consequently, conditionally on Nn,m(α) = 0,

(dw(i, j)− logn)i, j∈[m],i< j
w−→ (Λi +Λ j −Λi j)i, j∈[m],i< j. (4.35)

Proof. Fix � � 0 and a matrix of weights (wi j)i, j∈[m],i< j. The statement of the lemma is equival-

ent to the statement that, for every (wi j)i, j∈[m],i< j ∈ R
m(m−1)/2 and m � 1,� � 0,

P
(
(dw(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j,Nn,m(α) � �

)
(4.36)

= P
(
(dw(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j

)
P(Nn,m(α) � �)+o(1).

We prove this by proving both inequalities. We note that (dw(i, j)− logn)i, j∈[m],i< j, as well as
Nn,m(α), are (sequences of) increasing random variables in the edge weights (Ee)e. Thus, by the
FKG-inequality for continuous random variables as stated in [19, Section 6], the left-hand side
of (4.36) is always at least the first term on the right-hand side of (4.36). Note that the condition
[19, inequality (6.6)] holds with equality since we deal with independent random variables. This
establishes the lower bound (even without the error term).

We next prove the upper bound. We split the edges into two disjoint sets. Let E1 = {e : Ee >

logn−α} and E2 = {e : Ee � logn−α}. Clearly, Nn,m(α) is determined by the edges in E1,
since Nn,m(α) is the number of vertices in [n] \ [m] for which every edge incident to it is in E1.
Let d̄w(i, j) be the distance between i and j only using edges in E2, so that d̄w(i, j) � dw(i, j). We
bound from above

P
(
(dw(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j,Nn,m(α) � �

)
(4.37)

� P
(
(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j,Nn,m(α) � �

)
+P

(
(dw(i, j))i, j∈[m],i< j �= (d̄w(i, j))i, j∈[m],i< j

)
,

and bound both terms from above. In the first term, we note that

{(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j}
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only depends on the edge weights in E2, while {Nn,m(α) � �} only depends on the edge weights
in E1, which are disjoint sets. Thus,

P
(
(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j,Nn,m(α) � �

)
(4.38)

� P
(
{(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j}◦{Nn,m(α) � �}

)
.

By the BK-inequality applied to continuous random variables (see [16, Theorem 1.2]),

P
(
(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j,Nn,m(α) � �

)
(4.39)

� P
(
(d̄w(i, j)− logn)i, j∈[m],i< j � (wi j)i, j∈[m],i< j

)
P(Nn,m(α) � �).

By the fact that d̄w(i, j) � dw(i, j), the right-hand side of (4.39) is at most the product of probab-
ilities on the right-hand side of (4.36). It remains to show that the second term in (4.37) is o(1).
By symmetry and the union bound,

P
(
(dw(i, j))i, j∈[m],i< j �= (d̄w(i, j))i, j∈[m],i< j

)
� m2P(dw(1,2) �= d̄w(1,2)). (4.40)

By Proposition 4.4, as well as its proof (see Corollary 4.5(b)), P(dw(1,2) �= d̄w(1,2)) = o(1),
which completes the proof of the asymptotic independence. To prove (4.35), it suffices to show
that liminfn→∞P(Nn,m(α) = 0) > 0, which follows from Proposition 4.3 together with the fact
that Nn,m(α) = Nn(α) w.h.p.

Proof of Proposition 4.6. By the translation rule (a) and the conditioning rule (b), the distribu-
tion of (dw(Vi,Vj))i, j∈[m],i< j conditionally on Nn(α) = m is the same as that of
(d′

w(i, j))i, j∈[m],i< j in S ′
n(tr) conditionally on Nn,m(α) = 0. The event that Ei j + logn − α >

dw(i, j) for all i, j ∈ [m] occurs w.h.p., so the identity in (4.33) holds w.h.p. Combining (4.34) in
Lemma 4.7 with the asymptotic independence of (dw(i, j))i, j∈[m],i< j and Nn,m(α) in Lemma 4.8

and the fact that Nn,m(α) w−→ N(α) by Proposition 4.3 completes the proof of Proposition 4.6.

4.6. Reduction to distances between vertices with large minimal edge weights
The previous section analysed distances between the vertices whose minimal outgoing edge is
large (e.g. logn+OP(1)). The distances between these vertices are then close to 3logn+OP(1).
The aim of this section is to show that these are the only vertices that matter for the weight
diameter. We achieve this by considering distances between vertices whose minimal outgoing
edge is ‘small’ and showing that the distance between such vertices are not large enough to
create the diameter and thus can be ignored.

We start with some notation. Fix α > 0 and define

Rn(α) = #{i, j ∈ [n] : X(i) � logn−α,X( j) � logn+α/2,dw(i, j) � 3logn−α/8}. (4.41)

The random variable Rn(α) counts the number of ordered pairs of vertices (i, j) ∈ [n]× [n] that
satisfy that the minimal outgoing edge of vertex i is less than logn−α , the minimal outgoing
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edge of j is less than logn + α/2 and yet the distance between i, j is greater than 3logn−α/8.
The following result gives an upper bound on the expected value of Rn(α).

Proposition 4.9 (distances from vertices with small minimal weight). There exists a con-
stant C > 0 such that, for all α > 0,

limsup
n→∞

E[Rn(α)] � Ce−α/16. (4.42)

Proof. By the union bound,

E[Rn(α)] � n2P(dw(1,2) � 3logn−α/8,X(1) � logn−α,X(2) � logn+α/2). (4.43)

Note that

(X(1),X(2))
d=

(
min

[
n

n−2
E∗

1 ,nE∗
12

]
,min

[
n

n−2
E∗

2 ,nE∗
12

])
,

where E∗
1 ,E∗

2 ,E∗
12 are independent exponential random variables with mean 1. Here nE∗

12 rep-
resents the weight of the direct edge between vertices 1,2, while for i ∈ {1,2}, nE∗

i /(n− 2)
represents the minimal outgoing edges from vertex i to the remaining vertices [n]\{1,2}.

On the event {dw(1,2) � 3logn−α/8}, we have that nE∗
12 � dw(1,2) � 3logn−α/8. As a

result, when dw(1,2) � 3logn−α/8, unless

max

(
n

n−2
E∗

1 ,
n

n−2
E∗

2

)
> 3logn−α/8, (4.44)

we have that

(X(1),X(2))=
(

n
n−2

E∗
1 ,

n
n−2

E∗
2

)
. (4.45)

The probability of the event in (4.44) is bounded by 3eα/8/n3 for large n. Since n2eα/8/n3 → 0,
we can ignore the contribution of this in the proof of Proposition 4.9 and assume (4.45).

Let V1 be the closest vertex to 1, at distance X(1) (respectively V2 at distance X(2) from ver-
tex 2). The rest of the smallest-weight path has the same distribution as the smallest-weight path
between two sets A = {1,V1} and B = {2,V2} in Sn. Lemma 4.1 thus implies that

dw(i, j) = X(1) +X(2) +
N−1

∑
k=2

nE ′
k

k(n− k)
, (4.46)

where N = N1∧N2 and (N1,N2) is a uniform pair of distinct vertices from [n]\{1,2} and (E ′
k)k�1

are mean one exponential random variables. The distribution of N in Lemma 4.1 was given as
the number of draws required to draw the first black ball in an urn containing N −4 white and 2
black balls; it is easy to check that this is equivalent to the description above. Writing

SN =
N−1

∑
k=2

nEk

k(n− k)
,

we get

E[Rn(α)] � n2P
(
SN � 3logn−X(1) −X(2) −α/8,X(1) � logn−α,X(2) � logn+α/2

)
. (4.47)
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Thus,

E[Rn(α)] � n2
∫ logn−α

0

∫ logn+α/2

0
e−(x+y)(n−2)/nP(SN � 3logn− x− y−α/8)dxdy. (4.48)

To complete the proof, we study the tail behaviour of the random variable SN .

Lemma 4.10 (tail behaviour for random sums). For any constant a < 2, there exists a con-
stant C = Ca < ∞ such that, for every x � 0,

P(SN � logn+ x) � Ce−ax. (4.49)

Assuming the lemma for the time being, we use this to complete the proof of Proposition 4.9.
Using Lemma 4.10 with a = 3/2 gives

E[Rn(α)] � Cn2
∫ logn−α

0

∫ logn+α/2

0
e−(x+y)e−a(2logn−x−y−α/8) dxdy (4.50)

= Cn2(1−a)
∫ logn−α

0

∫ logn+α/2

0
e(a−1)(x+y)eα/8 dxdy

= Ce−(a−1)α/2+aα/8 � Ce−α/16.

This completes the proof of Proposition 4.9.

Proof of Lemma 4.10. We compute the moment generating function of SN as

MSN
(a) =

n−2

∑
j=2

P(N = j)E[eaS j ] =
n−2

∑
j=2

P(N = j)
j−1

∏
k=2

k(n− k)
k(n− k)−an

(4.51)

=
n−2

∑
j=2

P(N = j) exp

(
−

j−1

∑
k=2

log

(
1− an

k(n− k)

))
.

Thus,

P(SN � logn+ x) � e−a(logn+x)MSN
(a)

� e−a(logn+x)
n−2

∑
j=2

P(N = j) exp

(
−

j−1

∑
k=2

log

(
1− an

k(n− k)

))
. (4.52)

Using a < 2, we have an/[k(n− k)] < 1, since k,n− k � 2. Therefore, via Taylor expansion,

log

(
1− an

k(n− k)

)
� an

k(n− k)
+O

(
n2

[k(n− k)]2

)
, (4.53)

Using

n
k(n− k)

=
1
k

+
1

n− k
,
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we arrive at

P(SN � logn+ x) � e−a(logn+ x)MSN
(a)

� Ce−a(logn+x)
n−2

∑
j=2

P(N = j) exp

(
a

j−1

∑
k=2

[
1
k

+
1

n− k

])

� Ce−ax
n−2

∑
j=2

P(N = j)ea[log( j/n)−log(1− j/n)]

= Ce−axE

[(
N/n

1−N/n

)a]
.

Note that

P(N = j) =
2(n− j)

(n−2)(n−3)
,

so that, by dominated convergence,

E

[(
N/n

1−N/n

)a]
=

n−2

∑
j=2

2(n− j)
(n−2)(n−3)

(
j/n

1− j/n

)a

→
∫ 1

0

ua

(1−u)a
2(1−u)du < ∞, (4.54)

whenever a < 2.

4.7. The limiting random variable
In this section we prove the finiteness of the random variable Ξ = maxs<t(Ys +Yt −Λst) in (2.3),
which Theorem 2.1 asserts is the limit of the re-centred diameter. In the following lemma we
give an alternative expression for its distribution.

Lemma 4.11 (the limiting random variable). Let Q = e−Ξ. Then

Q = min
s<t

SsSt

E ′
st

, (4.55)

where Ss = ∑s
i=1 E ′

i and (E ′
i )i�1 and (E ′

st)s<t are i.i.d. exponential random variables with mean 1.
In particular, for every x > 0,

P(Q > x) = E

[
∏

1�s<t

l(1− e−SsSt/x)
]
, (4.56)

and P(Q > x) ∈ (0,1) for every x > 0. Further, limx↓0P(Q > x) = 1.

Proof. We note that we can write −Λst = log(E ′
st) and Ys =− log(Ss). Indeed, the point process

(e−Ys)s�1 is a standard Poisson process. Thus,

e−Ξ d= min
s<t

elog(Ss)+log(St )−log(E ′
st ) = Q. (4.57)

Equation (4.56) immediately follows. To prove that P(Q > x) ∈ (0,1) for every x > 0, we note
that P(Q > x) < 1 follows immediately from (4.56) since each of the terms in the product is < 1

https://doi.org/10.1017/S0963548317000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000232


816 S. Bhamidi and R. van der Hofstad

a.s. To show that P(Q > x) > 0, we first note that

P(Q > x) � E

[
∏

1�s<t

(1− e−SsSt/x)1{S1>1}

]

= E

[
∏

1�s<t

(1− e−SsSt/x) | S1 > 1

]
P(S1 > 1). (4.58)

We compute that P(S1 > 1) = 1/e, and observe that by the memoryless property of the exponen-
tial random variable S1, conditionally on S1 > 1, the distribution of (St)t�1 is equal to (St +1)t�1.
Thus,

P(Q > x) � e−1E

[
∏

1�s<t

(1− e−(Ss+1)(St+1)/x)
]

� e−1 exp

(
∑

1�s<t

E
[
log(1− e−(Ss+1)(St+1)/x)

])
. (4.59)

Next, we compute, using Fubini,

∑
1�s<t

E
[
log(1− e−(Ss+1)(St+1)/x)

]
(4.60)

= ∑
1�s<t

∫ ∞

0
du

∫ ∞

0
dv

us−1

(s−1)!
vt−s−1

(t − s−1)!
e−(u+v) log(1− e−(u+1)(u+v+1)/x)

=
∫ ∞

0
du

∫ ∞

0
dv ∑

1�s<t

us−1

(s−1)!
vt−s−1

(t − s−1)!
e−(u+v) log(1− e−(u+1)(u+v+1)/x)

=
∫ ∞

0

∫ ∞

0
log(1− e−(u+1)(u+v+1)/x)dudv < ∞.

This proves that P(Q > x) > 0 for every x > 0. Similarly, for any ε > 0, by conditioning on
S1 � ε ,

P(Q > x) � e−ε E

[
∏

1�s<t

(1− e−(Ss+ε)(St+ε)/x)
]

(4.61)

� e−ε exp

(
∑

1�s<t

E
[
log(1− e−(Ss+ε)(St+ε)/x)

])

= e−ε exp

(∫ ∞

0

∫ ∞

0
log(1− e−(u+ε)(u+v+ε)/x)dudv

)

= e−ε exp

(
ε−2

∫ ∞

0

∫ ∞

0
log(1− e−(u′+1)(u′+v′+1)/(x/ε2))du′dv′

)
,

where the last equality follows by substituting (u′,v′) = (εu,εv). For every ε > 0, as x ↘ 0,
the integrand converges pointwise to zero and thus, by monotone convergence, the integral also
converges to 0. Therefore, for every ε > 0,

liminf
x↓0

P(Q > x) � e−ε , (4.62)

and letting ε ↘ 0, this completes the proof that limx↓0P(Q > x) = 1.
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4.8. The limiting maximization problem
In this section we combine the various ingredients proved in the previous sections to prove the
distributional convergence in Theorem 2.1. We defer the proof of the convergence of moments to
the next section. By Proposition 4.3, first note that given any ε > 0, one can choose α large but
finite (independent of n) such that for all n large, P(Nn(α) � 2) � 1−ε . Thus by Proposition 4.6,
with probability greater than 1− ε for all large n,

Diamw(Kn)−3logn � dw(V1,V2)−3logn
w−→−2α +Λ1 +Λ2 −Λ12. (4.63)

As a result the sequence {(Diamw(Kn)−3logn)− : n � 1} is tight. Further, using Proposition 4.9,
given ε > 0, one can choose α = α(ε) large enough such that with probability � 1− ε for all
large n,

Diamw(Kn) = max
s<t�Nn(α)

dw(Vs,Vt). (4.64)

We note that, again using Propositions 4.6 and 4.3,

max
s<t�Nn(α)

dw(Vs,Vt)−3logn
w−→ max

s<t�N(α)
(Λs +Λt −Λst −2α), (4.65)

where N(α) is a Poisson random variable with mean eα and the Gumbel variables are independ-
ent of N(α). As a result,

Diamw(Kn)−3logn
w−→ Ξ∗, (4.66)

where Ξ∗ is the distributional limit as α → ∞ of the right-hand side of (4.65), that is,

max
s<t�N(α)

(Λs +Λt −Λst −2α) w−→ Ξ∗. (4.67)

Theorem 4.12 below shows that this weak limit exists and that Ξ∗ = Ξ defined in (2.3). This
completes the proof of the first assertion of the main theorem, thus showing that

Diamw(Kn)−3logn
w−→ Ξ.

Theorem 4.12 (the limiting variable Ξ). As α → ∞,

max
s<t�N(α)

(Λs +Λt −Λst −2α) w−→ Ξ, (4.68)

where Ξ is defined in (2.3).

Proof. First note that as α → ∞,

e−α N(α) P−→ 1. (4.69)

For each fixed α > 0, define the random variables

Ξ̂α := max
s<t�N(α)

(Λs +Λt −Λst −2α), Ξα := max
s<t�eα

(Λs +Λt −Λst −2α).

It then suffices to prove that

Ξα := max
s<t�eα

(Λs +Λt −Λst −2α) w−→ Ξ. (4.70)
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Then, for each ε > 0, one can sandwich Ξ̂α between Ξα−ε and Ξα+ε (with high probability as
α → ∞ by (4.69)), and then first let α → ∞ and then ε → 0 to get the corresponding result for Ξ̂α .

Recall from Section 2, that the Poisson point process P = (Ys)s�1 with intensity measure given
by the density function λ (y) = e−y. Also recall from (2.3) that we have defined Ξ as

Ξ := max
s<t

(Ys +Yt −Λst).

For any fixed A > 0, let P(A) denote P restricted to the interval [−A,∞). Write

Ξ(A) := max
s<t : Ys,Yt∈P(A)

(Ys +Yt −Λst).

Thus, Ξ(A) is the maximum of corresponding pairs (s, t) whose point process values satisfy
Ys,Yt � −A. Intuitively, one would expect that Ξ = Ξ(A) for large A. We now make his intuition
precise. Define

R(1)(A) := max
s<t : Ys,Yt�−A

(Ys +Yt −Λst),

and, for A < B, let

R(2)(A,B) := max
s<t : Ys�−A,Yt�−(A+B)

(Ys +Yt −Λst).

The random variable R(1)(A) is the supremum between pairs (s, t) such that Ys,Yt � −A while
R(2)(A,B) corresponds to the supremum between pairs of points (s, t) such that Ys > −A but
Yt < −(A+B). Note that, for any z,

{Ξ = Ξ(A+B)} ⊇ {Ξ(A) > z,R(1)(A) < z,R(2)(A,B) < z}. (4.71)

Consider the point process

P∗
α =

eα

∑
s=1

δ{Λs −α}.

When arranged in increasing order, write this point process as Y1(α) > Y2(α) > · · · . Standard
extreme value theory implies that

P∗
α

w−→P as α → ∞, (4.72)

where
w−→ denotes convergence in distribution in the space of point measures on R equipped with

the vague topology. Analogously to Ξ(A),R(1)(A),R(2)(A,B), we define the random variables
Ξα(A),R(1)

α (A),R(2)
α (A,B), that is,

Ξα(A) := max
s<t : Ys(α),Yt (α)∈PA(α)

(Ys(α)+Yt(α)−Λst),

where Pα(A) is the point process Pα restricted to the interval [−A,∞). We define R(1)
α (A),R(2)

α (A)
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similarly. As before, for any z,

{Ξα = Ξα(A+B)} ⊇ {Ξα(A) > z,R(1)
α (A) < z,R(2)

α (A,B) < z}. (4.73)

The weak convergence in (4.72) immediately implies that, for any fixed A,

Ξα(A) w−→ Ξ(A) as α → ∞. (4.74)

The following lemma formalizes the notion that for large A, Ξ = Ξ(A) and, similarly, when α
is large, Ξα(A) = Ξα . Let us give an intuitive description of how this is achieved. The argument
proceeds by showing that for large A, each of the random variables R(1)(A),R(1)

α (A), and, for each
fixed A, for sufficiently large B, R(2)(A,B),R(2)

α (A,B) take large negative values.

Proposition 4.13.

(a) Fix x ∈ R. Then

limsup
A→∞

P(R(1)(A) > x) = 0.

Further, for each fixed A,

limsup
B→∞

P(R(2)(A,B) > x) = 0.

(b) Fix x ∈ R. Then,

limsup
A→∞

limsup
α→∞

P(R(1)
α (A) > x) = 0.

Further, for each fixed A,

limsup
B→∞

limsup
α→∞

P(R(2)
α (A,B) > x) = 0.

We prove the statements in Proposition 4.13 one by one.

Proof of Proposition 4.13(a). We start with R(1)(A). To simplify notation, we also restrict
ourselves to the case x = 0. The general x case is identical.

Write

N (1)(A) := #{(s, t) : Ys,Yt < −A,Ys +Yt −Λst � 0}.

It is enough to show limsupA→∞E(N (1)(A)) = 0. Conditioning on the point process P , we get

E(N (1)(A)|P) = ∑
(s,t),s<t,Ys,Yt<−A

e−e−(Ys+Yt ) .

Fix a > 1. We use the fact that we can choose A so large such that e−eC+D
< e−aCe−aD for all

C,D > A. This leads to

E(N (1)(A)|P) � ∑
(s,t),s<t,Ys,Yt<−A

eaYseaYt .
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Since {Ys ∈ P : Ys � −A} is just a Poisson point process on the interval (−∞,−A] with density
λ (x) = e−x, properties of Poisson processes [20, Eqn 3.14] implies that, as A → ∞,

E

(
∑

(s,t),s<t,
Ys,Yt<−A

eaYseaYt

)
=

1
2

(∫ −A

−∞
eaxe−x dx

)2

=
1
2
e−2(a−1)A → 0.

This shows that limsupA→∞E(N (1)(A)) = 0 and thus completes the proof.
Next fix A and let us deal with R(2)(A,B). Here we use the fact that P(A) and Pc(A + B) :=

P \Pc(A+B) are independent Poisson point processes on the sets [−A,∞) and (−∞,−(A+B))
with intensity measure with density λ (y) = e−y. We condition on P(A). Fix a point Ys in P(A).
Then

P

(
sup

Yt<−(A+B)
(Ys +Yt −Λst) < z|P(A)

)
= E

(
∏

t : Yt<−(A+B)
(1− exp(−e−(Yt−(z−Ys))))

)
. (4.75)

Thus to complete the proof, it is enough to show, for any z∗ and A,

lim
B→∞

E

(
∏

t:Yt<−(A+B)

(
1− exp(−e−(Yt−(z−Ys)))

))
→ 1. (4.76)

By the dominated convergence theorem, it is enough to show that, as B → ∞,

∏
t:Yt<−(A+B)

(
1− exp(−e−(Yt−(z−Ys)))

) P−→ 1.

Taking logarithms, this is equivalent to showing that, as B → ∞,

∑
t:Yt<−(A+B)

log
(
1− exp(−e−(Yt−(z−Ys)))

) P−→ 0.

In turn, this is equivalent to showing that, as B → ∞,

∑
t:Yt<−(A+B)

exp(−e−(Yt−(z−Ys))) P−→ 0.

By Campbell’s theorem [20],

E

(
∑

t:Yt<−(A+B)
exp−e−(Yt−z∗)

)
=

∫ −(A+B)

−∞
exp(−e−(y−z∗))e−y dy

= ez∗ exp(−eA+B+z∗) → 0,

as B → ∞. This completes the proof of (4.76) and thus of part (a) of Proposition 4.13.

Proof of Proposition 4.13(b). This closely follows the proof of part (a). Without giving a
full proof, we mainly highlight the differences. We again start with R(1)

α (A) and again restrict
ourselves to the case x = 0. The general x case is identical.

Write

N (1)
α (A) := #{(s, t) : Ys(α),Yt(α) < −A,Ys(α)+Yt(α)−Λst � 0}.
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It is enough to show that

limsup
A→∞

limsup
α→∞

E(N (1)
α (A)) = 0.

Conditioning on the point process P∗
α , we now get

E(N (1)
α (A)|P∗

α) = ∑
(s,t),s<t,Ys(α),Yt (α)<−A

exp(−e−(Ys(α)+Yt (α))) (4.77)

= ∑
1�s<t�eα

1{Λs,Λt<−A+α} exp(−e−(Λs−α)−(Λt−α)).

Taking expectations and using that Λs,Λt are independent for s < t leads to

E(N (1)
α (A)) �

∫ −A+α

−∞

∫ −A+α

−∞
e−(u−α) exp(−e−u)e−(v−α) exp(−e−v)exp(−e−(u−α)−(v−α))dudv.

(4.78)
This integral can be bounded by

E(N (1)
α (A)) �

∫ −A

−∞

∫ −A

−∞
e−ue−v exp(−e−u−v)dudv, (4.79)

which is independent of α and converges to 0 as A → ∞. The proof for R(2)
α (A,B) is similar and

will be omitted.

Completing the proof of Theorem 4.12. Proposition 4.13 shows that given any ε > 0 one can
choose finite α = α(ε) and A = A(ε) such that P(Ξ = Ξ(A)) and P(Ξα(A) = Ξα) are both at
least 1− ε . Using (4.74), (4.71) and (4.73) completes the proof of Theorem 4.12.

4.9. Convergence of moments
Recall that Ci j = dw(i, j). We need to show that

E

[
max
i, j∈[n]

Ci j

]
−3logn → E[Ξ], Var

(
max
i, j∈[n]

Ci j

)
→ Var(Ξ).

Since we have already shown convergence in distribution, by uniform integrability for any
p � 1, to prove that

E

[(
max
i, j∈[n]

Ci j −3logn
)p

]
→ E[Ξp], (4.80)

it suffices to prove that, for some integer q with q > p/2,

E

[(
max
i, j∈[n]

Ci j −3logn
)2q

]
= O(1). (4.81)

Combined with convergence in distribution, this implies convergence of the moments as well
as existence of the moments of the limit random variable Ξ. Note that

E

[(
max
i, j∈[n]

Ci j −3logn
)2q

]
= E

[(
max
i, j∈[n]

Ci j −3logn
)2q

+

]
+E

[(
max
i, j∈[n]

Ci j −3logn
)2q

−

]
. (4.82)

We start by analysing the first term on the right-hand side of (4.82) by deriving an upper bound on
maxi, j∈[n]Ci j −3logn, and then prove a lower bound on maxi, j∈[n]Ci j −3logn to obtain a bound
on the second term on the right-hand side of (4.82).
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Upper bound. Let us analyse the first term in (4.82) and show that

E

[(
max
i, j∈[n]

Ci j −3logn
)2q

+

]
= O(1).

To prove this assertion, it is enough to show that there exist N,α such that, for all large n > N
and x � α , the random variable maxi, j∈[n]Ci j −3logn has exponential upper tails in the sense that
there exist constants κ1,κ2 > 0 (independent of x) such that

P
(

max
i, j∈[n]

Ci j −3logn > x
)

� κ1e
−κ2x. (4.83)

Now note that

11
{

max
i, j∈[n]

Ci j −3logn > x
}

� 11
{

max
i∈[n]

X(i) > logn+4x
}

+R(1)
n (x)+R(2)

n (x). (4.84)

Here R(1)
n (x) = Rn(8x) as in (4.41), that is,

R(1)
n (x) = #{i, j ∈ [n] : X(i) � logn−8x,X( j) � logn+4x,dw(i, j) � 3logn− x},

while

R(2)
n (x) := #{(i, j) : X(i) > logn−8x,X( j) > logn−8x,dw(i, j) > 3logn+ x}.

Recall that, for any α ∈ R, Nn(α) denotes the number of vertices i with X(i) � logn−α . For the
first term in (4.84), since

P
(

max
i∈[n]

X(i) > logn+4x
)

= P(Nn(−4x) � 1),

the Poisson approximation in Proposition 4.3 implies that for x large,

P
(

max
i∈[n]

X(i) > logn+4x
)

� 2(1+o(1))e−4x logn
n

+(1− exp(−e−4x))

� (1+o(1))e−4x. (4.85)

Further, by Proposition 4.9 for n large enough

E(R(1)
n (x)) � Ce−x/2. (4.86)

It remains to analyse R(2)
n (x). Arguing as in the proof of Proposition 4.9,

E(R(2)
n (x)) � E(N2

n (−8x))P(dw(1,2) > logn+17x),

where dw(1,2) is the distance between vertices 1,2 in Sn = {Kn,(Ee)e∈En
}. By Lemma 4.1,

dw(1,2) d=
N

∑
k=1

Ej

k(n− k)
,

where N is uniform on [n−1] independent of (Ej) j∈[n−1] which are mean n exponential random
variables. Thus, by Markov’s inequality, for any α > 0,

P(dw(1,2)− logn > 17x) � e−17αx
n−1

∑
j=1

1
n−1

exp

(
α

[
log

j
n
− log

(
1− j

n

)])
.
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Letting β = 1− ε with ε > 0 small but independent of x,n, we finally get

P(dw(1,2)− logn > 17x) � (1+o(1))e−17αxE

([
U

1−U

]1−ε)
,

where U ∼ U [0,1]. We need to now bound E(N2
n (−8x)). Write Nn(−8x) = ∑n

i=1 Zi where Zi =
11{X(i) � logn+8x}. By Proposition 4.3, E(Nn(−8x)) � 2e8x. Further,

Var(Nn(−8x)) � 2e8x +n(n−1)P(Z1 = 1)[P(Z2 = 1|Z1 = 1)−P(Z2 = 1)].

Given Z1 = 1, the edge weights (E2,i)i�=2 have the same distribution as

(logn−8x+E2,1,(E2, j) j �=1,2).

Thus,

P(Z2 = 1|Z1 = 1) = P
(

min
j�2

E2, j > logn−8x
)

= exp

(
−n−2

n
(logn−8x)

)
.

Combining this, we get that Var(Nn(−8x)) � 4e8x so that E([Nn(−8x)]2) � 16e16x. This results
in

E(R(2)
n (x)) � (1+o(1))16E

([
U

1−U

]1−ε)
e−(1−17ε)x. (4.87)

Combining (4.85), (4.86) and (4.87) completes the proof of the asserted exponential tail bound
in (4.83) and completes the proof of the upper bound.

Lower bound. Let us now show that

E

[(
max
i, j∈[n]

Ci j −3logn
)2q

−

]
= O(1).

Recall that V1,V2 denote the vertices with the largest and second largest X(i) values. Further

max
i, j∈[n]

Ci j −3logn �st (X(V1) − logn)− +(X(V2) − logn)− +(dw(1,2)− logn),

where dw(1,2) is independent of X(Vi)
with the same distribution as the length of the optimal path

between 1,2 in Sn and �st denotes stochastic domination. By Hölder’s inequality,

E

[(
max
i, j∈[n]

Ci j −3logn
)2q

−

]
� 32q

(
E

(
[X(V1) − logn]2q

−
)
+E

(
[X(V2) − logn]2q

−
)

+E
(
[dw(1,2)− logn]2q

))
. (4.88)

By [18, Proof of Theorem 3.3],

E
(
[dw(1,2)− logn]2q

)
= O(1).

Further,

E
(
[X(V1) − logn]2q

−
)

� E
(
[X(V2) − logn]2q

−
)
.

First recall the identity

E(Y 2q) = 2q
∫ ∞

0
y2q−1P(Y > y)dy, (4.89)
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for any non-negative random variable Y . Second note that

[X(V2) − logn]− ≡ 0, if X(V2) � logn. (4.90)

Suppose we show for some 0 < ε < 1 small enough and fixed:

P(logn−X(V2) � x) � 2exp−(1−ε)ex
+2

e2x logn
n

, x � 2−1(1− ε) logn. (4.91)

Then this bound implies that

P(logn−X(V2) � x) � C logn
nε , x ∈ [2−1(1− ε) logn, logn]. (4.92)

Using these bounds on the tail probabilities in the moment identity (4.89) with Y = [XV2
− logn]−

shows that

E
(
[X(V2) − logn]2q

−
)

= O(1),

which completes the proof. Thus we are now left with proving (4.91). However this follows from
the Poisson approximation result in Proposition 4.3 since P(logn−X(V2) � x) =P(Nn(x) � 1).
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