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Abstract
We establish a fundamental property of bivariate Pareto records for independent observations uniformly
distributed in the unit square. We prove that the asymptotic conditional distribution of the number of
records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.
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1. Introduction andmain result
This paper proves an interesting phenomenon concerning the breaking of bivariate records first
observed empirically by Daniel Q. Naiman, whom we thank for an introduction to the problem
considered.We begin with some relevant definitions, taken (with trivial changes) from [4] and [3].
Although our attention in this paper will be focused on dimension d = 2 (see [3, Conjecture 2.3]
for general d) and the approach we utilize seems to be limited to the bivariate case, we begin by
giving definitions that apply for general dimension d.

Let 1(E)= 1 or 0 according as E is true or false. We write ln or L for natural logarithm, lg
for binary logarithm, and log when the base does not matter. For d-dimensional vectors x=
(x1, . . . , xd) and y= (y1, . . . , yd), write x≺ y to mean that xj < yj for j= 1, . . . , d. The notation
x� ymeans y≺ x.

Like Bai, Devroye, Hwang and Tsai [2], we find it more convenient (in particular, expressions
encountered in their computations and ours are simpler) to consider (equivalently) record-small,
rather than record-large, values. Let X(1),X(2), . . . be i.i.d. (independent and identically dis-
tributed) copies of a random vector X with independent coordinates, each uniformly distributed
over the unit interval.

Definition 1.1.

(a) We say that X(n) is a Pareto record (or simply record, or that X(n) sets a record at time n) if
X(n) ��X(i) for all 1� i< n.

(b) If 1� j� n, we say that X(j) is a current record (or remaining record, orminimum) at time n if
X(j) ��X(i) for all i ∈ [n].
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(c) If 0� k� n, we say that X(n) breaks (or kills) k records if X(n) sets a record and there exist
precisely k values j with 1� j< n such that X(j) is a current record at time n− 1 but is not a
current record at time n.

For n� 1 (or n� 0, with the obvious conventions), let Rn denote the number of records X(k)

with 1� k� n, and let rn denote the number of remaining records at time n.
Here is the main result of this paper.

Theorem 1.1. Suppose that independent bivariate observations, each uniformly distributed in
(0, 1)2, arrive at times 1, 2, . . . . Let Kn = −1 if the nth observation is not a new record, and otherwise
let Kn denote the number of remaining records killed by the nth observation. Then Kn, conditionally
given Kn � 0, converges in distribution to G− 1, where G∼Geometric(1/2), as n→ ∞.

Equivalently, the conclusion (with asymptotics throughout referring to n→ ∞) is that

P (Kn = k |Kn � 0)→ 2−(k+1) for each (fixed) integer k� 0. (1.1)

Here is an outline of the proof. In Section 2 we provide a simple and short proof of the well-known
result that

P (Kn � 0)= n−1Hn, n� 1,

whereHn = ∑n
i=1 i−1 denotes the nth harmonic number. In Section 3 (see Theorem 3.1) we show

that

| P (Kn = k)− [2−(k+1)n−1Hn − (k− 1)2−(k+2)n−1]|� 1
2
n−2 (1.2)

for all n� 1 and all k� 0. The improvement

| P (Kn = k |Kn � 0)− [2−(k+1) + αn,k]|� 1
2
n−1H−1

n (1.3)

to (1.1) then follows immediately, where αn,k is a first-order correction term with

αn,k := −(k− 1)2−(k+2)H−1
n

to the Geometric(1/2) probability mass function (PMF) 2−(k+1). This improvement shows that
approximation of the conditional PMF in Theorem 1.1 by the uncorrected Geometric(1/2) PMF
has (for large n) vanishingly small relative error, not just for fixed k but for k≡ kn = o( log n). It
also shows that the corrected approximation has small relative error for k� lg n+ lg log n− ω(1).
Of course we always have Kn � rn−1, and by [4, Remark 4.3(b)] we have rn =O( log n) almost
surely; the corrected approximation thus gives small relative error for rather large values of k
indeed.

As one might expect, the correction terms sum to 0. We observe that the correction is posi-
tive (and of largest magnitude in absolute-error terms) when k= 0, vanishes when k= 1, and is
negative (and of non-increasing magnitude) when k� 2.

Formulation of Theorem 1.1 was motivated by [3, Table 1], reproduced here as Table 1. Table 1
tabulates, for the first 100 000 records generated in a single trial, the number of records that
break k remaining records, for each value of k. The Geometric(1/2) pattern is striking. The pre-
cise relationship between Theorem 1.1 and the phenomenon observed in Table 1 is discussed
in Section 4, where a main conjecture is stated and a possible plan for completing its proof is
described.
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Table 1. Results of a simulation experiment in which M=
100 000 bivariate records are generated, and for each new
record the number k of records it breaks is recorded. The num-
ber of records that break k current records is denoted by Nk ,
and p̃M,k = Nk/M is the proportion of the 100 000 records that
break k records

k Nk p̃k

0 50 334 0.50334

1 24 667 0.24667

2 12 507 0.12507

3 6 335 0.06335

4 3 040 0.03040

5 1 571 0.01571

6 782 0.00782

7 364 0.00364

8 202 0.00202

9 94 0.00094

10 48 0.00048

11 24 0.00024

12 18 0.00018

13 8 0.00008

14 4 0.00004

16 1 0.00001

17 0 0.00000

18 1 0.00001

Throughout, we denote the nth observationX(n) simply byX= (X, Y) (note: subscriptedXwill
have a different later use) and, for any Borel subset S of (0, 1)2, we denote the number of the first n
observations falling in S by Nn(S).

2. The probability that Kn � 0
In this section we compute the probabilityP (Kn � 0) (that the nth observation is a record) exactly.
This result is already well known (see e.g. [2] or [4, (4.5), the sentence immediately preceding
Definition 1.2, and the simple fact that E Rn =Hn in dimension 1]), but we give a proof for
completeness.

Proposition 2.1. For n� 1 we have

P (Kn � 0)= n−1Hn.

Proof. Since {Kn � 0} = {X(n) is a record} is the event that none of the n− 1 observations X(i)

with 1� i< n lies to the southwest of X(n), we have

P (Kn � 0,X ∈ dx)= P (Nn−1((0, x)× (0, y))= 0,X ∈ dx)
= P (Nn−1((0, x)× (0, y))= 0) P (X ∈ dx)
= (1− xy)n−1 dx dy.
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Integrating (and recalling the sum of a truncated geometric series), we therefore have

P (Kn � 0)=
∫ 1

x=0

∫ 1

y=0
(1− xy)n−1 dy dx

= n−1
∫ 1

x=0
x−1[1− (1− x)n] dx

= n−1
n−1∑
j=0

∫ 1

x=0
(1− x)j dx

= n−1Hn,

as claimed.

3. The probability that Kn = k
In this section we compute P (Kn = k) for k� 0 exactly and produce the approximation (3.7) with
its stated error bound.

3.1 The exact probability
Over the event {Kn = k} (with k� 0), denote those remaining records at time n− 1 broken by
X, in order from southeast to northwest (i.e. in decreasing order of first coordinate and increas-
ing order of second coordinate) by X1 = (X1, Y1), . . . ,Xk = (Xk, Yk). Note that if we read all the
remaining records in order from southeast to northwest, then X1, . . . ,Xk appear consecutively.

If there are any remaining records at time n− 1 with second coordinate smaller than Y ,
choose the largest such second coordinate Y0 and denote the corresponding remaining record
by X0 = (X0, Y0) (and note that then X0, . . . ,Xk appear consecutively); otherwise, set X0 =
(X0, Y0)= e1 := (1, 0).

Similarly, if there are any remaining records at time n− 1 with first coordinate smaller than X,
choose the largest such first coordinate Xk+1 and denote the corresponding remaining record
by Xk+1 = (Xk+1, Yk+1) (and note that then X1, . . . ,Xk+1 appear consecutively); otherwise, set
Xk+1 = (Xk+1, Yk+1)= e2 := (0, 1).

Observe that, (almost surely) over the event {Kn = k}, we have Xk > X > Xk+1 and Y1 > Y >

Y0. In results that follow we will only need to treat three cases: (i)X0 �= e1 andXk+1 �= e2, (ii)X0 =
e1 and Xk+1 �= e2, and (iii) X0 = e1 and Xk+1 = e2. The fourth case X0 �= e1 and Xk+1 = e2 can be
handled by symmetry with respect to the second case.

Our first result of this section specifies the exact joint distribution of X,X0, . . .Xk+1. We write
nk for the falling factorial power

n(n− 1) · · · (n− k+ 1)= k!
(
n
k

)
,

and we introduce the abbreviations

k∑
j

:=
k∑
i=j

(xi−1 − xi)yi,
k∑

:=
k∑
1

for sums that will appear frequently below.
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Proposition 3.1.

(i) For n� k+ 3 and
1> x0 > · · · > xk > x> xk+1 > 0 and 0< y0 < y< y1 < · · · < yk+1 < 1,

we have
P (Kn = k;X ∈ dx;Xi ∈ dxi for i= 0, . . . , k+ 1)

= (n− 1)k+2
[
1−

{ k∑
+xkyk+1

}]n−(k+3)
dx dx0 · · · dxk+1.

(ii) For n� k+ 2 and
1> x1 > · · · > xk > x> xk+1 > 0 and 0< y< y1 < · · · < yk+1 < 1,

we have
P (Kn = k;X ∈ dx;X0 = e1;Xi ∈ dxi for i= 1, . . . , k+ 1)

= (n− 1)k+1
[
1−

{ k∑
+xkyk+1

}]n−(k+2)
dx dx1 · · · dxk+1,

where x0 = 1.
(iii) For n� k+ 1 and

1> x1 > · · · > xk > x> 0 and 0< y< y1 < · · · < yk < 1,
we have

P (Kn = k;X ∈ dx;X0 = e1;Xi ∈ dxi for i= 1, . . . , k;Xk+1 = e2)

= (n− 1)k
[
1−

{ k∑
+xk

}]n−(k+1)
dx dx1 · · · dxk,

where x0 = 1.

Proof. We present only the proof of (i); the proofs of (ii) and (iii) are similar. We shall be slightly
informal in regard to ‘differentials’ in our presentation. The key is that the event in question
(almost surely) equals the event

{Nn−1(dxi)= 1 for i= 0, . . . , k+ 1; Nn−1(S)= 0; X ∈ dx}, (3.1)
where S is the following disjoint union of rectangular regions:

S= ∪k
i=1[(xi, xi−1)× (0, yi)]∪ [(0, xk)× (0, yk+1)].

See Figure 1. But the probability of the event (3.1) is

(n− 1)k+2
[k+1∏
i=0

dxi
]

× [1− λ(S)]n−(k+3) × dx,

where λ(S) is the Lebesgue measure (i.e. area) of S, and the displayed probability reduces easily to
the claimed result.

Remark 3.1. When k= 0, Proposition 3.1 is naturally and correctly interpreted as follows.

(i) For n� 3 and 1> x0 > x> x1 > 0 and 0< y0 < y< y1 < 1, we have

P (Kn = 0;X ∈ dx;X0 ∈ dx0;X1 ∈ dx1)= (n− 1)2(1− x0y1)n−3 dx dx0 dx1.
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110 J. A. Fill

Figure 1. In this example, after n− 1 observations,
none of which fall in the shaded region S, there
are rn−1 = 6 remaining records. The nth observation,
shown in green, breaks the Kn−1 = k= 3 remaining
records shown in red but not the rn−1 − Kn−1 = 3
remaining records shown in blue.

(ii) For n� 2 and 1> x> x1 > 0 and 0< y< y1 < 1, we have

P (Kn = 0;X ∈ dx;X0 = e1;X1 ∈ dx1)= (n− 1)(1− y1)n−2 dx dx1.

(iii) For n� 1 and 1> x> 0 and 0< y< 1, we have

P (Kn = 0;X ∈ dx;X0 = e1;X1 = e2)= 1(n= 1) dx.

To obtain an exact expression for P (Kn = k), one need only integrate out the variables x, xi in
Proposition 3.1 to get

P (Kn = k)=Ak + 2Bk + Ck, (3.2)

where Ak, Bk and Ck (all of which also depend on n) correspond to parts (i), (ii) and (iii) of the
proposition, respectively. For small values of k this can be done explicitly, but for general k we
take an inductive approach. To get started on the induction, we first treat the case k= 0.

3.2 The case k= 0
Using Remark 3.1, we obtain the following result.

Proposition 3.2. We have

A0 = 1(n� 3)
[
1
2
n−1Hn − 3

4
n−1

]
, B0 = 1(n� 2)

1
2
n−1, C0 = 1(n= 1),

and therefore

P (Kn = 0)=

⎧⎪⎨
⎪⎩
1
2
n−1Hn + 1

4
n−1 if n� 2,

1 if n= 1.
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Proof. Using Remark 3.1, we perform the computations in increasing order of difficulty. First, it
is clear that C0 = 0 for n� 2. Next, for n� 2 we have

B0 =
∫
1>x>x1>0,
0<y<y1<1

(n− 1)(1− y1)n−2 dx dx1

= 1
2
(n− 1)

∫ 1

y1=0
y1(1− y1)n−2 dy1

= 1
2
n−1.

Finally, for n� 3 we have

A0 =
∫
1>x0>x>x1>0,
0<y0<y<y1<1

(n− 1)2(1− x0 y1)n−3 dx dx0 dx1

= 1
4
(n− 1)2

∫ 1

x0=0

∫ 1

y1=0
x20 y

2
1(1− x0 y1)n−3 dy1 dx0

= 1
4
(n− 1)2

∫ 1

x=0
x−1

∫ x

z=0
z2(1− z)n−3 dz dx

= 1
2
n−1

∫ 1

x=0
x−1[1− (1− x)n] dx− 1

2

∫ 1

x=0
(1− x)n−1 dx− 1

4
(n− 1)

∫ 1

x=0
x(1− x)n−2 dx,

the final equality after two integrations by parts. Using the computation in the proof of
Proposition 2.1 and the above computation of B0, for n� 3 we therefore find

A0 = 1
2
P (Kn � 0)− 1

2
n−1 − 1

2
B0

= 1
2
n−1Hn − 1

2
n−1 − 1

4
n−1

= 1
2
n−1Hn − 3

4
n−1.

Now we just use (3.2) to establish the asserted expression for P (Kn = 0).

3.3 Simplifications
The expressions obtained from Proposition 3.1 for Ak, Bk and Ck for k� 1 are easily simplified by
integrating out the four variables x, xk+1, y0, y that do not appear in the integrand (when they do
appear as variables). Here is the result.

Lemma 3.3. Assume k� 0. Let Ak, Bk, Ck be defined as explained at (3.2).

(i) For n� k+ 3 we have

Ak = 1
4
(n− 1)k+2

×
∫

1>x0>···>xk>0,
0<y1<···<yk+1<1

x2ky
2
1

[
1−

{ k∑
+xkyk+1

}]n−(k+3)
dx0 dx1 · · · dxk dyk+1.
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(ii) For n� k+ 2 we have

Bk = 1
2
(n− 1)k+1

×
∫

1>x1>···>xk>0,
0<y1<···<yk+1<1

x2ky1
[
1−

{ k∑
+xkyk+1

}]n−(k+2)
dx1 · · · dxk dyk+1,

where x0 = 1 and if k= 0 then the integral is taken over 0< y1 < 1.
(iii) For n� k+ 1 we have

Ck = (n− 1)k
∫
1>x1>···>xk>0,
0<y1<···<yk<1

xky1
[
1−

{ k∑
+xk

}]n−(k+1)
dx1 · · · dxk,

where x0 = 1 and if k= 0 then the interpretation is C0 = 1(n= 1).

Remark 3.2. Alternative expressions involving only finite sums are available for Ak, Bk, Ck
by recasting the expressions in square brackets in Lemma 3.3 as finite sums of non-negative
terms, expanding the integrand multinomially, and integrating the resulting polynomials explic-
itly. When this is done, one finds that Ak, Bk, Ck are all rational, as therefore are P (Kn = k) and
P (Kn = k |Kn � 0).

Take Ck as an example. We have

1−
{ k∑

+xk
}

=
k∑

i=1
(xi−1 − xi)(1− yi),

and carrying out this procedure yields

Ck = n−2
∑ k∏

i=1

(
i+

k∑
�=k+1−i

j�
)−1

,

where the indicated sum is taken over k-tuples (j1, . . . , jk) of non-negative integers summing to
n− (k+ 1) and the natural interpretation for k= 0 is C0 = 1(n= 1). Examples include

C1 = n−2(n− 1)−1, n� 2,
C2 = n−2(n− 1)−1Hn−2, n� 3,

Cn−1 = n−2
n−2∏
i=1

i−1 = (n! n)−1, n� 1. (3.3)

Since our aim is to compute P (Kn = 0) up to additive error O(n−2) for large n, the following
lemma will suffice to treat the contributions Ck.

Lemma 3.4. For n� 1, the probabilities Ck � 0 satisfy
∞∑
k=0

Ck =
n−1∑
k=0

Ck = n−2.

Proof. Recalling that rn denotes the number of remaining records at time n, it is clear from the
description of case (iii) leading up to Proposition 3.1 that

Ck = P (rn−1 = k, Kn = k)= P (rn−1 = k,Kn = rn−1).
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Therefore
∞∑
k=0

Ck = P (Kn = rn−1)= P (X≺X(i) for all 1� i� n− 1)= n−2.

3.4 Recurrence relations
In this subsection we establish recurrence relations for Ak and Bk in the variable k, holding n fixed
and treating the probabilities Ck as known.

Lemma 3.5. For k� 1 we have

(i) Ak = 1
2 (Ak−1 − Bk) if n� k+ 3,

(ii) Bk = 1
2 (Bk−1 − Ck) if n� k+ 2.

Proof. (i) Begin with the expression for Ak in Lemma 3.3 and integrate out the variable x0. This
gives

Ak = 1
4
(n− 1)k+1

×
(∫

1>x1>···>xk>0,
0<y1<···<yk+1<1

x2ky1
[
1−

{ k∑
2

+xkyk+1

}]n−(k+2)
dx1 · · · dxk dyk+1

−
∫

1>x1>···>xk>0,
0<y1<···<yk+1<1

x2ky1
[
1−

{ k∑
1

+xkyk+1

}]n−(k+2)
dx1 · · · dxk dyk+1

)

=A′
k −A′′

k (say),

with x0 = 1 in the subtracted integral. For A′
k, observe that the variable y1 does not appear within

the square brackets in the integrand. Thus, integrating out y1 and then shifting variable names,
we find

A′
k = 1

8
(n− 1)k+1

×
∫

1>x1>···>xk>0,
0<y2<···<yk+1<1

x2ky
2
2

[
1−

{ k∑
2

+xkyk+1

}]n−(k+2)
dx1 dx2 · · · dxk dyk+1

= 1
8
(n− 1)k+1

∫
1>x0>···>xk−1>0,
0<y1<···<yk<1

x2k−1y
2
1

[
1−

{k−1∑
+xk−1yk

}]n−(k+2)
dx0 dx1 · · · dxk−1 dyk

= 1
2
Ak−1,

where the last equality follows from Lemma 3.3. We see also from Lemma 3.3 that A′′
k = 1

2Bk. This
completes the proof of part (i).
(ii) The proof of part (ii) is similar. Begin with the expression for Bk in Lemma 3.3 and integrate
out the variable yk+1. This gives (with x0 = 1)
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Bk = 1
2
(n− 1)k

⎛
⎝∫

1>x1>···>xk>0,
0<y1<···<yk<1

xky1
[
1−

{ k∑
+xkyk

}]n−(k+1)
dx1 · · · dxk

−
∫
1>x1>···>xk>0,
0<y1<···<yk<1

xky1
[
1−

{ k∑
+xk

}]n−(k+1)
dx1 · · · dxk

⎞
⎠

= B′
k − B′′

k (say).

For B′
k, observe that the expression within {·} equals ∑k−1 +xk−1yk, which does not depend on

xk. Thus, integrating out xk, we find

B′
k = 1

4
(n− 1)k

∫
1>x1>···>xk−1>0,
0<y1<···<yk<1

x2k−1y1
[
1−

{k−1∑
+xk−1yk

}]n−(k+1)
dx1 · · · dxk−1 dyk

= 1
2
Bk−1,

where the last equality follows from Lemma 3.3. We see also from Lemma 3.3 that B′′
k = 1

2Ck. This
completes the proof of part (ii).

Using the ‘initial conditions’ delivered by Proposition 3.2, it is routine to solve the first-order
linear recurrence relations of Lemma 3.5 in terms of the probabilities Ck.

Lemma 3.6. For n� 1 and k� 0 we have

Ak = 1(n� k+ 3)
[
2−kA0 − k2−(k+1)B0 +

k∑
j=1

(k+ 1− j)2−(k+2−j)Cj

]
, (3.4)

Bk = 1(n� k+ 2)
[
2−kB0 −

k∑
j=1

2−(k+1−j)Cj

]
. (3.5)

Proof. Clearly we have (3.5) and likewise

Ak = 2−kA0 −
k∑

j=1
2−(k+1−j)Bj. (3.6)

Then, plugging (3.5) into (3.6) and rearranging yields (3.4).

3.5 Approximation to the probability P (Kn = k), with error bound

Theorem 3.1. For n� 1 and every k� 0 we have

| P (Kn = k)− [2−(k+1)n−1Hn − (k− 1)2−(k+2)n−1]|� 1
2
n−2. (3.7)

Proof. Recall from (3.2) that P (Kn = k)=Ak + 2Bk + Ck. Substitute for Ak and Bk using
Lemma 3.6, then substitute for A0 and B0 using Proposition 3.2, and finally rearrange.
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For 0� k� n− 3 this gives

P (Kn = k)= 2−kA0 − (k− 4)2−(k+1)B0 +
k−1∑
j=1

(k− 3− j)2−(k+2−j)Cj + 1
4
Ck

= 2−(k+1)n−1Hn − (k− 1)2−(k+2)n−1 +
k−1∑
j=1

(k− 3− j)2−(k+2−j)Cj + 1
4
Ck.

Denote the coefficient of Cj (with 1� j� k) by ck,j. Note that ck,j ≡ ck−j depends only on k− j� 0,
and that |ci|� 1/4 (with equality for c0 = 1/4 and c1 = −1/4). So Lemma 3.4 gives the bound on
the remainder term (with half as big a constant).

For k= n− 2 this gives

P (Kn = k)= 2−kn−1 −
k−1∑
j=1

2−(k−j)Cj.

A simple argument omitted here shows that this differs from the approximation in the statement
of the theorem by at most 1

2n
−2 for all n� 1.

For k= n− 1, this together with (3.3) gives

P (Kn = k)= Cn−1 = (n! n)−1.

Now another simple and omitted argument shows that this differs from the approximation in the
statement of the theorem by at most 1

4n
−2 for all n� 1.

For k� n we have P (Kn = k)= 0, and another simple argument shows that this differs from
the asserted approximation by at most 1

2n
−2 provided n� 6, the worst case being k= 7 for n= 6

and k= n for n� 7. Further, the bound can be checked directly for n= 1, 2, 3, 4, 5, the worst k in
each of those cases again being k= n.

Example 3.7. The matrix C = Cn,k with 1� n� 5 and 0� k� 4 is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0 1
4

0 1
18

1
18

0 1
48

1
32

1
96

0 1
100

11
600

1
100

1
600

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Observe that the nth row sums to n−2, as noted at Lemma 3.4. The matrix with entries P (Kn = k)
for the same values of n and k is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

1
4

7
18

1
6

1
18

31
96

13
96

5
96

1
96

167
600

7
60

7
150

1
75

1
600

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)
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Observe that the nth row sums to n−1Hn, as guaranteed by Proposition 2.1. The matrix with
entries P (Kn = k |Kn � 0) is therefore⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

1
3

7
11

3
11

1
11

31
50

13
50

5
50

1
50

167
274

35
137

14
137

4
137

1
274

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with every row summing to unity.

Remark 3.3.

(a) Not that the optimal numerical constant appearing on the right in (3.7) is important to know,
but it would appear from (3.8) and other computations that the optimal constant is 1/4,
achieved in four cases: n= 1, 2 with k= n− 1, n.

(b) More importantly, we do not know whether the order n−2 of the error bound in Theorem 3.1
is asymptotically optimal. While the approximation is perfect for k= 0 if n� 2, for k= 1 it
underestimates P (Kn = k) by 1

4C1 = 1
4n

−2(n− 1)−1 if n� 2, and for k= 2 it underestimates
by 1

4 (C2 − C1)= 1
4n

−2(n− 1)−1(Hn−2 − 1) if n� 3. Thus the rate of convergence is O(n−2)
but �(n−3 log n).
For fixed k� 1, we conjecture that the correct rate of convergence is�(n−3( log n)k−1), and

more strongly that the error satisfies

[2−(k+1)n−1Hn − (k− 1)2−(k+2)n−1]− P (Kn = k)∼ −1
4
Ck ∼ n−3 ( L n)k−1

(k− 1)!
as n→ ∞. Since

sup
k�1

( L n)k−1

(k− 1)! = �

(
n√
log n

)
,

this suggests that perhaps the optimal rate (uniformly in k) for Theorem 3.1 is the small
improvement �(n−2( log n)−1/2).

4. Conjectures
The upshot of this section is that a variance bound would imply a Glivenko–Cantelli type theorem:
Conjecture 4.5 would imply Conjecture 4.1.

4.1 The natural conjecture
While our main Theorem 1.1 does begin to explain how the Geometric(1/2) distribution arises
in connection with the breaking of bivariate records, it is not the conjecture to which one is led
by performing many independent trials of generating a large number M of records and, for each
trial, watching the table such as Table 1 evolve as records are generated one at a time. A natural
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conjecture concerns the fractions of records that break k remaining records, for various values
of k. Accordingly, let

p̃M,k :=M−1
M∑

m=1
Ĩm,k,

where

Ĩm,k := 1(mth record generated breaks precisely k remaining records).

A strong conjecture one might form is the following, of Glivenko–Cantelli type.

Conjecture 4.1. The fractions p̃M,k of the first M records that break precisely k remaining records
satisfy

sup
k�0

|p̃M,k − 2−(k+1)| a.s.−→ 0 as M → ∞.

In the remaining subsections we show how proving this conjecture can be reduced to an
asymptotic variance calculation, and we leave that calculation for future research.

4.2 Uniformity in k
Of course, Conjecture 4.1 would have the following corollary, of strong law of large numbers type.

Conjecture 4.2. For each fixed k� 0, the fraction p̃M,k of the first M records that breaks precisely k
remaining records satisfies

p̃M,k
a.s.−→ 2−(k+1) as M → ∞.

But it is standard to check that Conjecture 4.2 also implies Conjecture 4.1. For completeness,
here is a proof, with all claims holding almost surely. Let εM,k � 0 denote the random variable
|p̃M,k − 2−(k+1)|. Then, for any K � 0, we have

εM := sup
k�0

εM,k =max
{
max
k�K

εM,k, sup
k>K

εM,k
}
,

and so

lim sup
M→∞

εM = lim sup
M→∞

sup
k>K

εM,k

by Conjecture 4.2. But

sup
k>K

εM,k �
∑
k>K

p̃M,k + 2−(K+1) = 1−
∑
k�K

p̃M,k + 2−(K+1).

Therefore

lim sup
M→∞

εM � 1−
∑
k�K

lim
M→∞ p̃M,k + 2−(K+1) = 1−

∑
k�K

2−(k+1) + 2−(K+1) = 2−K .

Letting K → ∞ completes the proof.

https://doi.org/10.1017/S0963548320000309 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000309


118 J. A. Fill

4.3 Time change
We show next that Conjecture 4.2 would follow from the following ‘observations-time’ conjecture.
Let

Rn,k :=
n∑

i=1
Ii,k, (4.1)

where

Ii,k := 1(Ki = k).
Note that

Rn =
∑
k�0

Rn,k,

and define

pn,k := Rn,k
Rn

.

Conjecture 4.3. For each fixed k� 0, we have

pn,k
a.s.−→ 2−(k+1) as n→ ∞.

Here is a proof that Conjecture 4.3 implies Conjecture 4.2. Working in observations-time, for
m� 1, let Tm denote the time at which themth record is set, so that RTm =m for allm. In similar
fashion, RTM ,k = ∑M

m=1 Ĩm,k. Thus Conjecture 4.2 follows from Conjecture 4.3 simply by looking
at the sequence (Tm) of n-values.

4.4 Expectations
Conjecture 4.3 is certainly plausible, because, as we prove in this subsection, with

ρn,k :=E Rn,k, ρn :=E Rn, φn,k := ρn,k
ρn

we have

φn,k → 2−(k+1) as n→ ∞. (4.2)

In the statement of the following lemma, we refer (indirectly) to the second-order harmonic
numbers

H(2)
n = π2

6
− (1+ o(1))n−1 as n→ ∞, where H(r)

n :=
n∑

i=1
i−r

(aside: we shall encounter the fourth-order harmonic numbers in Section 4.6), and (directly) to
the second-order Roman harmonic numbers (see [5] and references [16, 22, 23] therein)

c(2)n :=
n∑
i=1

i−1Hi

= 1
2
(H2

n +H(2)
n )

= 1
2
( L n)2 + γ L n+ 1

2

(
π2

6
+ γ 2

)
+O(n−1 log n).
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The lemma shows that
ρ̂n,k := 2−(k+1)c(2)n − (k− 1)2−(k+2)Hn

gives a good approximation to ρn,k.

Lemma 4.1. For n� 1 we have
ρn = c(2)n (4.3)

and, for every k� 0, also

|ρ̂n,k − ρn,k|� 1
2
H(2)
n < 1. (4.4)

Proof. For (4.3), just sum the result of Proposition 2.1 (with n replaced by i) over i from 1 to n.
For (4.4), apply the same operation to (3.7) in Theorem 3.1, observing π2/12< 1.

Remark 4.1. From Lemma 4.1 it is an immediate corollary that

sup
k�0

∣∣∣∣φn,k −
[
2−(k+1) − (k− 1)2−(k+2) Hn

c(2)n

]∣∣∣∣ <
1
c(2)n

∼ ( L n)−2.

In particular, (4.2) holds, uniformly in k.

4.5 Reduction to a variance calculation

In light of Lemma 4.1, to establish pn,k
P−→ 2−(k+1) as n→ ∞ it would be sufficient to establish

concentration of measure for the distributions of the denominator Rn and the numerator Rn,k of
pn,k; for example, by means of variance bounds combined with Chebyshev’s inequality. As we will
explain in this subsection, we already know about the variance of Rn, and if we were to bound the
variance of Rn,k in suitably similar fashion we could prove not only convergence in probability but
also the almost sure convergence of Conjecture 4.2.

The following results concerning Rn are implied by [4, Theorems 4.1(b), 4.2(a)] (with themean,
variance and central limit theorem results there taken from [2] and [1]) after specializing to our
present case of dimension d = 2.

Lemma 4.2. Let  denote the standard normal distribution function. The number Rn of records set
through time n satisfies

ρn =E Rn = 1
2
( L n)2 + γ L n+

(
π2

12
+ 1

2
γ 2

)
+ o(1),

σ 2
n :=Var Rn ∼

(
π2

6
+ γ 2

)
( L n)2,

sup
x

∣∣∣∣P
(
Rn − ρn

σn
< x

)
− (x)

∣∣∣∣ =O(( log n)−1/2( log log n)3),

P (|Rn − ρn|� ( L n)(3/2)+ε infinitely often)= 0 if ε > 0, (4.5)
and consequently

Rn
ρn

a.s.−→ 1. (4.6)
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A careful review of the proof of (4.5) (a first Borel–Cantelli argument applied along a geometri-
cally increasing sequence of times), which immediately implies (4.6), shows that to establish (4.5)
it is sufficient to know that the samples paths of the process R are non-decreasing, that

ρn = a( L n)2 + b( L n)+O(1)

for some constants a> 0 and b, that σ 2
n =O(( log n)2), and that

ρn − ρn−1 = �(n−1 log n).

Now observe, for each fixed k� 0, that the sample paths of the process R·,k are non-decreasing,
that

ρn,k = ak( L n)2 + bk( L n)+O(1)

with ak = 2−(k+2) > 0 and bk = −2−(k+2)(k− 2γ − 1), and that

ρn,k − ρn−1,k = P (Kn = k)= �(n−1 log n),

with the last equality holding by Theorem 3.1. Thus the analogues of (4.5)–(4.6) for R·,k hold if we
can establish that

σ 2
n,k :=Var Rn,k (4.7)

satisfies σ 2
n,k =O(( log n)2), which (in light of the known corresponding result for R) seems

eminently reasonable to conjecture.

Conjecture 4.4. For each fixed k� 0, the variance σ 2
n,k defined at (4.7) satisfies

σ 2
n,k =O(( log n)2).

A summary of this subsection is that Conjecture 4.4 would imply Conjecture 4.3 and therefore
also Conjecture 4.1.

Remark 4.2.
(a) Use of the refinement (4.5) to (4.6) shows that Conjecture 4.4 would imply the refinement

pn,k = 2−(k+1)[1+O(( log n)−(1/2)+ε)] a.s.

of Conjecture 4.3 for each fixed k� 0 and any ε > 0.
(b) More than Conjecture 4.4, we conjecture that for each fixed k� 0 we have

σ 2
n,k ∼ s2k( L n)

2

for some constants s2k > 0 satisfying s2k → 0 as k→ ∞ (likely with sk ≡ 2−(k+1)s, letting s2 :=
(π2/6)+ γ 2), and that there is asymptotic normality for Rn,k. It seems reasonable to conjec-
ture that, moreover, the random vector (Rn,1, . . . , Rn,k) enjoys full-dimensional asymptotic
k-variate normality.

(c) It may be that the random variablesRn,k are positively correlated for fixed n as k varies, the idea
being that larger values of Rn (more records) should lead to larger values of Rn,k (more records
that break k remaining records) for every k. If this positive correlation were to be known,
then Conjecture 4.4 would follow immediately, without the need for additional calculations.
Indeed, for large n and fixed k we would then have

σ 2
n,k �

n∑
j=1

σ 2
n,j � σ 2

n ∼ s2( L n)2.
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4.6 Reduction of the variance calculation
Corresponding to the breakdown into cases utilized in Section 3, observe that In,k = 1(Kn = k)
satisfies

In,k = I(0)n,k + I(1)n,k + I(2)n,k + I(1,2)n,k ,

where the four terms here are the respective indicators of the events

{Kn = k, X(n) does not set a record in either coordinate},
{Kn = k, X(n) sets a record in the first coordinate but not the second},
{Kn = k, X(n) sets a record in the second coordinate but not the first},
{Kn = k, X(n) sets a record in both coordinates}.

By analogy with (4.1), define respective record counts R(0)n,k, R
(1)
n,k, R

(2)
n,k, R

(1,2)
n,k , so that

Rn,k = R(0)n,k + R(1)n,k + R(2)n,k + R(1,2)n,k . (4.8)

It thus seems daunting to calculate σ 2
n,k to prove Conjecture 4.4. But in this subsection we argue

by means of suitable control of all but the first term in (4.8) that

σ 2
n,k =Var R(0)n,k +O(( log n)2),

for fixed k, thus reducing proof of Conjecture 4.4 to proof of the following simpler conjecture.

Conjecture 4.5. For each fixed k� 0, we have

Var R(0)n,k =O(( log n)2).

Here is a proof that Conjecture 4.5 would imply Conjecture 4.4. By the triangle inequality for
L2-norm ‖ · ‖2, in obvious notation we have

σn,k − σ
(0)
n,k � σ

(1)
n,k + σ

(2)
n,k + σ

(1,2)
n,k = 2σ (1)

n,k + σ
(1,2)
n,k . (4.9)

But with R(1)n counting the number of records through time n in the first coordinate, we have

Var R(1)n,k � ‖R(1)n,k‖22
� ‖R(1)n ‖22
= [E R(1)n ]2 +Var R(1)n

=H2
n + [Hn −H(2)

n ]

=O(( log n)2), (4.10)

and with R(1,2)n counting the number of observations through time n that set a record in both
coordinates, we have

Var R(1,2)n,k � ‖R(1,2)n,k ‖22
� ‖R(1,2)n ‖22
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= [E R(1,2)n ]2 +Var R(1,2)n

= (H(2)
n )2 + [H(2)

n −H(4)
n ]

=O(1)

= o(( log n)2). (4.11)

Thus, returning to (4.9) and applying the inequality (a+ b)2 � 2(a2 + b2), we find

σ 2
n,k � [σ (0)

n,k +O( log n)]2 � 2 Var R(0)n,k +O(( log n)2),

and so Conjecture 4.5 would imply Conjecture 4.4.

Remark 4.3.

(a) Observe that R(1,2)n,0 = 1 for every n� 1, and so Var R(1,2)n,0 = 0. For k� 1, we claim that (4.11)
can be strengthened to Var R(1,2)n,k = �(1). To establish the lower bound Var R(1,2)n,k = �(1)
matching the upper bound (4.11), we perform two computations. The first, valid for n�
2k+ 1, is that

P (R(1,2)n,k � 2)� P (R(1,2)2k+1,k = 2)= P (R(1,2)k+1,k = 1, R(1,2)2k+1,k = 2)> 0,

and the other, valid for n� k+ 1, is that

P (R(1,2)n,k = 1)� P (R(1,2)k+1,k = 1, R(1,2)n,k = 1)

� P (R(1,2)k+1,k = 1) P (R(1,2)n−k = 1)

= P (R(1,2)k+1,k = 1)
n−k∏
i=2

(1− i−2)

= 1
2
P (R(1,2)k+1,k = 1)[1+ (n− k)]−1

� 1
2
P (R(1,2)k+1,k = 1)

> 0.

(b) We conjecture that (4.10) can be strengthened to Var R(1)n,k = �( log n). If we knew even the
upper bound Var R(1)n,k =O( log n), then it would follow from (4.9) and the matching upper
bound on σ

(0)
n,k − σn,k that

σn,k = σ
(0)
n,k +O(( log n)1/2).

In that way, if one could prove the conjecture that σ (0)
n,k ∼ sk L n for some constant sk > 0, then

the same leading-order asymptotics would apply to σn,k.
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