We establish the existence of positive solutions of the Sturm–Liouville problem
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0013091507000120/resource/name/S0013091507000120_eqnU1.gif?pub-status=live)
where
![](//static-cambridge-org.ezproxyberklee.flo.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0013091507000120/resource/name/S0013091507000120_eqnU2.gif?pub-status=live)
We assume g and
to be non-negative, continuous functions, a(s) is a positive continuous function, c≥0, p>1, and the function h is sub-quadratic with respect to u′. We combine a priori estimates with a fixed-point result of Krasnosel'skii to obtain the existence of a positive solution.