We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Omega \subset \mathbb{R}^d$ with $d\geq 2$ be a bounded domain of class ${\mathcal C}^{1,\beta }$ for some $\beta \in (0,1)$. For $p\in (1, \infty )$ and $s\in (0,1)$, let $\Lambda ^s_{p}(\Omega )$ be the first eigenvalue of the mixed local–nonlocal operator $-\Delta _p+(-\Delta _p)^s$ in Ω with the homogeneous nonlocal Dirichlet boundary condition. We establish a strict Faber–Krahn-type inequality for $\Lambda _{p}^s(\cdot )$ under polarization. As an application of this strict inequality, we obtain the strict monotonicity of $\Lambda _{p}^s(\cdot )$ over the annular domains and characterize the rigidity property of the balls in the classical Faber–Krahn inequality for $-\Delta _p+(-\Delta _p)^s$.
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-th fractional truncated Laplacian or the $k$-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.
In this paper, we study the principal spectral theory of age-structured models with random diffusion. First, we provide an equivalent characteristic for the principal eigenvalue, the strong maximum principle and a positive strict super-solution. Then, we use the result to investigate the effects of diffusion rate on the principal eigenvalue. Finally, we study how the principal eigenvalue affects the global dynamics of the KPP model and verify that the principal eigenvalue being zero is a critical value.
Maximum principles for subharmonic functions in the framework of quasi-regular local semi-Dirichlet forms admitting lower bounds are presented. As applications, we give weak and strong maximum principles for (local) subsolutions of a second order elliptic differential operator on the domain of Euclidean space under conditions on coefficients, which partially generalize the results by Stampacchia.
We consider two models for the control of a satellite–in the first, fuel is expended in a linear fashion to move a satellite following a diffusion–where the aim is to keep the satellite above a critical level for as long as possible (or indeed to reach a higher, ‘safe’ level). Under suitable assumptions for the drift and diffusion coefficients, it is shown that the stochastic maximum of the time to fall below the critical level is attained by a policy which imposes a reflecting boundary at the critical level until the fuel is exhausted and jumps the satellite directly to the safe level if this is ever possible. In the second model, there is a nonlinear response to the expenditure of fuel, and no safe level. It is shown that the optimal policy for maximizing the expected discounted time for the satellite to crash is similar, in that equal packets of fuel are used to jump the satellite upwards each time it reaches the critical level.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.