We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Under ‘cocktail party’ listening conditions, healthy listeners and listeners with schizophrenia can use temporally pre-presented auditory speech-priming (ASP) stimuli to improve target-speech recognition, even though listeners with schizophrenia are more vulnerable to informational speech masking.
Method
Using functional magnetic resonance imaging, this study searched for both brain substrates underlying the unmasking effect of ASP in 16 healthy controls and 22 patients with schizophrenia, and brain substrates underlying schizophrenia-related speech-recognition deficits under speech-masking conditions.
Results
In both controls and patients, introducing the ASP condition (against the auditory non-speech-priming condition) not only activated the left superior temporal gyrus (STG) and left posterior middle temporal gyrus (pMTG), but also enhanced functional connectivity of the left STG/pMTG with the left caudate. It also enhanced functional connectivity of the left STG/pMTG with the left pars triangularis of the inferior frontal gyrus (TriIFG) in controls and that with the left Rolandic operculum in patients. The strength of functional connectivity between the left STG and left TriIFG was correlated with target-speech recognition under the speech-masking condition in both controls and patients, but reduced in patients.
Conclusions
The left STG/pMTG and their ASP-related functional connectivity with both the left caudate and some frontal regions (the left TriIFG in healthy listeners and the left Rolandic operculum in listeners with schizophrenia) are involved in the unmasking effect of ASP, possibly through facilitating the following processes: masker-signal inhibition, target-speech encoding, and speech production. The schizophrenia-related reduction of functional connectivity between the left STG and left TriIFG augments the vulnerability of speech recognition to speech masking.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.