Let
$\mathfrak{a}$ be an ideal of a Noetherian local ring
$R$ and let
$C$ be a semidualizing
$R$-module. For an
$R$-module
$X$, we denote any of the quantities
$\text{f}{{\text{d}}_{R}}X,\,\text{Gf}{{\text{d}}_{R}}X$ and
${{\text{G}}_{\text{C}}}-\text{f}{{\text{d}}_{R}}\,X\,\text{by}\,\text{T}\left( X \right)$. Let
$M$ be an
$R$-module such that
$\text{H}_{\mathfrak{a}}^{i}\left( M \right)\,=\,0$ for all
$i\,\ne \,n$. It is proved that if
$T\left( M \right)\,<\,\infty$, then
$\text{T}\left( \text{H}_{\mathfrak{a}}^{n}\left( M \right) \right)\,\le \,\text{T}\left( M \right)\,+\,n$, and the equality holds whenever
$M$ is finitely generated. With the aid of these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules, and Gorenstein rings.