Let
$f\,:\,{{\mathbb{R}}^{n}}\,\to \,\mathbb{R}$ be
${{C}^{\infty }}$ and let
$h\,:\,{{\mathbb{R}}^{n}}\,\to \,\mathbb{R}$ be positive and continuous. For any unbounded nondecreasing sequence
$\{{{c}_{k}}\}$ of nonnegative real numbers and for any sequence without accumulation points
$\{{{x}_{m}}\}$ in
${{\mathbb{R}}^{n}}$, there exists an entire function
$g\,:\,{{\mathbb{C}}^{n}}\,\to \,\mathbb{C}$ taking real values on
${{\mathbb{R}}^{n}}$ such that
$$\left| {{g}^{\left( \alpha \right)}}\left( x \right)-{{f}^{\left( \alpha \right)}}\left( x \right) \right|\text{ }<h\left( x \right),\left| x \right|\ge {{c}_{k}},\left| \alpha \right|\le k,k=0,1,2,...,$$
$${{g}^{\left( \alpha \right)}}\left( {{x}_{m}} \right)\,=\,{{f}^{\left( \alpha \right)}}\left( {{x}_{m}} \right),\,\,\,\left| {{x}_{m}} \right|\,\ge \,{{c}_{k}},\,\left| \alpha \right|\,\le \,k,\,m,\,k\,=\,0,\,1,\,2,\,.\,.\,.\,.$$
This is a version for functions of several variables of the case
$n\,=\,1$ due to
$L$. Hoischen.