Let
$g\,\ge \,2$. A real number is said to be
$g$-normal if its base
$g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let
$\varphi$ denote Euler’s totient function, let
$\sigma$ be the sum-of-divisors function, and let
$\lambda$ be Carmichael’s lambda-function. We show that if
$f$ is any function formed by composing
$\varphi$,
$\sigma$, or
$\lambda$, then the number
$$0.f\left( 1 \right)f\left( 2 \right)f\left( 3 \right)\,.\,.\,.$$
obtained by concatenating the base
$g$ digits of successive
$f$-values is
$g$-normal. We also prove the same result if the inputs 1,2,3.... are replaced with the primes 2, 3, 5.... The proof is an adaptation of a method introduced by Copeland and Erdõs in 1946 to prove the 10-normality of 0:235711131719...